Category Archives: Rocket

LAND 19 Phase 7B

On March 15, 2019, Raytheon Australia and Kongsberg Defence & Aerospace (KONGSBERG) joined Defence Minister, the Hon. Christopher Pyne and South Australian Premier, the Hon. Steven Marshall, to announce that the National Advanced Surface to Air Missile System, NASAMS, was selected for the Australian Government’s Short Range Ground Based Air Defence program known as LAND19 Phase 7B. KONGSBERG is a subcontractor to Raytheon Australia.

NASAMS has been selected by the Australian Goverment for their LAND 19 Phase 7B
NASAMS has been selected by the Australian Goverment for their LAND 19 Phase 7B

NASAMS was in 2017 chosen for a Single Supplier Limited Tender process and has gone through a Risk Mitigation Activity, and subsequently passed Government approval marked at today’s event in Adelaide. NASAMS is a fully networked and distributed system allowing the Australian Army to counter complex air threats beyond visual range and, considerably increase protection of Australian soldiers.

«This announcement lays the foundation for further expansion in Australia and the region. KONGSBERG sees more significant opportunities in Australia and have been a partner to the Australian Defence Force for 30 years starting with the Penguin anti-ship missile program. We opened an office in Canberra last year and is increasing our staff in the country», says Eirik Lie, President Kongsberg Defence & Aerospace AS.

«NASAMS is the most sold air defence system in its class in the last 10 years. Its continuous evolution enables new capabilities to be implemented in the system», says Kjetil Reiten Myhra, Executive Vice President Kongsberg Defence & Aerospace AS.

First firing trial

The Brimstone 3 ultra-high precision missile system has successfully achieved a major milestone by completing its first firing trial at the Vidsel Trials range in Sweden.

The new-build Brimstone missiles will incorporate all of the improved functionalities offered by the spiral upgrades of Brimstone that have taken place over recent years
The new-build Brimstone missiles will incorporate all of the improved functionalities offered by the spiral upgrades of Brimstone that have taken place over recent years

Whilst enduring extreme weather conditions with temperatures below -30°C, the missile was surface launched against a pick-up truck target.

All trials objectives were fully achieved with the missile proving, through a telemetry unit, full closed loop guidance with the seeker progressing into target acquisition and track.

Russell Jamieson, Chief Engineer, said: «The trial further proves Brimstone’s fully flexible platform approach, providing a «one missile, multiple platform» capability, for surface launch, fast jet, Remotely Piloted Air Systems (RPAS), attack helicopter, land and maritime platforms, all utilising the same missile. The result really was a tremendous success, and thanks to the hard work and determination of the whole team».

The demonstrated surface to surface capability builds on the advanced guidance and targeting abilities developed during the Brimstone programme and from hundreds of successful operational firings against targets in structures, main battle tanks/armoured vehicles, maritime vessels, trucks, fast moving and manoeuvring cars/motorbikes and individual targets in the open.

Brimstone 3 is the product of the Brimstone Capability Sustainment Programme (CSP), announced in March 2018, that will provide new Brimstone missiles for the UK Armed Forces in order to replenish the country’s inventory and to maintain the UK’s battlefield edge into the future. It will also provide the ability to fully meet current and future export supply needs.

The new-build Brimstone missiles will incorporate all of the improved functionalities offered by the spiral upgrades of Brimstone that have taken place over recent years which include the highly capable Dual Mode Semi-Active Laser (SAL)/millimetric Wave (mmW) seeker, enhanced autopilot, and the new insensitive munition compliant rocket motor and warhead, all combining to provide unique performance capabilities of Brimstone against the most challenging of targets. The new hardware standard will also enable the addition of further capability upgrades in the future.

David’s Sling

The Israel Missile Defense Organization (IMDO) of the Directorate of Defense Research and Development (DDR&D) and the U.S. Missile Defense Agency (MDA) successfully completed a test series of the David’s Sling Weapon System, a missile defense system that is a central part of lsrael’s multilayer antimissile array.

IMDO and MDA Successfully Complete David's Sling Weapon System Intercept Test Series
IMDO and MDA Successfully Complete David’s Sling Weapon System Intercept Test Series

This test series, designated David’s Sling Test-6 (DST-6) was the sixth series of tests of the David’s Sling Weapon System.

The test series examined capabilities and performance of the entire David’s Sling Weapon System. These successful tests are an important milestone in operational capability of Israel to defend itself against existing and future threats in the region.

The information collected during the test is being analyzed by program engineers and will be used for ongoing development and fielding of the David’s Sling Weapon System. This test series provides confidence in future Israeli capabilities to defend against large-caliber rockets and other developing threats.

The David’s Sling Weapon System project is a cooperative effort between the United States and Israel to develop a defense against large caliber rockets and short-range ballistic missiles.

