Tag Archives: VTOL X-Plane

VTOL X-Plane

DARPA has completed flight-testing of a sub-scale version of a novel aircraft design as part of its Vertical TakeOff and Landing (VTOL) X-Plane program, and is proceeding with work to develop a full-scale version of the groundbreaking plane. Developed and fabricated by Aurora Flight Sciences, the revolutionary aircraft includes 24 electric ducted fans – 18 distributed within the main wings and six in the canard surfaces, with the wings and canards tilting upwards for vertical flight and rotating to a horizontal position for wing-borne flight. The successful tests suggest there is a time in the not-so-distant future when VTOL aircraft could fly much faster and farther than any existing hover-capable craft, and take off and land almost anywhere.

VTOL X-plane hovering in place before transitioning to horizontal flight
VTOL X-plane hovering in place before transitioning to horizontal flight

Subscale testing began on the VTOL program in March of 2016 and the first phase of testing ended after six flights with demonstration of auto take off, sustained hover, directional and translational control (including lateral and rearward flight), waypoint navigation, and auto landing. Later, the aircraft wing and canard tilt mechanisms, tilt schedules, and wing-borne flight controls were enabled for testing. Four of the test flights featured an expanded flight envelope in which the vehicle experimented with increases in air speed until the wing generated most of the lift.

«The VTOL demonstrator was designed specifically to test the aerodynamic design of the aircraft, validate flight dynamics, and develop the flight and mission-systems controls for application to the full-scale vehicle», said Ashish Bagai, DARPA program manager. «The aircraft exhibited exceptional flight characteristics, with no loss in altitude even as it transitioned from vertical to horizontal flight. It also demonstrated aerodynamic effectiveness of the distributed propulsive system».

The subscale aircraft flight and mission control architectures will, for the most part, be carried over into the full-scale VTOL aircraft, but with a few additions and improvements. According to Bagai, the full-scale aircraft will incorporate a triple-redundant flight control system instead of a single system. A hybrid turboshaft engine driving electric generators to power the fan units, versus the demonstrator’s batteries, will power the full-scale aircraft. Finally, the full-scale aircraft fan units will be synchronized to the generators and turn at a constant RPM, but incorporate variable pitch, whereas the demonstrator’s fans are speed controlled.

Composite image of VTOL subscale test aircraft in horizontal flight
Composite image of VTOL subscale test aircraft in horizontal flight

In addition to serving as a flight controls systems developmental aircraft, the VTOL subscale demonstrator advanced a number of technologies such as 3D-printed plastics for flight structures and aerodynamic surfaces as well as embedded distributed electric propulsion. The subscale demonstrator also improved methods to develop the aerodynamic databases upon which the air-vehicle control system is modeled, and provided lessons for the flight control system.

With the subscale test flights completed, the aircraft will be preserved for possible additional tests in the future. Meanwhile, all ongoing-program efforts will focus on the development of the full-scale VTOL X-Plane aircraft, which now bears the official designation of XV-24A.

The XV-24A will weigh 12,000 pounds/5,443 kg compared to the demonstrator’s 322 pounds/146 kg, and will aim to demonstrate specific performance objectives stipulated by DARPA: flight speeds in excess of 300 knots/345 mph/555.6 km/h, full hover and vertical flight capabilities, and – relative to helicopters – a 25 percent improvement in hovering efficiency and 50 percent reduction in system drag losses during cruise.

«These are ambitious performance parameters», Bagai said, «which we believe will push current technologies to the max and enable a new generation of vertical flight operational capabilities».

DARPA Completes Testing of Subscale Hybrid Electric VTOL X-Plane

 

Aurora Flies X-Plane

On April 18, Aurora Flight Sciences announced that a Subscale Vehicle Demonstrator (SVD) of its LightningStrike, Vertical Take-off and Landing Experimental Plane (VTOL X-plane) for the Defense Advanced Research Projects Agency (DARPA) was successfully flown at a U.S. military facility at Manassas, Virginia. The flight of the subscale aircraft met an important DARPA risk reduction requirement, focusing on validation of the aerodynamic design and flight control system.

LightningStrike VTOL X-Plane’s First Flight
LightningStrike VTOL X-Plane’s First Flight

«The successful subscale aircraft flight was an important and exciting step for Aurora and our customer», said Tom Clancy, Aurora’s chief technology officer. «Our design’s distributed electric propulsion system involves breaking new ground with a flight control system requiring a complex set of control effectors. This first flight is an important, initial confirmation that both the flight controls and aerodynamic design are aligning with our design predictions».

The subscale aircraft weighs 325 pounds/147.4 kg and is a 20% scale flight model of the full scale demonstrator Aurora will build for DARPA in the next 24 months. The wing and canard of the subscale vehicle utilize a hybrid structure of carbon fiber and 3D printed FDM plastics to achieve highly complex structural and aerodynamic surfaces with minimal weight. The unmanned aircraft take-off, hover and landing was controlled by Aurora personnel located in a nearby ground control station with oversight and coordination by U.S. government officials including DARPA personnel.

