Tag Archives: Ula

Vulcan Centaur

Northrop Grumman Corporation has delivered the first two 63-inch-diameter/160-centimeter- diameter extended length Graphite Epoxy Motors (GEM 63XL) to Cape Canaveral Space Force Station, Florida.

GEM 63XL
Northrop Grumman Delivers First GEM 63XL Solid Rocket Boosters to Support Vulcan First Flight

The solid rocket boosters will support the inaugural flight of United Launch Alliance’s (ULA) Vulcan Centaur rocket planned for first quarter 2023. At approximately 72-feet-long/22-meters-long, and weighing over 117,000 pounds/53,070 kg, the GEM 63XL is the longest monolithic single-cast solid rocket motor ever produced. Together the two boosters will provide nearly one million pounds of additional thrust for ULA’s Vulcan rocket with each booster contributing over 463,200 pounds/210,104 kgf of thrust at launch.

Missile Warning

Following a successful launch from Cape Canaveral Space Force Station in Florida today, the U.S. Space Force is now communicating with the sixth Space Based Infrared System Geosynchronous Earth Orbit (SBIRS GEO)-6 satellite, built by Lockheed Martin.

SBIRS GEO-6
The U.S. Space Force’s SBIRS GEO-6 early missile warning satellite built by Lockheed Martin

The final satellite in the SBIRS program series, GEO-6 joins the U.S. Space Force’s constellation of missile warning satellites equipped with powerful scanning and staring infrared surveillance sensors.

«The need for Overhead Persistent Infrared systems has never been more critical», said Michael Corriea, vice president of Lockheed Martin Space’s Overhead Persistent Infrared (OPIR) Mission Area. «At Lockheed Martin, we are making advancements to keep pace with evolving needs based on emerging threats in our military customers’ environment, helping pave the way for the future».

The GEO-6 satellite is a stepping stone toward the resilient missile warning to be provided by SBIRS’ successor, the Next Generation OPIR GEO System (NGG). Like SBIRS GEO-5 and GEO-6, NGG will be based on Lockheed Martin’s modernized LM 2100 Combat Bus, which provides additional capabilities such as cyber hardening, resiliency features, enhanced spacecraft power, and improved propulsion and electronics.

The SBIRS GEO-6 satellite is responding to the U.S. Space Force’s commands as planned. Signal acquisition was confirmed 3 hours and 43 minutes after the satellite’s 6:29 a.m. EDT lift off aboard a United Launch Alliance (ULA) Atlas V rocket. The satellite is now orbiting under its own propulsion following separation from the rocket. The onboard sensors collect data that allow the U.S. military to detect missile launches, support ballistic missile defense, expand technical intelligence gathering and bolstering situational awareness on the battlefield.

 

A Step Toward More Resiliency

The OPIR mission has become more critical as ballistic missile technology has proliferated around the world with over 1,000 missile launches tracked annually. Lockheed Martin recognizes that modernized technology is needed to augment the current missile warning architecture and improve resiliency against attacks.

«SBIRS GEO-6 fortifies the current missile warning architecture, and it also signifies that we are on our way to achieving even greater technological capacity and expanded coverage with NGG», Corriea said.

Lockheed Martin is proud to be part of the SBIRS team led by Space Systems Command’s Space Sensing Directorate at Los Angeles Air Force Base. Lockheed Martin Space, Sunnyvale, California, is the SBIRS prime contractor, with Northrop Grumman of Azusa, California, as the payload supplier.

Space Force-8 Mission

Two Northrop Grumman Corporation Geosynchronous Space Situational Awareness Program (GSSAP) satellites were successfully launched into orbit on a United Launch Alliance (ULA) Atlas V rocket on January 21, 2022 from Cape Canaveral Space Force Station as part of the U.S. Space Force (USSF)-8 mission. The two satellites, GSSAP-5 and GSSAP-6, will enhance space situational awareness, a top priority for the U.S. Space Force. In addition to manufacturing and delivering both GSSAP payloads, Northrop Grumman also provided the sole strap-on solid rocket booster adding propulsion to the rocket launch, as well as essential aeronautical components in support of the USSF-8 launch.