 

Missile Defense

The U.S. Army has awarded Northrop Grumman Corporation a $713 million contract for the production of Integrated Air and Missile Defense (IAMD) Battle Command System (IBCS) for the first phase of Poland’s WISŁA air and missile defense program.

Northrop Grumman has been awarded $713 million to provide Integrated Air and Missile Defense (IAMD) Battle Command System (IBCS) next-generation capabilities for Poland’s WISŁA air and missile defense program
Northrop Grumman has been awarded $713 million to provide Integrated Air and Missile Defense (IAMD) Battle Command System (IBCS) next-generation capabilities for Poland’s WISŁA air and missile defense program

«Poland is taking a leadership role in today’s complex threat environment by selecting IBCS over legacy stove-piped systems that were designed decades ago for a much different threat profile. IBCS is the future of multidomain operations and with it, Poland will have a state-of-the-art system to modernize its integrated air and missile defense capabilities», said Dan Verwiel, vice president and general manager, missile defense and protective systems, Northrop Grumman. «Through the acquisition of IBCS, Poland will be in line with the U.S. Army’s future direction. Poland will have the flexibility to consider any radar and any interceptor, optimize sensor and effector integration and keep pace with an evolving threat».

Under this foreign military sales contract for WISŁA, Northrop Grumman will manufacture IBCS engagement operations centers and integrated fire control network relays and deliver IBCS net-enabled command and control for four firing units. The IBCS engagement operations centers will be integrated with IBCS battle management software that maximizes the combat potential of sensors and weapon systems. IBCS engagement operations centers and network relays will be transported by Polish Jelcz vehicles.

«Northrop Grumman continues to work closely with the Polish Ministry of National Defense and Polish industry toward a comprehensive offset program that meets the program goals and requirements. We look forward to continued collaboration and partnership with PGZ and its consortium of companies on this and future phases of the WISŁA program», said Tarik Reyes, vice president, business development, missile defense and protective systems, Northrop Grumman. «We are pleased with the opportunity to deliver cutting-edge, net-centric IBCS technology to Poland and support the Ministry of National Defense’s modernization priorities».

IBCS is the air and missile defense command-and-control solution of choice for Poland. In March 2018, Poland signed a Letter of Offer and Acceptance with the U.S. government to purchase IBCS and became the first international partner country to acquire this advanced capability. By implementing IBCS, Poland will transform its IAMD capabilities in a manner consistent with the U.S. Army.

IBCS creates a paradigm shift for IAMD by replacing legacy stove-piped systems with a next-generation, net-centric approach to better address the evolving complex threat. The system integrates disparate radars and weapons to construct a far more effective IAMD enterprise. IBCS delivers a single integrated air picture with unprecedented accuracy and broadens surveillance and protection areas. With its truly open systems architecture, IBCS allows incorporation of current and future sensors and weapon systems and interoperability with joint C2 and the ballistic missile defense system.

IBCS is managed by the U.S. Army Program Executive Office for Missiles and Space, Redstone Arsenal, Alabama.

Joint Strike Missile

Kongsberg Defence & Aerospace AS (KONGSBERG) has entered into contract with Japan to supply the initial deliveries of JSM (Joint Strike Missile) for their fleet of F-35 Lightning II fighter aircrafts.

KONGSBERG awarded Joint Strike Missile contract with Japan
KONGSBERG awarded Joint Strike Missile contract with Japan

The JSM development started in 2008 and was completed in mid-2018 after a series of successful validation test firings.

«This is an important international breakthrough which demonstrates the importance of cooperation between Norwegian authorities, Norwegian Defence Research Establishment and Norwegian industry», says CEO of KONGSBERG Geir Håøy.

The JSM is the only long-range sea- and land-target missile that can be carried internally in the F-35 Lightning II and thus ensuring the aircraft’s low-signature (stealth) capabilities. JSM is a new missile that will expand the overall capabilities of the F-35 Lightning II. No other weapon on the market today, can perform the same types of missions.

«The international F-35 Lightning II user consortium is showing great interest in the JSM and KONGSBERG is very proud to have been selected by Japan to provide the JSM for their F-35 Lightning II fleet. This is a major milestone for the JSM program, entering into the production phase», says Eirik Lie, President, Kongsberg Defence & Aerospace AS.

Air-launched missile

Northrop Grumman Corporation has received a $322.5 million contract from the U.S. Navy for the Advanced Anti-Radiation Guided Missile-Extended Range (AARGM-ER) Engineering and Manufacturing Development (EMD) program.

Northrop Grumman received a contract from the U.S. Navy, valued at $322.5M, for Advanced Anti-Radiation Guided Missile-Extended Range (AARGM-ER) Engineering and Manufacturing Development (EMD)
Northrop Grumman received a contract from the U.S. Navy, valued at $322.5M, for Advanced Anti-Radiation Guided Missile-Extended Range (AARGM-ER) Engineering and Manufacturing Development (EMD)

The AARGM-ER program is leveraging the AARGM that is currently in production. The AARGM-ER will be integrated on the F/A-18E/F Super Hornet and EA-18G Growler aircraft and configured for internal carriage on the F-35 Lightning II.

