Tag Archives: FCAS

Manned-Unmanned Teaming

The ability to task unmanned systems from a manned aircraft is an important force multiplier in Airbus’ vision for future air power, with a wide range of applications extending to combat scenarios and beyond.

Manned-Unmanned Teaming (MUM-T)
Key milestones achieved in Manned-Unmanned Teaming for future air power

As a pioneer in the realm of Manned-Unmanned Teaming (MUM-T), Airbus has developed an ambitious technological roadmap to make this innovative concept – which boosts the effectiveness of piloted and pilotless aircraft alike – a reality. The company demonstrated leading technological and industrial capabilities in 2021 and 2022, including key flight tests.

Fully implementing Manned-Unmanned Teaming – which will play an instrumental role in such initiatives as the Future Combat Air System (FCAS) and Multi-Domain Combat Cloud – requires a high level of automation. However, the involvement of human operators will ensure that meaningful control always will be retained.

 

Leveraging Airbus’ expertise

The involvement of Airbus with Manned-Unmanned Teaming began in 2018, when the first flight test campaign took place to validate initial capabilities. Since then, the development has seen increasing levels of maturity – with Airbus and its partner teams focusing on several key areas.

Synchronized and efficient use of manned and unmanned vehicles necessitates coordination and optimisation, with requirements that may vary from one mission to the next. To address this, Airbus is developing artificial intelligence-based teaming concepts and algorithms, including swarming behaviours and distributed teaming intelligence shared among the platforms.

This novel approach is reflected in the payloads, which can be integrated on the unmanned aircraft, as well as in the way they are used. For example, a distributed electronic warfare sensor was shown to be capable of precisely and quickly locating a threat and sharing its location across the network.

To achieve such capabilities, the unmanned assets must be able to communicate with the manned resources – and among each other in an agile and robust way, which is why an advanced data link is one pillar of the development.

Additionally, Airbus is preparing airframe solutions for future unmanned systems, building on experience in both unmanned aerial vehicles and combat aircraft. As the development progresses, these solutions will materialise as the FCAS Remote Carriers – unmanned aircraft designed to cooperate with fighters. To achieve the full potential, MUM-T technologies will also need to be relevant for already-existing unmanned aerial systems and for those developed in the future.

 

Continuing development

Building upon lessons learned from the previous MUM-T-related milestones, Airbus marked a major achievement with a live demonstration that linked company-built Do-DT25 target drones acting as surrogate Remote Carriers with an in-flight German Air Force Eurofighter aircraft. This occurred during the Timber Express 2021 multinational exercise organised by the German Armed Forces.

During the trial, the Eurofighter was able to assign tasks to two Airbus Do-DT25 Remote Carriers in real time. These unmanned platforms demonstrated the ability to perform several tasks, including aerial reconnaissance and electronic warfare. Upon receiving the tasks, the Remote Carriers autonomously planned their flight routes, adhering to prescribed airspace restrictions and circumnavigating known threats.

In 2022, MUM-T-related flight tests were performed outside of Germany for the first time. A test campaign organized in the Finnish areas of Rovaniemi and Kemijärvi – and directed by the Finnish Defence Forces (FDF) – marked the official start of cooperation with the German Armed Forces on this key capability.

As stated by the FDF in a press release: «The research cooperation strengthens the Defence Forces’ understanding of the development of unmanned aviation, which enables experimenting and evaluating the teaming of unmanned and manned aerial vehicles in the local operational environment».

In parallel, the capabilities of manned platforms are increasing to accommodate the future potential of Manned-Unmanned Teaming. Airbus’ multi-role A400M Atlas airlifter is envisioned as a launcher of FCAS Remote Carriers, with the first flight test already performed to confirm this capability.

Remote Carrier launcher

Airbus A400M Atlas, the world’s most advanced multi-role airlifter utilised by military forces around the globe, has demonstrated an airborne launch of a drone fulfilling a vital function for the Future Combat Air System (FCAS).

Do-DT25 drone
Future Combat Air System: A400M clears the first hurdle as a Remote Carrier launcher

During a recent test, an A400M Atlas deployed a drone from its opened rear cargo ramp door whilst airborne, validating its ability to air-launch drones. In the future such unmanned aircraft, called Remote Carriers, can serve as force multipliers for various missions, while keeping the pilots out of harm’s way. Manned-unmanned teaming (MUM-T) will allow the Remote Carriers to operate in concert with manned aircraft, opening new fields of tactics to surprise, deceive, deter, saturate and strike opponents.

During the A400M Atlas flight test, an Airbus-built Do-DT25 drone, acting as a surrogate Remote Carrier, was released over a test range in Northern Germany. Shortly after the launch, the drone’s parachute opened, delivering it safely to the ground. Throughout the test, the drone was connected and transmitting data to the A400M Atlas «mother aircraft». This data transfer illustrates how Remote Carriers can be connected to a combat cloud network, providing vital information by serving the role of «eyes and ears» over the battlefield, whilst also enabling them to be tasked by the manned aircraft’s operators during their missions.

 

Building up the expertise in manned-unmanned teaming

The A400M Atlas air-launch demonstration involved a joint flight test crew from the German Air Force and Airbus. The new Modular Airborne Combat Cloud Services (MACCS), also an Airbus product, enabled full connectivity between the airlifter and the drone.

Airbus will continue validation of the A400M Atlas as an airborne launch platform for Remote Carriers, envisioning the ability to deploy large numbers of these drones. The multi-role airlifter’s large cargo bay is expected to be able to hold 40 or more Remote Carriers. By bringing Remote Carriers closer to the fight, an A400M Atlas will provide the numbers in terms of flying platforms for a Future Combat System to serve multiple missions, even in a well-protected environment. The next flight test is planned to happen this year.

In addition, Airbus contribution to the 2021 German Air Force’s Timber Express exercise saw an important development step being cleared. A Eurofighter networking with and tasking two Do-DT25 drones in real-time, became the successful first application of MUM-T with operational military aircraft in Europe.

Previously, Airbus also demonstrated the control of five Do-DT25 drones by a mission group commander who was airborne in a manned command and control aircraft. Validating such elements, as connectivity, human-machine interface, and the concept of teaming intelligence through mission group management, also constitute key steps towards using Remote Carriers as force multipliers within the Future Combat Air System.