Tag Archives: ONR

Mine Neutralization

RE2 Robotics, a leader in intelligent mobile manipulation systems, on September 14, 2021 announced that it has received a $9.5 million contract from the Office of Naval Research (ONR) to create an underwater robotic system for the autonomous neutralization of underwater mines for the U.S. Navy. The program, called Maritime Mine Neutralization System (M2NS), will utilize the RE2 Sapien Sea Class system to precisely place and attach neutralization devices to underwater mines and Water-Borne Improvised Explosive Devices (WBIEDs).

RE2 Sapien Sea Class
Maritime Mine Neutralization System will utilize RE2 Sapien Sea Class robotic arms

RE2 will serve as the systems integrator for this program. In addition to RE2 Sapien Sea Class, the M2NS will use components, including RE2’s advanced computer vision and autonomy software, RE2 Detect and RE2 Intellect, to enable the precise, autonomous, and clandestine neutralization of a target.

«The detection and neutralization of WBIEDs and other underwater explosives is a critically dangerous task for Navy divers. Consistent with our mission of improving worker safety, the M2NS will enable the Navy to find and autonomously neutralize targets in deep ocean waters, while experienced divers supervise from a safe distance», said Jorgen Pedersen, president and CEO of RE2 Robotics.

The M2NS comprises best-in-class technologies such as RE2’s Sapien Sea Class arms and VideoRay’s Defender Remotely Operated Vehicle (ROV), which both exhibit unprecedented power density. In particular, RE2 Sapien Sea Class arms, which were originally designed and developed for the ONR, feature a compact, strong, electromechanical design with human-like dexterity (7-function per arm) that is neutrally buoyant. The fusion of these key technologies provides superior strength and precision while manipulating neutralization devices.

«The M2NS will use RE2 Detect computer vision software to locate targets underwater, and RE2 Intellect to autonomously and precisely place devices on those targets», said Doctor Amanda Sgroi, director of computer vision and autonomy at RE2. «We also will integrate new sensors to provide situational awareness and aid autonomy, allowing the system to potentially navigate to extended depths in the ocean».

In addition to defense tasks, the human-like capability of the M2NS allows it to be used for complex offshore infrastructure and maintenance applications in the oil & gas and renewable wind industries. For example, M2NS can be used for weld inspection of rig piles, ships and Floating Production Storage and Offloading (FPSO) systems; mooring inspection and measurement; and valve inspection and manipulation.

Flight Trials

Schiebel Aircraft and Areté Associates, successfully showcased the CAMCOPTER S-100 Unmanned Air System (UAS) combined with Areté’s Pushbroom Imaging Lidar for Littoral Surveillance (PILLS) sensor to the U.S. Navy’s Office of Naval Research (ONR).

CAMCOPTER S-100
Schiebel CAMCOPTER S-100 successfully completes flight trials for U.S. Navy

In a combined demonstration sponsored by the U.S. Office of Naval Research (ONR) on a commercial vessel off the coast of Pensacola, Florida, Schiebel and Areté demonstrated the CAMCOPTER S-100 and its capabilities, as well as Areté’s Push-broom Imaging Lidar for Littoral Surveillance (PILLS) system.

PILLS enables hydrographic mapping of ocean littoral spaces with a low Size, Weight, and Power (SWaP) sensor that easily integrates into the S-100. PILLS has multiple military and commercial applications.

Hans Georg Schiebel, Chairman of the Schiebel Group, said: «We are proud that we could successfully showcase the outstanding capabilities and data-gathering features of our CAMCOPTER S-100 to the US Navy. Globally, we operate extensively on land and at sea and we are confident that our unmanned solution is also the right fit for the U.S. Navy».

 

About the CAMCOPTER S-100

Schiebel’s CAMCOPTER S-100 Unmanned Air System (UAS) is an operationally proven capability for military and civilian applications. The Vertical Takeoff and Landing (VTOL) UAS requires no prepared area or supporting equipment to enable launch and recovery. It operates by day and by night, under adverse weather conditions, with a beyond line-of-sight capability out to 108 NM/124 miles/200 km, over land and sea. Its carbon fibre and titanium fuselage provides capacity for a wide range of payload/endurance combinations up to a service ceiling of 5,500 m/18,000 feet. In a typical configuration, the CAMCOPTER S-100 carries a 34-kg/75-lbs. payload up to 10 hours and is powered with AVGas or JP-5 heavy fuel. High-definition payload imagery is transmitted to the control station in real time. In addition to its standard GPS waypoint or manual navigation, the S-100 can successfully operate in environments where GPS is not available, with missions planned and controlled via a simple point-and-click graphical user interface. The high-tech unmanned helicopter is backed by Schiebel’s excellent customer support and training services.

Flexible Array Radar

Raytheon Missiles & Defense, a Raytheon Technologies business, has delivered the first-ever experimental Flexible Distributed Array Radar, or FlexDAR, to the Office of Naval Research (ONR). Built in partnership with the U.S. Naval Research Laboratory, FlexDAR combines digital beam forming, network coordination and precise time synchronization to perform multiple missions, such as surveillance, communications and electronic warfare, simultaneously with a single array.