«AARGM-ER extended range coupled with AARGM lethality will meet a critical defense suppression requirement while protecting our strike aviators», said Cary Ralston, vice president, defense electronic systems, Northrop Grumman.

AARGM is an air-launched missile with the capability to rapidly engage air-defense threats. AARGM is currently deployed with the U.S. Navy and U.S. Marine Corps on the F/A-18C/D Hornet, F/A-18E/F Super Hornet and EA-18G Growler aircraft. AARGM is also integrated on the Italian Air Force’s Tornado Electronic Combat aircraft.

Wind tunnel tests

Raytheon Company successfully completed more than 1,700 rigorous wind tunnel tests on the newest, extended-range variant of the combat-proven Advanced Medium-Range Air-to-Air Missile (AMRAAM). Testing is a major step in the missile’s qualification for integration with the National Advanced Surface-to-Air Missile System (NASAMS).

Raytheon engineers recently completed wind tunnel testing on a new, extended-range variant of the AMRAAM air-to-air missile. Testing is a key step in qualifying the missile for the NASAMS launch system
Raytheon engineers recently completed wind tunnel testing on a new, extended-range variant of the AMRAAM air-to-air missile. Testing is a key step in qualifying the missile for the NASAMS launch system

The AMRAAM-Extended Range (AMRAAM-ER) missile is a ground-launched weapon that will intercept targets at longer distances and higher altitudes. The missile’s bigger rocket motor and smarter flight control algorithms give it a boost in range.

«During these tests, we put AMRAAM-ER through a full range of potential flight conditions to validate the missile’s future performance on the battlefield», said Kim Ernzen, Raytheon Air Warfare Systems vice president. «Raytheon is developing this missile to enhance ground-based air defense for our customers worldwide».

Raytheon engineers will now analyze data from the wind tunnel test runs to verify and update the AMRAAM-ER missile’s aerodynamic models to maximize its performance.

Raytheon AMRAAM-ER Missile Goes Long and Flies High

 

About NASAMS

Manufactured by Raytheon and Norway’s Kongsberg Defence & Aerospace, NASAMS is the most widely used short- and medium-range air defense system in NATO. NASAMS provides a high-firepower, networked and distributed state-of-the-art air defense system that can quickly identify, engage and destroy current and evolving threat aircraft, unmanned aerial vehicles and emerging cruise missile threats.

 

About Raytheon

Raytheon Company, with 2018 sales of $27 billion and 67,000 employees, is a technology and innovation leader specializing in defense, civil government and cybersecurity solutions. With a history of innovation spanning 97 years, Raytheon provides state-of-the-art electronics, mission systems integration, Command, Control, Communications, Computers, Cyber and Intelligence (C5I) products and services, sensing, effects and mission support for customers in more than 80 countries.

LAV-AT Modernization

The Marine Corps continues to upgrade the turret system for one of its longest-serving fighting vehicles – the Light Armored Vehicle-Anti-Tank (LAV-AT).

Anti-Tank Weapon Systems are mounted on Light Armored Vehicle-Anti-tank variants at Camp Pendleton, California. The LAV Team at Marine Corps Systems Command continues to provide new equipment training to units receiving the Anti-Tank Weapon System upgrade, with the final two training evolutions scheduled for early this year. Full Operational Capability (FOC) for the ATWS is expected at the end of fiscal year 2019 (U.S. Marine Corps photo by CWO4 Michael Lovell)
Anti-Tank Weapon Systems are mounted on Light Armored Vehicle-Anti-tank variants at Camp Pendleton, California. The LAV Team at Marine Corps Systems Command continues to provide new equipment training to units receiving the Anti-Tank Weapon System upgrade, with the final two training evolutions scheduled for early this year. Full Operational Capability (FOC) for the ATWS is expected at the end of fiscal year 2019 (U.S. Marine Corps photo by CWO4 Michael Lovell)

In September 2017, Marine Corps Systems Command’s LAV-AT Modernization Program Team achieved initial operational capability by completing the fielding of its first four Anti-Tank Light Armored Vehicles with the upgraded Anti-Tank Weapon Systems (ATWS) to Light Armored Reconnaissance Battalion Marines.

The ATWS fires the tube-launched, optically-tracked, wire-guided – or TOW – missiles. It provides long-range stand-off anti-armor fire support to maneuvering Light Armored Reconnaissance companies and platoons. The ATWS also provides an observational capability in all climates, as well as other environments of limited visibility, thanks to an improved thermal sight system that is similar to the Light Armored Vehicle 25-mm variant fielded in 2007.