GSSAP
Northrop Grumman-built GSSAP satellites collect space situational awareness data allowing for more accurate tracking and characterization of man-made orbiting objects

The GSSAP program delivers a space-based capability operating in a near-Geosynchronous Earth Orbit (GEO), in support of the U.S. Space Command space surveillance operations. GSSAP satellites allow for more accurate tracking and characterization of orbiting objects and uniquely contribute to timely and precise orbital predictions, enhancing knowledge of the GEO environment and improving spaceflight safety. Northrop Grumman has manufactured all GSSAP satellites since the program’s inception in 2011.

«For over a decade, Northrop Grumman has delivered products that improve U.S. Space Command’s ability to monitor human-made orbiting objects in the geosynchronous environment», said Matt Verock, vice president, space security, Northrop Grumman. «As dedicated Space Surveillance Network (SSN) sensors, the capabilities our GSSAP satellites bring demonstrate our leadership in space domain awareness».

The company’s facilities in Dulles, Virginia along with Goleta and San Diego, California, and Beltsville, Maryland provided numerous subsystems, including the satellite’s solar arrays, primary structure, thermal control, avionic boxes, flight computer, shunt regulator assembly, composite components and deployable structures.

This was the third ULA Atlas V rocket launch supported by Northrop Grumman’s 63-inch-diameter Graphite Epoxy Motor (GEM 63). The GEM 63 solid rocket booster, manufactured at the company’s Magna, Utah facility, provided nearly a third of the total thrust at liftoff. The GEM family of solid rocket motors recently expanded with the development of the GEM 63XL variation to support ULA’s Vulcan Centaur launch vehicle, scheduled for its first flight later this year.

The company manufactured the Atlas V rocket’s reaction control system propellant tanks at its Commerce, California, facility, and eight retro motors at its Elkton, Maryland, facility that assist first and second stage separation. Using advanced fiber placement manufacturing and automated inspection techniques, Northrop Grumman produced the composite heat shield that provides essential protection to the Atlas V first-stage engine, the Centaur Interstage Adapter that houses the second-stage engine, and the broadtail that adapts from the core vehicle to the five-meter diameter fairing. Northrop Grumman fabricated these structures at its Iuka, Mississippi, facility.

Northrop Grumman is a technology company, focused on global security and human discovery. Our pioneering solutions equip our customers with capabilities they need to connect, advance and protect the U.S. and its allies. Driven by a shared purpose to solve our customers’ toughest problems, our 90,000 employees define possible every day.

Test of New Rocket

Northrop Grumman Corporation (NOC) conducted a validation ground test of an extended length 63-inch-diameter/160-centimetre-diameter Graphite Epoxy Motor (GEM 63XL) on January 21 in Promontory. This variation of the company’s GEM 63 strap-on booster was developed in partnership with United Launch Alliance (ULA) to provide additional lift capability to the Vulcan Centaur rocket.

GEM 63XL
Northrop Grumman conducted a validation test of its GEM 63XL rocket motor on January 21 at its Promontory, Utah, facility. The GEM 63XL will support the United Launch Alliance’s Vulcan Centaur launch vehicle

«This new motor optimizes our best-in-class technologies and leverages flight-proven solid rocket propulsion designs to provide our customers with the most reliable product», said Charlie Precourt, vice president, propulsion systems, Northrop Grumman. «Evolving the original GEM 63 design utilizes our decades of GEM strap-on booster expertise while enhancing capabilities for heavy-lift missions».

During today’s static test, the motor fired for approximately 90 seconds, producing nearly 449,000 pounds/203,663 kg of thrust to validate the performance capability of the motor design. Additionally, this firing verified the motor’s internal insulation, propellant grain, ballistics and nozzle in a hot-conditioned environment.

Northrop Grumman has supplied rocket propulsion to ULA and its heritage companies for a variety of launch vehicles since 1964. The GEM family of strap-on motors was developed starting in the early 1980s with the GEM 40 to support the Delta II launch vehicle. The company then followed with the GEM 46 for the Delta II Heavy, and the GEM 60, which flew 86 motors over 26 Delta IV launches before retiring in 2019. The first GEM 63 motors supported ULA’s Atlas V rocket in November 2020.

