Tag Archives: Kratos Defense & Security Solutions

Japan Flight Test

Kratos Defense & Security Solutions, Inc. (KDRSS), a leading National Security Solutions provider, announced on December 27, 2022, that its Defense & Rocket Systems business supported the successful intercept test of a Medium-Range Ballistic Missile (MRBM) target by a Standard Missile 3 (SM-3) Block IIA fired from the JS Maya (DDG-179), marking the first time that a Japanese Maya-class destroyer has fired an SM-3 Block IIA. The intercept was the highlight of the Japan Flight Test Aegis Weapon System-07 (JFTM-07) event which featured four Kratos subscale ballistic missile targets that was conducted by the Japan Maritime Self-Defense Force (JMSDF) and the United States Missile Defense Agency (MDA) over a span of two weeks from the Pacific Missile Range Facility (PMRF) in Hawaii. During the event, the Kratos team also supported a live-fire event featuring the engagement of a Short-Range Ballistic Missile (SRBM) target by the JS Haguro (DDG-180). Altogether, Kratos along with Government and industry partners, integrated and launched three MRBM targets and one SRBM target in support of these mission critical national security related exercises.

JS Maya (DDG-179)
Kratos Rocket Systems Supports Multiple Successful Ballistic Missile Intercept Tests During Japan Flight Test Aegis Weapon System-07 Event

The three-stage MRBM targets feature a “payload” mounted atop Kratos’ proven Oriole rocket motor and two government surplus Terrier Mk-70 rocket motors, while the two-stage SRBM target uses a Kratos Oriole and one Terrier Mk-70, to deliver the respective payloads to specific mission requirements. All four target vehicles, which have an incredibly successful, flight-demonstrated heritage on test and intercept missions for the US Navy and the MDA, executed nominal trajectories while meeting target requirements.

Kratos is a leading provider of products, solutions, and services supporting ballistic missile defense for Aegis, hypersonic testing, atmospheric science research and technology maturation. «Our team works side-by-side with our government customers to deliver transformative and affordable target systems and vehicles from mission inception through successful launch operations. JFTM-07, which was one of our largest recent mission campaigns, is just the latest example», said Dave Carter, President of KDRSS. «We are grateful to be able to continue supporting the U.S. DoD and its allies in this very important mission area».

Eric DeMarco, President and CEO of Kratos, said, «These multiple successful missions with our government partners are representative of Kratos’ industry differentiating ability to rapidly develop and field relevant systems, at an affordable cost, in support of National Security priorities. At Kratos, affordability is a technology, and our mission is to disrupt the traditional procurement and cost model, providing our customers mission relevant products and systems at an affordable cost, enabling rapid, high-volume operations, testing and fielding».

Valkyrie Block 2

Kratos Defense & Security Solutions, Inc., a leading National Security Solutions provider and industry-leading provider of high-performance, jet-powered unmanned aerial systems, announced today that it has recently completed a successful flight of its production XQ-58A Valkyrie aircraft for the Block 2 Valkyrie Maturation Program. The program team includes the Air Force Research Laboratory (AFRL), Yuma Proving Ground, and Kratos.

XQ-58A Valkyrie Block 2
Kratos, USAF Further Advance Capabilities in Successful XQ-58A Valkyrie Block 2 Flight Focused on Operational Aspects

The test flight performed at Yuma Proving Ground proved XQ-58A’s extended capabilities by flying longer, higher, at a heavier mission weight, and at a longer range than the platform has previously been approved for (based on prior government range limitations) and demonstrated. This flight was conducted with another of the Block 2 Valkyrie aircraft produced in the company-initiated 12-lot build and was the first flight for this tail number.

The flight was conducted with and demonstrated encrypted communications with redundant radios/communications («comms») packages for range and operational missions remote from government ranges. For the final test point, the aircraft navigated to the landing site in a simulated loss of communications scenario. It landed within the target zone, demonstrating key autonomous capability for the end of mission phase of flight and recovery of the aircraft without RF comms. This capability will help mitigate the possibility of enemy detection and tracking of RF comms emissions as the system returns to «base».

This flight test was a key milestone in Kratos’ support of AFRL’s Autonomous Collaborative Enabling Technologies (ACET) portfolio. ACET is focused on developing Autonomous Collaborative Platforms (ACP) such as Collaborative Combat Aircraft (CCA). The advanced capabilities proven on this flight make the XQ-58 ready for future ACP experimentation.

Valkyrie

The Air Force Research Laboratory (AFRL), along with partner Kratos Defense & Security Solutions, Inc., completed the successful fourth flight test of the XQ-58A Valkyrie low-cost Unmanned Air Vehicle (UAV) demonstrator January 23, 2020, at Yuma Proving Ground, Arizona.