Vertical Takeoff and Landing Experimental Plane (VTOL X-Plane)
Vertical Takeoff and Landing Experimental Plane (VTOL X-Plane)

On March 3, 2016, DARPA announced the award of the Phase II contract for the VTOL X-Plane contract to Aurora, following a multi-year, Phase I design competition. The program seeks to develop a vertical take-off and landing demonstrator aircraft that will achieve a top sustained flight speed of 300 knots/345 mph/556 km/h – 400 knots/460 mph/741 km/h, with 60-75% increase in hover efficiency over existing VTOL aircraft. Aurora’s design is for the first aircraft in aviation history to demonstrate distributed hybrid-electric propulsion using an innovative synchronous electric-drive system. Having successfully completed the subscale demonstrator flight, Aurora’s LightningStrike team will focus over the next year on further validation of flight control system and configuration of the full scale VTOL X-Plane demonstrator.

Aurora Flight Sciences’ subscale vehicle demonstrator successfully flew at a U.S. military facility

X-Plane Phase 2

For decades, aircraft designers seeking to improve Vertical Take-Off and Landing (VTOL) capabilities have endured a substantial set of interrelated challenges. Dozens of attempts have been made to increase top speed without sacrificing range, efficiency or the ability to do useful work, with each effort struggling or failing in one way or another.

DARPA’s Vertical Take-Off and Landing Experimental Plane (VTOL X-Plane) program seeks to provide innovative cross-pollination between fixed-wing and rotary-wing technologies and develop and integrate novel subsystems to enable radical improvements in vertical and cruising flight capabilities
DARPA’s Vertical Take-Off and Landing Experimental Plane (VTOL X-Plane) program seeks to provide innovative cross-pollination between fixed-wing and rotary-wing technologies and develop and integrate novel subsystems to enable radical improvements in vertical and cruising flight capabilities

DARPA’s VTOL Experimental Plane (VTOL X-Plane) program aims to overcome these challenges through innovative cross-pollination between fixed-wing and rotary-wing technologies and by developing and integrating novel subsystems to enable radical improvements in vertical and cruising flight capabilities. In an important step toward that goal, DARPA has awarded the Phase 2 contract for VTOL X-Plane to Aurora Flight Sciences.

«Just when we thought it had all been done before, the Aurora team found room for invention – truly new elements of engineering and technology that show enormous promise for demonstration on actual flight vehicles», said Ashish Bagai, DARPA program manager. «This is an extremely novel approach», Bagai said of the selected design. «It will be very challenging to demonstrate, but it has the potential to move the technology needle the farthest and provide some of the greatest spinoff opportunities for other vertical flight and aviation products».

VTOL X-Plane seeks to develop a technology demonstrator that could:

  • Achieve a top sustained flight speed of 300 knot/345 mph/555 km/h to 400 knot/460 mph/740 km/h;
  • Raise aircraft hover efficiency from 60 percent to at least 75 percent;
  • Present a more favorable cruise lift-to-drag ratio of at least 10, up from 5-6;
  • Carry a useful load of at least 40 percent of the vehicle’s projected gross weight of 10,000-12,000 pounds/4,536-5,443 kg.

Aurora’s Phase 2 design for VTOL X-Plane envisions an unmanned aircraft with two large rear wings and two smaller front canards – short winglets mounted near the nose of the aircraft. A turboshaft engine – one used in V-22 Osprey tiltrotor aircraft – mounted in the fuselage would provide 3 megawatts (4,000 horsepower) of electrical power, the equivalent of an average commercial wind turbine. The engine would drive 24 ducted fans, nine integrated into each wing and three inside each canard. Both the wings and the canards would rotate to direct fan thrust as needed: rearward for forward flight, downward for hovering and at angles during transition between the two.

In an important step toward that goal, DARPA has awarded the Phase 2 contract for VTOL X-Plane to Aurora Flight Sciences
In an important step toward that goal, DARPA has awarded the Phase 2 contract for VTOL X-Plane to Aurora Flight Sciences

The design envisions an aircraft that could fly fast and far, hover when needed and accomplish diverse missions without the need for prepared landing areas. While the technology demonstrator would be unmanned, the technologies that VTOL X-Plane intends to develop could apply equally well to manned aircraft. The program has the goal of performing flight tests in the 2018 timeframe.

Aurora’s unique design is only possible through advances in technology over the past 60 years, in fields such as air vehicle and aeromechanics design and testing, adaptive and reconfigurable control systems, and highly integrated designs. It would also be impossible with the classical mechanical drive systems used in today’s vertical lift aircraft, Bagai said.

The Phase 2 design addresses in innovative ways many longstanding technical obstacles, the biggest of which is that the design characteristics that enable good hovering capabilities are completely different from those that enable fast forward flight. Among the revolutionary design advances to be incorporated in the technology demonstrator:

  • Electric power generation and distribution systems to enable multiple fans and transmission-agnostic air vehicle designs;
  • Modularized, cellular aerodynamic wing design with integrated propulsion to enable the wings to perform efficiently in forward flight, hover and when transitioning between them;
  • Overactuated flight control systems that could change the thrust of each fan to increase maneuverability and efficiency.

«This VTOL X-plane won’t be in volume production in the next few years but is important for the future capabilities it could enable», Bagai said. «Imagine electric aircraft that are more quiet, fuel-efficient and adaptable and are capable of runway-independent operations. We want to open up whole new design and mission spaces freed from prior constraints, and enable new VTOL aircraft systems and subsystems».

VTOL X-Plane Phase 2 Concept Video