Northrop Grumman solves the toughest problems in space, aeronautics, defense and cyberspace to meet the ever evolving needs of our customers worldwide. Our 90,000 employees define possible every day using science, technology and engineering to create and deliver advanced systems, products and services.

SBIRS GEO Flight

A United Launch Alliance (ULA) Atlas V rocket carrying the Space Based Infrared System (SBIRS) GEO Flight 3 satellite lifted off from Space Launch Complex-41 January 20 at 7:42 p.m. ET. SBIRS GEO Flight 3 is considered one of the nation’s highest priority space programs.

An Atlas V rocket lifts off carrying the Air Force's third Space-Based Infrared System (SBIRS) satellite
An Atlas V rocket lifts off carrying the Air Force’s third Space-Based Infrared System (SBIRS) satellite

«ULA is proud to deliver this critical satellite which will improve surveillance capabilities for our national decision makers», said Laura Maginnis, ULA vice president of Government Satellite Launch. «I can’t think of a better way to kick off the new year».

This mission was launched aboard an Atlas V Evolved Expendable Launch Vehicle (EELV) 401 configuration vehicle, which includes a 4-meter diameter Large Payload Fairing (LPF). The Atlas V booster propulsion for this mission was powered by the RD AMROSS RD-180 engine, and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10C engine.

«The Atlas V 401 configuration has become the workhorse of the Atlas V fleet, delivering half of all Atlas V missions to date», said Maginnis. «ULA understands that even with the most reliable launch vehicles, our sustained mission success is only made possible with seamless integration between our customer and our world class ULA team».

The Space Based Infrared System is designed to provide global, persistent, infrared surveillance capabilities to meet 21st century demands in four national security mission areas: missile warning, missile defense, technical intelligence and battlespace awareness.

This is ULA’s first launch of 11 planned launches in 2017 and the 116th successful launch since the company was formed in December 2006. ULA’s next East Coast launch is the Delta IV WGS-9 satellite for the U.S. Air Force. The launch is scheduled for March 8 from Space Launch Complex-37 at Cape Canaveral Air Force Station, Florida.

With more than a century of combined heritage, United Launch Alliance is the nation’s most experienced and reliable launch service provider. ULA has successfully delivered more than 115 satellites to orbit that aid meteorologists in tracking severe weather, unlock the mysteries of our solar system provide critical capabilities for troops in the field, and enable personal device-based GPS navigation and unlock the mysteries of our solar system.

Atlas V SBIRS GEO Flight 3 Launch Highlights

 

Space Based Infrared System

Missile Warning:

Reliable, unambiguous, timely and accurate warning for theater and strategic missile launches.

Missile Defense:

Delivery of critical information supporting the effective operation of missile defense systems.

Technical Intelligence:

Ability to characterize infrared (IR) event signatures, phenomenology and threat performance data.

Battlespace Awareness:

Delivery of comprehensive IR data to help characterize battlespace conditions.

An Atlas V rocket stands ready to launch the Air Force's third SBIRS satellite
An Atlas V rocket stands ready to launch the Air Force’s third SBIRS satellite

 

Atlas V 401

Payload Fairing (PLF):

The SBIRS satellite is encapsulated in the 14-foot/4-meter diameter large payload fairing (LPF). The LPF is a bisector (two-piece shell) fairing consisting of aluminum skin/stringer construction with vertical split-line longerons. The vehicle’s height with the LPF is approximately 194 feet/59 meters.

Centaur:

The Centaur second stage is 10 feet/3 m in diameter and 41.5 feet/12.65 m long. Its propellant tanks are constructed of pressure-stabilized, corrosion resistant stainless steel. Centaur is a liquid hydrogen/liquid oxygen-(cryogenic-) fueled vehicle. It uses a single RL10C-1 engine producing 22,900 lbs/10,387 kg of thrust. The cryogenic tanks are insulated with a combination of helium-purged insulation blankets, radiation shields, and Spray-On Foam Insulation (SOFI). The Centaur Forward Adapter (CFA) provides the structural mountings for the fault-tolerant avionics system and the structural and electronic interfaces with the spacecraft.