The Air Force Research Laboratory and Kratos Defense & Security Solutions, Inc., completed the successful fourth flight of the XQ-58A Valkyrie demonstrator, a long-range, high subsonic unmanned air vehicle, at Yuma Proving Grounds, Arizona, on January 23, 2020. The vehicle is pictured here during a 2019 flight (U.S. Air Force photo/2nd Lieutenant Randolph Abaya, 586 Flight Test Squadron)

During the test event, the Valkyrie demonstrator’s flight successfully met all of the test objectives, and the envelope was expanded beyond prior tests before safely landing in the Arizona desert. According to AFRL XQ-58A Valkyrie Program Manager Michael Wipperman, flying at higher altitude allowed researchers to gather data in an operational environment more representative of real-world flight conditions.

«Flying at this altitude helped us gather important data such as vehicle response to temperature and vibration, which will prepare us as we move toward our next flight test», said Wipperman.

This test event represents a return-to-flight for the XQ-58A Valkyrie, which experienced a mishap upon landing after a successful 90-minute flight in October 2019. Following a Safety Investigation Board probe into the mishap, Wipperman says the resulting information was outbriefed to the convening authority, and the recommendations were taken and approved to ensure the success of this latest test.

«We’re very pleased with the outcome of this fourth flight test», said Wipperman. «We were able to show recovery for a successful flight at even higher altitudes. Given that we have overcome these challenges, we have confidence that the aircraft can continue its progression into flying in more representative conditions».

Developed as part of AFRL’s Low Cost Attritable Aircraft Technology portfolio, the XQ-58A Valkyrie is designed to be a runway-independent, reusable unmanned air vehicle capable of a broad range of operational missions. The XQ-58A Valkyrie was developed through low cost procurement and is designed to be significantly less expensive to operate than traditional piloted or unpiloted vehicles, while capable of achieving the same critical missions. Taking only 2.5 years from contract award to first flight, it is the first example of a class of unmanned air vehicles developed through this time-saving process, which seeks to break the escalating cost trajectory of tactically relevant aircraft.

A total of five flights are planned for the XQ-58A Valkyrie, with objectives that include evaluating system functionality, aerodynamic performance, and launch and recovery systems. The fifth flight, scheduled for later this year, will be a capability demonstration showcasing the ability of the vehicle to support operational needs.

Multi-Band,
Multi-Mission

Lockheed Martin, Ball Aerospace, and Kratos Defense & Security Solutions, Inc. were awarded a $7.2 million prototype agreement by the Defense Innovation Unit to develop a new Multi-Band, Multi-Mission (MBMM) prototype phased array as part of a broader initiative to modernize the existing Air Force Satellite Control Network and bring new technology faster to warfighters. MBMM enables multiple satellites to simultaneously connect with a single array antenna over multiple frequencies, a significant performance improvement compared to traditional single contact parabolic dishes.

Lockheed Martin, Ball and Kratos team on Advanced Phased Array for Air Force

The Lockheed Martin team is building prototype transmit and receive Electronically Steerable Arrays (ESA). Each array uses Ball’s advanced phased array technologies and supports L- and S-band frequencies initially. Signal processing is accomplished with Kratos’ digital Intermediate Frequency (IF) technology and cloud-enabled quantumRadio.

«MBMM is a smarter way to quickly and affordably scale satellite transmission while lowering long-term maintenance costs for the Air Force», said Maria Demaree, vice president and general manager of Lockheed Martin Mission Solutions. «Today, when a parabolic antenna goes down, it can take days to repair; with MBMM, it will take hours and won’t take the entire site offline – that’s a tremendous advantage».

Extensive industry research comparing the costs of parabolic antennas to phased arrays over time show that while parabolic antennas have a lower upfront cost, they become much more expensive to maintain. Phased arrays avoid the mechanical maintenance and keyhole effects of parabolic antennas while providing graceful degradation and electronic agility in matching aperture performance to constellation demands.

«One electronically steered antenna can replace multiple dishes, enabling better performance, connectivity and affordability», said Rob Freedman, vice president and general manager, Tactical Solutions, Ball Aerospace.

«Software modems deployed in virtual machines gives MBMM an advantage because it is easy to scale signal processing on a much faster timeline than previously», said Frank Backes, senior vice president of Kratos Federal Space.

Future operational MBMM systems will offer new cyber resilience while reducing long-term sustainment costs for the Air Force. MBMM may eventually support multiple orbits from Low Earth Orbit (LEO) to Geosynchronous Equatorial Orbit (GEO) and can perform multiple missions at the same time, including Command & Control (C2), launch pad and ascent operations, radar and mission data transmission. The Lockheed Martin/Ball team is one of several teams building prototypes for the government.