FlexDAR
Raytheon Missiles & Defense and U.S. Naval Research Laboratory deliver world’s most advanced digital radar

«FlexDAR is a new apex in phased array radar system development», said Colin Whelan, vice president of Advanced Technology at Raytheon Missiles & Defense. «It will improve military communications and deliver on our vision for a multi-mission radar. There really is nothing else like it on the planet».

NRL developed FlexDAR’s back-end subsystems, which were integrated with Raytheon Missiles & Defense’s front-end subsystems at the company’s Rhode Island facility. Further integration and testing occurred at the NRL’s Chesapeake Bay Detachment in Maryland, before delivering FlexDAR to ONR at their NASA Wallops Flight Facility in Virginia.

«This was a highly successful collaboration between the Navy’s technology arm and a trusted industry partner», said Doctor Bradley Binder, program officer at ONR. «The partnership between ONR, NRL and Raytheon Missiles & Defense on FlexDAR has resulted in the delivery of a digital testbed that will pioneer next-generation capabilities for surface-, sea- and air-based platforms».

FlexDAR is being developed under ONR’s Electromagnetic Maneuver Warfare Command and Control (EMC2) program to demonstrate the benefits of migrating digital technologies closer to a sensor’s front end. It comprises two experimental phased-array radars equipped with digital beam forming, communications and network-linked, distributed radar tracking.

FlexDAR’s aperture is capable of using a very large portion of its operating band at once, and it can expand to include future software upgrades.

TERN for Small Ships

Small-deck ships such as destroyers and frigates could greatly increase their effectiveness if they had their own Unmanned Air Systems (UASs) to provide Intelligence, Surveillance and Reconnaissance (ISR) and other capabilities at long range around the clock. Current state-of-the-art UASs, however, lack the ability to take off and land from confined spaces in rough seas and achieve efficient long-duration flight. Tactically Exploited Reconnaissance Node (TERN), a joint program between Defense Advanced Research Projects Agency (DARPA) and the U.S. Navy’s Office of Naval Research (ONR), seeks to provide these and other previously unattainable capabilities. As part of TERN’s ongoing progress toward that goal, DARPA has awarded Phase 3 of TERN to a team led by the Northrop Grumman Corporation.

DARPA has awarded Phase 3 of TERN to a team led by the Northrop Grumman Corporation. DARPA plans to build a full-scale demonstrator system of a medium-altitude, long-endurance UAS designed to use forward-deployed small ships as mobile launch and recovery sites
DARPA has awarded Phase 3 of TERN to a team led by the Northrop Grumman Corporation. DARPA plans to build a full-scale demonstrator system of a medium-altitude, long-endurance UAS designed to use forward-deployed small ships as mobile launch and recovery sites

The first two phases of TERN successfully focused on preliminary design and risk reduction. In Phase 3, DARPA plans to build a full-scale demonstrator system of a medium-altitude, long-endurance UAS designed to use forward-deployed small ships as mobile launch and recovery sites. Initial ground-based testing, if successful, would lead to an at-sea demonstration of takeoff, transition to and from horizontal flight, and landing – all from a test platform with a deck size similar to that of a destroyer or other small surface-combat vessel.

«The design we have in mind for the TERN demonstrator could greatly increase the effectiveness of any host ship by augmenting awareness, reach and connectivity», said Dan Patt, DARPA program manager. «We continue to make progress toward our goal to develop breakthrough technologies that would enable persistent ISR and strike capabilities almost anywhere in the world at a fraction of current deployment costs, time and effort».

«ONR’s and DARPA’s partnership on TERN continues to make rapid progress toward creating a new class of UAS combining shipboard takeoff and landing capabilities, enhanced speed and endurance, and sophisticated supervised autonomy», said Gil Graff, deputy program manager for TERN at ONR. «If successful, TERN could open up exciting future capabilities for U.S. Navy small-deck surface combatants and U.S. Marine Corps air expeditionary operations».

«Through TERN, we seek to develop and demonstrate key capabilities for enabling distributed, disaggregated U.S. naval architectures in the future», said Bradford Tousley, director of DARPA’s Tactical Technology Office (TTO), which oversees TERN. «This joint DARPA-Navy effort is yet another example of how the Agency collaborates with intended transition partners to create potentially revolutionary capabilities for national security».

The TERN Phase 3 design envisions a tailsitting, flying-wing aircraft with twin counter-rotating, nose-mounted propellers. The propellers would lift the aircraft from a ship deck, orient it for horizontal flight and provide propulsion to complete a mission. They would then reorient the craft upon its return and lower it to the ship deck. The system would fit securely inside the ship when not in use.

TERN’s potentially groundbreaking capabilities have been on the U.S. Navy’s wish list in one form or another since World War II. The production of the first practical helicopters in 1942 helped the U.S. military realize the potential value of embedded Vertical Take-Off and Landing (VTOL) aircraft to protect fleets and reduce the reliance on aircraft carriers and land bases.