Booster:

The Atlas V booster is 12.5 feet/3.8 m in diameter and 106.5 feet/32.46 m long. The booster’s tanks are structurally stable and constructed of isogrid aluminum barrels, spun-formed aluminum domes and intertank skirts. Atlas booster propulsion is provided by the RD-180 engine system (a single engine with two thrust chambers). The RD-180 burns RP-1 (Rocket Propellant-1 or highly purified kerosene) and liquid oxygen, and delivers 860,200 lbs/390,180 kg of thrust at sea level. The Atlas V booster is controlled by the Centaur avionics system which provides guidance, flight control and vehicle sequencing functions during the booster and Centaur phases of flight.

The third Space-Based Infrared System (SBIRS) satellite, encapsulated inside a 4-meter payload fairing, is mated to an Atlas V rocket inside the Vertical Integration Facility at Cape Canaveral's Space Launch Complex-41
The third Space-Based Infrared System (SBIRS) satellite, encapsulated inside a 4-meter payload fairing, is mated to an Atlas V rocket inside the Vertical Integration Facility at Cape Canaveral’s Space Launch Complex-41

MUOS-5 Satellite

A United Launch Alliance (ULA) Atlas V rocket successfully launched the MUOS-5 satellite for the U.S. Navy. The rocket lifted off from Space Launch Complex-41 at Cape Canaveral Air Force Station, Florida, June 24 at 10:30 a.m. EDT. MUOS-5 is the final satellite in the five-satellite constellation, which provides warfighters with significantly improved and assured communications worldwide.

Space Launch Complex-41 at Cape Canaveral Air Force Station, Florida, June 24
Space Launch Complex-41 at Cape Canaveral Air Force Station, Florida, June 24

«We are honored to deliver the final satellite in the Mobile User Objective System (MUOS) constellation for the U.S. Navy», said Laura Maginnis, ULA vice president, Custom Services. «Congratulations to our navy, air force and Lockheed Martin mission partners on yet another successful launch that provides our warfighters with enhanced communications capabilities to safely and effectively conduct their missions around the globe».

MUOS-5, like the four satellites in orbit, will carry two payloads in a single spacecraft. One will provide new Wideband Code Division Multiple Access (WCDMA) waveforms with greater capabilities, and one that supports the legacy Ultra High Frequency (UHF) communications systems in wide use among U.S. and international militaries and civil aviation.

In the new satellite, however, only the UHF system will be activated. The wideband function will provide the assurance of a spare in case anything happens to one of the other satellites.

In addition to the five satellites, the MUOS contract with an industry team led by Lockheed Martin also includes four large ground stations in Australia, Italy, Hawaii and the eastern U.S.; the WCDMA waveform; the receiving terminals; and the software to manage the systems.

The Navy's fifth Mobile User Objective System (MUOS) is encapsulated inside an Atlas V five-meter diameter payload fairing
The Navy’s fifth Mobile User Objective System (MUOS) is encapsulated inside an Atlas V five-meter diameter payload fairing

The mission was ULA’s fifth launch in 2016 and 108th launch since the company formed in 2006. MUOS-5 was the seventh mission to be launched aboard an Atlas V Evolved Expendable Launch Vehicle (EELV) 551 configuration vehicle, which includes a 5-meter diameter payload fairing and five solid rocket boosters. The Atlas booster for this mission was powered by the RD AMROSS RD-180 engine and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.

«I am so proud of the team for all their hard work and commitment to 100 percent mission success», Maginnis said. «It is amazing to deliver our second national security payload from the Cape in just two weeks. I know this success is due to our amazing people who make the remarkable look routine».

ULA’s next launch is the Atlas V NROL-61 mission for the National Reconnaissance Office, scheduled for July 28 from Space Launch Complex-41 at Cape Canaveral Air Force Station, Florida.

The EELV program was established by the U.S. Air Force to provide assured access to space for Department of Defense and other government payloads. The commercially developed EELV program supports the full range of government mission requirements, while delivering on schedule and providing significant cost savings over the heritage launch systems.

With more than a century of combined heritage, United Launch Alliance is the nation’s most experienced and reliable launch service provider. ULA has successfully delivered more than 100 satellites to orbit that provide critical capabilities for troops in the field, aid meteorologists in tracking severe weather, enable personal device-based GPS navigation and unlock the mysteries of our solar system.