«Marines using the new ATWS are immediately noticing the changes, including a new far target location capability, a commander/gunner video sight display, a relocated gunner’s station, and an electric elevation and azimuth drive system, which replaced the previous noisy hydraulic system», said Steve Myers, LAV program manager.

«The ATWS also possesses a built-in test capability, allowing the operators and maintainers to conduct an automated basic systems check of the ATWS», he said.

The LAV-ATM Team continues to provide new equipment training to units receiving the ATWS upgrade, with the final two training evolutions scheduled for early this year. Training consists of a 10-day evolution with three days devoted to the operator and seven days devoted to maintaining the weapon system. Follow-on training can be conducted by the unit using the embedded training mode within the ATWS.

«This vehicle equips anti-tank gunner Marines with a modern capability that helps them maintain readiness and lethality to complete their mission», said Major Christopher Dell, LAV Operations officer.

Full operational capability for the ATWS is expected at the end of fiscal year 2019.

«Currently, there are 58 in service within the active fleet», said Myers. «The original equipment manufacturer delivered 91 of the 106 contracted kits and is ahead of schedule. Now MCSC’s focus is directed at the Marine Corps Forces Reserve, ensuring they receive the same quality NET and support as their active counterparts».

LAV Anti-Tank Weapon System to reach FOC by end of 2019
LAV Anti-Tank Weapon System to reach FOC by end of 2019

PAC-3 interceptors

The United States and allied military forces will upgrade their missile defense capabilities under a $1.8 billion contract for production and delivery of Lockheed Martin Patriot Advanced Capability-3 (PAC-3) and PAC-3 Missile Segment Enhancement (PAC-3 MSE) interceptors.

Lockheed Martin receives $1.8 billion contract for PAC-3 missiles
Lockheed Martin receives $1.8 billion contract for PAC-3 missiles

The contract includes deliveries for the U.S. Army and Foreign Military Sales of PAC-3 and PAC-3 MSE interceptors, launcher modification kits and associated equipment.

«PAC-3 and PAC-3 MSE give our customers unmatched, combat-proven hit-to-kill technology to address growing and evolving threats», said Jay Pitman, vice president of PAC-3 programs at Lockheed Martin Missiles and Fire Control. «PAC-3 and PAC-3 MSE are proven, trusted and reliable interceptors that employ hit-to-kill accuracy, lethality and enhanced safety to address dangers around the world».

The family of PAC-3 missiles are high-velocity interceptors that defend against incoming threats, including tactical ballistic missiles, cruise missiles and aircraft. Thirteen nations – the U.S., Germany, Kuwait, Japan, Qatar, the Republic of Korea, Kingdom of Saudi Arabia, Taiwan, the Netherlands, United Arab Emirates, Romania, Poland and Sweden have chosen PAC-3 and PAC-3 MSE to provide missile defense capabilities.

Building on the combat-proven PAC-3, the PAC-3 MSE uses a two-pulse solid rocket motor that increases altitude and range to defend against evolving threats.

Defense Radar-Hawaii

Lockheed Martin was awarded a $585 million contract by the Missile Defense Agency (MDA) to design, develop and deliver its Homeland Defense Radar-Hawaii (HDR-H) in Oahu, Hawaii.

Missile Defense Agency Awards Lockheed Martin Contract To Design, Manufacture And Construct Homeland Defense Radar-Hawaii
Missile Defense Agency Awards Lockheed Martin Contract To Design, Manufacture And Construct Homeland Defense Radar-Hawaii

The HDR-H radar will provide autonomous acquisition and persistent precision tracking and discrimination to optimize the defensive capability of the Ballistic Missile Defense System (BMDS) and counter evolving threats.

«Lockheed Martin will leverage the development of our Long-Range Discrimination Radar (LRDR) to provide the lowest risk and best value HDR-H solution to MDA, which includes open, scalable architecture for future growth», said Chandra Marshall, program director for Lockheed Martin’s Missile Defense Radars market segment.

LRDR is currently under construction in Clear, Alaska, and is scheduled for an on-time delivery in 2020. The system’s open architecture design will enable future growth to keep pace with emerging threats.

«LRDR completed a key milestone in August, successfully searching for, acquiring and tracking numerous satellites, known as a closed loop track, confirming our design is complete, mature and ready for full rate production in 2019», said Marshall.

The work for HDR-H will be performed in Moorestown, New Jersey, and Oahu, Hawaii.

As a proven world leader in systems integration and development of air and missile defense systems and technologies, Lockheed Martin delivers high-quality missile defense solutions that protect citizens, critical assets and deployed forces from current and future threats. The company’s experience spans missile design and production, hit-to-kill capabilities, infrared seekers, command and control/battle management, and communications, precision pointing and tracking optics, radar and signal processing, as well as threat-representative targets for missile defense tests.