The TERN demonstrator will bear some resemblance to the Convair XFY-1 Pogo, an experimental ship-based VTOL fighter designed by the U.S. Navy in the 1950s to provide air support for fleets. Despite numerous successful demonstrations, the Convair XFY-1 Pogo never advanced beyond the prototype stage, in part because the U.S. Navy at the time was focusing on faster jet aircraft and determined that pilots would have needed too much training to land on moving ships in rough seas.

«Moving to an unmanned platform, refocusing the mission and incorporating modern precision relative navigation and other technologies removes many of the challenges the Convair XFY-1 Pogo and other prior efforts faced in developing aircraft based from small ships», Patt said. «TERN is a great example of how new technologies and innovative thinking can bring long-sought capabilities within reach».

DARPA and the U.S. Navy have a Memorandum of Agreement (MOA) to share responsibility for the development and testing of the TERN demonstrator system. The Marine Corps Warfighting Laboratory (MCWL) has also expressed interest in TERN’s potential capabilities and is providing support to the program.

The Convair XFY-1 Pogo is one of many attempts made after World War II to devise a practical VTOL combat aircraft
The Convair XFY-1 Pogo is one of many attempts made after World War II to devise a practical VTOL combat aircraft

Fly into the Future

A new era in autonomy and unmanned systems for naval operations is on the horizon, as officials at the Office of Naval Research (ONR) announced April 14 recent technology demonstrations of swarming Unmanned Aerial Vehicles (UAVs) – part of the Low-Cost UAV Swarming Technology (LOCUST) program. LOCUST can launch swarming UAVs to autonomously overwhelm an adversary. The deployment of UAV swarms will provide Sailors and Marines a decisive tactical advantage.

The ONR demonstrations, which took place over the last month in multiple locations, included the launch of Coyote UAVs (BAE Systems/Sensintel) capable of carrying varying payloads for different missions
The ONR demonstrations, which took place over the last month in multiple locations, included the launch of Coyote UAVs (BAE Systems/Sensintel) capable of carrying varying payloads for different missions

«The recent demonstrations are an important step on the way to the 2016 ship-based demonstration of 30 rapidly launched autonomous, swarming UAVs», said ONR program manager Lee Mastroianni.

The LOCUST program includes a tube-based launcher that can send UAVs into the air in rapid succession. The breakthrough technology then utilizes information-sharing between the UAVs, enabling autonomous collaborative behavior in either defensive or offensive missions. Since the launcher and the UAVs themselves have a small footprint, the technology enables swarms of compact UAVs to take off from ships, tactical vehicles, aircraft or other unmanned platforms.

The ONR demonstrations, which took place over the last month in multiple locations, included the launch of Coyote UAVs capable of carrying varying payloads for different missions. Another technology demonstration of nine UAVs accomplished completely autonomous UAV synchronization and formation flight.

UAVs reduce hazards and free personnel to perform more complex tasks, as well as requiring fewer people to do multiple missions
UAVs reduce hazards and free personnel to perform more complex tasks, as well as requiring fewer people to do multiple missions

ONR officials note that while the LOCUST autonomy is cutting edge compared to remote-controlled UAVs, there will always be a human monitoring the mission, able to step in and take control as desired. «This level of autonomous swarming flight has never been done before», said Mastroianni. «UAVs that are expendable and reconfigurable will free manned aircraft and traditional weapon systems to do more, and essentially multiply combat power at decreased risk to the warfighter».

UAVs reduce hazards and free personnel to perform more complex tasks, as well as requiring fewer people to do multiple missions. Lowering costs is a major benefit of UAVs as well. Even hundreds of small autonomous UAVs cost less than a single tactical aircraft – and, officials note, having this capability will force adversaries to focus on UAV swarm response.

Coyote UAV can carry either an electro-optical (EO) or infrared (IR) camera and data transmitter (Length: 0.91 m; Wingspan: 1.47 m; Maximum Takeoff Weight: 5.9 kg; Endurance: 1 h; Ceiling: 6,096 m; Payload: 0.9 kg)
Coyote UAV can carry either an electro-optical (EO) or infrared (IR) camera and data transmitter (Length: 0.91 m; Wingspan: 1.47 m; Maximum Takeoff Weight: 5.9 kg; Endurance: 1 h; Ceiling: 6,096 m; Payload: 0.9 kg)

Chief of Naval Operations Admiral Jonathan Greenert’s Sailing Directions to the fleet note that over the next 10 to 15 years, the U.S. Navy will evolve and remain the preeminent maritime force. It directs: «Unmanned systems in the air and water will employ greater autonomy and be fully integrated with their manned counterparts».

ONR provides the science and technology necessary to maintain the U.S. Navy and U.S. Marine Corps’ technological advantage. Through its affiliates, ONR is a leader in science and technology with engagement in 50 states, 55 countries, 634 institutions of higher learning and non-profit institutions over 960 industry partners. ONR through its commands including headquarters, ONR Global and the Naval Research Lab in Washington, D.C., employs more than 3,800 people, comprising uniformed, civilian and contract personnel.

 

The LOCUST program will make possible the launch of multiple swarming UAVs to autonomously overwhelm and adversary