United Launch Alliance’s live broadcast of the Atlas V rocket launching the fifth Mobile User Objective System (MUOS-5) mission for the U.S. Navy

New L5 signals

A United Launch Alliance (ULA) Atlas V rocket carrying the Global Positioning System (GPS) IIF-11 satellite for the U.S. Air Force lifted off from Space Launch Complex-41 (Cape Canaveral Air Force Station, Florida) October 31 at 12:13 p.m. EDT. GPS IIF-11 is one of the next-generation GPS satellites that incorporate numerous improvements to provide greater accuracy, increased signals and enhanced performance for users.

An Atlas V rocket, with the GPS IIF-11 satellite
An Atlas V rocket, with the GPS IIF-11 satellite

«Congratulations to the entire team on today’s successful launch of the GPS IIF-11 satellite! Today’s launch was made possible by the exceptional performance and teamwork exhibited by the entire team, including the men and women of ULA, our many mission partners, and our U.S. Air Force customer», said Jim Sponnick, ULA vice president, Atlas and Delta Programs. «GPS is omnipresent in our everyday lives and the system provides a critical service to the all of those serving in our military around the world. All of the operational GPS satellites have been launched on Atlas and Delta rockets and the U.S. Air Force does an outstanding job of operating this essential system».

This mission was ULA’s 11th launch in 2015 and the 102nd successful launch since the company was formed in December 2006. This mission was launched aboard an Atlas V Evolved Expendable Launch Vehicle (EELV) 401 configuration vehicle, which includes a 4-meter-diameter payload fairing. The Atlas booster for this mission was powered by the RD AMROSS RD-180 engine and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.

GPS IIF-11 will join the GPS worldwide timing and navigation system utilizing 24 satellites in six different planes, with a minimum of four satellites per plane positioned in orbit approximately 11,000 nautical miles/12,656 miles/20,372 km above the Earth’s surface. The GPS IIF series provides improved accuracy and enhanced performance for GPS users.

As a result of increased civil and commercial use as well as experience in military operations, the USAF has added the following capabilities and technologies to the GPS IIF series to sustain the space and control segments while improving mission performance:

  • Two times greater predicted signal accuracy than heritage satellites;
  • New L5 signals for more robust civil and commercial aviation;
  • An on-orbit, reprogrammable processor, receiving software uploads for improved system operation;
  • Military signal «M-code» and variable power for better resistance to jamming hostile meeting the needs of emerging doctrines of navigation warfare.

ULA’s next launch is the Atlas V OA-4 capsule for Orbital ATK scheduled for December 3 from Space Launch Complex-41 from Cape Canaveral Air Force Station, Florida.

The EELV program was established by the U.S. Air Force to provide assured access to space for Department of Defense and other government payloads. The commercially developed EELV program supports the full range of government mission requirements, while delivering on schedule and providing significant cost savings over the heritage launch systems.

GPS IIF series satellite is encapsulated inside an Atlas V 4-meter payload fairing
GPS IIF series satellite is encapsulated inside an Atlas V 4-meter payload fairing

 

An Atlas V rocket launches GPS IIF-11, the penultimate GPS IIF satellite, for the United States Air Force

Global coverage

A United Launch Alliance (ULA) Atlas V rocket carrying the fourth Mobile User Objective System (MUOS) satellite for the U.S. Navy launched from Space Launch Complex-41 at 6:18 a.m. EDT on September 2, 2015. The MUOS-4 spacecraft will bring advanced, new, global communications capabilities to mobile military forces, as well as ensure continued mission capability of the existing Ultra High Frequency (UHF) satellite communications system. This is ULA’s eighth launch in 2015, the second MUOS satellite launched in 2015 and ULA’s 99th successful launch since the company was formed in December 2006.

An Atlas V rocket with the Navy’s fourth Mobile User Objective System (MUOS-4)
An Atlas V rocket with the Navy’s fourth Mobile User Objective System (MUOS-4)

«The ULA team is proud to support the U.S. Navy and the U.S. Air Force by delivering this critical communications asset to orbit today», said Jim Sponnick, ULA vice president, Atlas and Delta Programs. «Today’s successful launch will enable the MUOS constellation to reach global coverage. The Lockheed Martin-built MUOS-4 satellite will deliver voice, data, and video communications capability, similar to a cellular network, to our troops all over the globe».

