Tag Archives: C-UAS

Counter-UAS Mission

The U.S. Army’s AN/TPQ-53 (Q-53) Multi-Mission Radar (MMR) successfully integrated with an Army command and control system and provided tracking data to launch a Counter Unmanned Aerial System (C-UAS) defeat system in Yuma, Arizona. The rapidly deployable Q-53 radar, which is ideal for the C-UAS mission, is developed and manufactured by Lockheed Martin in Syracuse, New York.

AN/TPQ-53 (Q-53) MMR
U.S. Army’s Q-53 Multi-Mission Radar Demonstrates Counter-UAS Mission

During the exercise, the Q-53 integrated with the Forward Area Air Defense Command and Control (FAAD C2) system to serve as the primary fire control source for the Coyote Block 2 C-UAS defeat system during testing in Yuma.

«The Q-53 radar has a long history of exceeding Army requirements and adapting to their evolving missions. This recent testing milestone reflects our ongoing commitment to enhance and upgrade the system capability», said David Kenneweg, program director, Lockheed Martin Army Radars. «The Army’s Q-53 MMR can enhance air surveillance capabilities and integrate with C2 systems and broader weapon systems, enabling Soldiers to detect threats and make decisions faster».

Lockheed Martin has delivered 195 Q-53 radars to the Army and international partners. The Q-53 detects, classifies, tracks and determines the location of enemy indirect fire such as mortars, rockets and artillery, and its mission continues to expand to other emerging threats.

 

Modernization for 21st Century Security

The Q-53 radar has high reliability and its performance drives the Army’s desire to modernize the radar and continue to expand the system’s mission requirements. In July 2021, the U.S. Army awarded Lockheed Martin a significant follow-on contract to demonstrate the ability of the Q-53 radars to enhance future capability and maintain superior performance over peer and near-peer adversaries.

These enhancements enable increased radar performance in challenging operating environments. Upgrades include support for Long Range Precision Fires and Air and Missile Defense missions. The Q-53 capabilities are key enablers for these missions and represent continued dedication to the advancement of technology in this space.

Mobile Force Protection

In recent tests at Eglin Air Force Base, DARPA’s Mobile Force Protection (MFP) program demonstrated a Counter-Unmanned Air System (C-UAS) multilayer defense architecture to defeat unauthorized drone intrusions over military installations or operations. Development of this low-cost reusable drone interceptor system approach began four years ago with the aim of creating an integrated system for thwarting attacks from self-guided small unmanned aircraft. The goal is to protect high value convoys moving through potentially populated regions where there is a requirement to avoid using explosive defensive weapons and mitigate collateral damage.

Mobile Force Protection (MFP)
Mobile Force Protection project vehicle launches drone interceptor in test at Eglin Air Force Base

The technology demonstrator successfully neutralized tactically-relevant drones using a newly-developed X band radar that automatically senses and identifies unmanned aerial system threats. The radar then pairs targets to specific interceptors through an automated decision engine tied to a command and control system, launching and guiding rotary and fixed wing interceptors with two types of drone countermeasures while on the move and without operator intervention.

«Because we were focusing on protecting mobile assets, the program emphasized solutions with a small footprint in terms of size, weight, and power», said MFP program manager Gregory Avicola in DARPA’s Tactical Technology Office. «This also allows for more affordable systems and less operators».

The requirement that the system field non-kinetic solutions pushed concepts that could be employed in and around civilian areas. The primary drone negation mechanism shoots strong, stringy streamers from reusable interceptors that foul propellers causing loss of propulsion. Additionally, other non-kinetic techniques were developed and demoed. The focus on defeating raids with multiple threats, rather than single unmanned aerial attackers, required the development of an integrated solution of sensors, autonomy, and mitigation solutions more robust than existing systems. Dynetics was the primary systems integrator.

DARPA is currently working with the military services to transition technology developed in the MFP project into various acquisition programs.

C-UAS Weapon

Northrop Grumman Corporation has formed a strategic supplier agreement with Epirus, Inc. to offer the company’s Electromagnetic Pulse (EMP) capability as a component of Northrop Grumman’s Counter-Unmanned Aerial System (C-UAS) systems-of-systems solution offering. The agreement augments Northrop Grumman’s advanced end-to-end C-UAS capabilities by including Epirus’ EMP systems to defeat UAS swarms, and specifically supplements the company’s suite of non-kinetic C-UAS effects.

Northrop Grumman Taps Epirus for Electromagnetic Pulse C-UAS Weapon System

«UAS threats are proliferating across the modern battlespace», said Kenn Todorov, vice president and general manager, combat systems and mission readiness, Northrop Grumman. «By integrating the Epirus EMP weapon system into our C-UAS portfolio, we continue maturing our robust, integrated, layered approach to addressing and defeating these evolving threats».

Northrop Grumman’s end-to-end C-UAS solutions deliver a layered architecture with a full complement of kinetic and non-kinetic effects, aerial and ground sensors and the battle-hardened, proven and deployed Forward Area Air Defense Command and Control (C2) system, recently selected by the U.S. Army as the interim C2 system for counter-small-UAS capabilities.

Epirus’ C-UAS EMP system – called Leonidas – is designed for static and mobile C-UAS defense and utilizes solid-state commercial semiconductor technology to deliver capability with unprecedented reduction in size and weight. This enables increased stand-off ranges and speed-of-light engagements that do not suffer from issues with magazine depth and capacity. When fired, a Leonidas creates an EMP that can be steered for precision engagements, or adjusted to sanitize a volume of terrain or sky, creating a force field effect.

«We’re excited to work closely with the Northrop Grumman team to support their C-UAS systems-of-systems solution offering», said Bo Marr, chief technology officer at Epirus. «Our unprecedented EMP capabilities will complement this offering as we continue to look to the future to understand how asymmetric threats will evolve».

Epirus Inc. is a third-year startup that develops EMP weapons for the U.S. military. Their team combines veteran experience from aerospace and the Special Operations community. Their offices are located in Los Angeles, California.

Northrop Grumman solves the toughest problems in space, aeronautics, defense and cyberspace to meet the ever-evolving needs of our customers worldwide. Our 90,000 employees define possible every day using science, technology and engineering to create and deliver advanced systems, products and services.