This mission was launched aboard an Atlas V Evolved Expendable Launch Vehicle (EELV) 551 configuration vehicle, which includes a 5-meter diameter payload fairing along with five Aerojet Rocketdyne solid rocket motors attached to the Atlas booster. The Atlas booster for this mission was powered by the RD AMROSS RD-180 engine and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.

The U.S. Navy’s MUOS is a next-generation narrowband tactical satellite communications system designed using a combination of orbiting satellites and relay ground stations to significantly improve communications for U.S. forces on the move. MUOS will provide new beyond-line-of-sight communications capabilities, with smartphone-like simultaneous voice, video and data – to connect military users almost anywhere around the globe.

ULA’s next launch is the Atlas V Morelos-3, communications satellite for Lockheed Martin Commercial Launch Services and Secretaria de Comunicaciones y Transportes, a government agency of Mexico, scheduled for October 2 from Space Launch Complex-41 at Cape Canaveral Air Force Station, Florida.

The EELV program was established by the U.S. Air Force to provide assured access to space for Department of Defense and other government payloads. The commercially developed EELV program supports the full range of government mission requirements, while delivering on schedule and providing significant cost savings over the heritage launch systems.

With more than a century of combined heritage, United Launch Alliance is the nation’s most experienced and reliable launch service provider. ULA has successfully delivered more than 95 satellites to orbit that provide critical capabilities for troops in the field, aid meteorologists in tracking severe weather, enable personal device-based GPS navigation and unlock the mysteries of our solar system.

An Atlas V rocket carrying the MUOS-4 mission lifts off from Space Launch Complex 41
An Atlas V rocket carrying the MUOS-4 mission lifts off from Space Launch Complex 41

MUOS-4 Encapsulated

The fourth Mobile User Objective System (MUOS) satellite built by Lockheed Martin for the U.S. Navy was encapsulated in its protective launch vehicle fairing August 10. It is scheduled to launch August 31 aboard a United Launch Alliance (ULA) Atlas V rocket.

MUOS-4, the next satellite scheduled to join the U.S. Navy’s Mobile User Objective System secure communications network, has been encapsulated in its protective launch vehicle fairing for its August 31 launch from Cape Canaveral Air Force Station (photos courtesy of United Launch Alliance)
MUOS-4, the next satellite scheduled to join the U.S. Navy’s Mobile User Objective System secure communications network, has been encapsulated in its protective launch vehicle fairing for its August 31 launch from Cape Canaveral Air Force Station (photos courtesy of United Launch Alliance)

MUOS-4 is the latest addition to a network of orbiting satellites and relay ground stations that is revolutionizing secure communications for mobile military forces. Users with operational MUOS terminals can seamlessly connect beyond line-of-sight around the globe and into the Global Information Grid. MUOS’ new smart phone-like capabilities include simultaneous, crystal-clear voice, video and mission data, over a high-speed Internet Protocol-based system.

«Delivery of this fourth satellite for the U.S. Navy completes the initial MUOS constellation and provides near-global coverage for the network», said Iris Bombelyn, vice president of Narrowband Communications at Lockheed Martin. «For our mobile forces, that means for the first time they will be able to have secure, high-fidelity voice conversations, networked team calls and data exchange, including video, with anyone around the world connected with a MUOS terminal».

MUOS, which also supports the legacy ultra-high frequency communications satellite system, will provide comparatively 16 times the capacity of the legacy system and eventually replace it. The MUOS-1, MUOS-2 and MUOS-3 satellites launched respectively in 2012, 2013 and January 2015. All four required MUOS ground stations are complete. MUOS-5, an on-orbit Wideband Code Division Multiple Access (WCDMA) spare with additional legacy system capability, is expected to launch in 2016.

More than 55,000 currently fielded radio terminals can be upgraded to be MUOS-compatible, with many of them requiring just a software upgrade.

Lockheed Martin manufactured MUOS-4 at the prime contractor’s Sunnyvale, California facility. Earlier this summer, the satellite shipped to the Cape, where it was pre-launch processed and finally encapsulated at Astrotech Space Operations, a wholly owned subsidiary of Lockheed Martin. The Navy’s Program Executive Office for Space Systems and its Communications Satellite Program Office, San Diego, California, are responsible for the MUOS program.

MUOS-4 will complete near-global coverage for U.S. Navy’s new military smart phone-like network (photos courtesy of United Launch Alliance)
MUOS-4 will complete near-global coverage for U.S. Navy’s new military smart phone-like network (photos courtesy of United Launch Alliance)

Orbital Test Vehicle

A United Launch Alliance (ULA) Atlas V rocket successfully launched the Air Force Space Command 5 (AFSPC-5) satellite for the U.S. Air Force at 11:05 a.m. EDT on May 20, 2015 from Space Launch Complex-41. The rocket carried the X-37B Orbital Test Vehicle or OTV, a reliable, reusable, unmanned space test platform for the U.S. Air Force.

A United Launch Alliance (ULA) Atlas V rocket successfully launched the AFSPC-5 satellite for the U.S. Air Force from Space Launch Complex-41. This is ULA’s fifth launch in 2015 and the 96th successful launch since the company was formed in December 2006
A United Launch Alliance (ULA) Atlas V rocket successfully launched the AFSPC-5 satellite for the U.S. Air Force from Space Launch Complex-41. This is ULA’s fifth launch in 2015 and the 96th successful launch since the company was formed in December 2006

«ULA is honored to launch this unique spacecraft for the U.S Air Force. Congratulations to the Air Force and all of our mission partners on today’s successful launch! The seamless integration between the Air Force, Boeing, and the entire mission team culminated in today’s successful launch of the Atlas V AFSPC-5 mission», said Jim Sponnick, ULA vice president, Atlas and Delta Programs.

This Atlas V mission also includes the Aft Bulkhead Carrier (ABC) carrying the National Reconnaissance Office’s (NRO’s) Ultra Lightweight Technology and Research Auxiliary Satellite (ULTRASat). ULTRASat is composed of 10 CubeSats managed by the NRO and NASA. «The ABC contained 8 P-Pods that released 10 CubeSats that were successfully delivered. The CubeSats were developed by the U.S Naval Academy, the Aerospace Corporation, Air Force Research Laboratory, The Planetary Society and California Polytechnic, San Luis Obispo to conduct various on orbit experiments», said Sponnick.

This mission was launched aboard an Atlas V 501 configuration Evolved Expendable Launch Vehicle (EELV), which includes a 5.4-meter-diameter payload fairing. The Atlas booster for this mission was powered by the RD AMROSS RD-180 engine, and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine. This was ULA’s sixth launch of the 501 configuration, and ULA’s 54th mission to launch on an Atlas V rocket.

ULA’s next launch is the Atlas V GPS IIF-10 mission for the U. S. Air Force, scheduled for July 15 from Space Launch Complex-41 from Cape Canaveral Air Force Station, Florida.

The EELV program was established by the United States Air Force to provide assured access to space for Department of Defense and other government payloads. The commercially developed EELV program supports the full range of government mission requirements, while delivering on schedule and providing significant cost savings over the heritage launch systems.

With more than a century of combined heritage, United Launch Alliance is the nation’s most experienced and reliable launch service provider. ULA has successfully delivered more than 90 satellites to orbit that provide critical capabilities for troops in the field, aid meteorologists in tracking severe weather, enable personal device-based GPS navigation and unlock the mysteries of our solar system.

ULA has successfully delivered more than 90 satellites to orbit that provide critical capabilities for troops in the fi eld, aid meteorologists in tracking severe weather, enable personal device-based GPS navigation and unlock the mysteries of our solar system
ULA has successfully delivered more than 90 satellites to orbit that provide critical capabilities for troops in the fi eld, aid meteorologists in tracking severe weather, enable personal device-based GPS navigation and unlock the mysteries of our solar system

 

X-37B

The X-37B Orbital Test Vehicle, or OTV, is an experimental test program to demonstrate technologies for a reliable, reusable, unmanned space test platform for the U.S. Air Force. The primary objectives of the X-37B are twofold: reusable spacecraft technologies for America’s future in space and operating experiments, which can be returned to, and examined, on Earth.

The X-37B Orbital Test Vehicle is the newest and most advanced re-entry spacecraft. Based on NASA’s X-37 design, the unmanned OTV is designed for vertical launch to Low Earth Orbit (LEO) altitudes where it can perform long duration space technology experimentation and testing. Upon command from the ground, the OTV autonomously re-enters the atmosphere, descends and lands horizontally on a runway. The X-37B is the first vehicle since NASA’s shuttle orbiter with the ability to return experiments to Earth for further inspection and analysis, however the X-37B can stay in space for much longer.

Technologies being tested in the program include advanced guidance, navigation and control, thermal protection systems, avionics, high temperature structures and seals, conformal reusable insulation, lightweight electromechanical flight systems, and autonomous orbital flight, reentry and landing.

The Atlas V vehicle will also launch an Aft Bulkhead Carrier (ABC) containing eight P-Pods will release 10 CubeSats. Following primary spacecraft separation the Centaur will change altitude and inclination in order to release the CubeSat spacecraft, which are sponsored by the National Reconnaissance Office (NRO) and the National Aeronautics and Space Administration (NASA). The ten CubeSats were developed by the U.S. Naval Academy, the Aerospace Corporation, the Air Force Research Laboratory, California Polytechnic State University, and Planetary Society.

The Air Force's AFSPC-5 payload, encapsulated inside a 5-meter diameter payload fairing, is mated to an Atlas V booster inside the Vertical Integration Facility or VIF at Cape Canaveral Air Force Station's Space Launch Complex-41
The Air Force’s AFSPC-5 payload, encapsulated inside a 5-meter diameter payload fairing, is mated to an Atlas V booster inside the Vertical Integration Facility or VIF at Cape Canaveral Air Force Station’s Space Launch Complex-41

 

Payload Fairing (PLF)

The AFSPC-5 satellite is encapsulated in a 5-m (14-feet) diameter medium payload fairing. The 5-m PLF is a sandwich composite structure made with a vented aluminum-honeycomb core and graphite-epoxy face sheets. The bisector (two-piece shell) PLF encapsulates both the Centaur and the satellite. The vehicle’s height with the 5-m medium PLF is approximately 63 m/206 feet.

In preparation for launch, an Atlas V rocket, with the Air Force's AFSPC-5 mission, is rolled from the Vertical Integration Facility or VIF to the pad at Space Launch Complex-41
In preparation for launch, an Atlas V rocket, with the Air Force’s AFSPC-5 mission, is rolled from the Vertical Integration Facility or VIF to the pad at Space Launch Complex-41

 

Centaur

The Centaur second stage is 3 m/10 feet in diameter and 12.65 m/41.5 feet in length. Its propellant tanks are constructed of pressure-stabilized, corrosion resistant stainless steel. Centaur is a cryogenic vehicle, fueled with liquid hydrogen and liquid oxygen. It uses a single RL10C-1 engine producing 101.86 kN/10,387 kg/22,900 lbs of thrust. The cryogenic tanks are insulated with a combination of helium-purged insulation blankets, radiation shields, and Spray-On Foam Insulation (SOFI). The Centaur forward adapter (CFA) provides the structural mountings for the fault-tolerant avionics system and the structural and electrical interfaces with the spacecraft.

With more than a century of combined heritage, United Launch Alliance is the nation’s most experienced and reliable launch service provider
With more than a century of combined heritage, United Launch Alliance is the nation’s most experienced and reliable launch service provider

 

Booster

The Atlas V booster is 3.8 m/12.5 feet in diameter and 32.46 m/106.5 feet in length. The booster’s tanks are structurally rigid and constructed of isogrid aluminum barrels, spun-formed aluminum domes, and intertank skirts. Atlas booster propulsion is provided by the RD-180 engine system (a single engine with two thrust chambers). The RD-180 burns RP-1 (Rocket Propellant-1 or highly purified kerosene) and liquid oxygen, and delivers 3,826.36 kN/390,180 kg/860,200 lbs of thrust at sea level. The Atlas V booster is controlled by the Centaur avionics system, which provides guidance, flight control, and vehicle sequencing functions during the booster and Centaur phases of flight.

The launch of this mission culminates many months of teamwork between the Air Force Space and Missile System Center (SMC) Launch Systems Directorate (LR), Boeing, ULA and the RCO