Next Strategic Tanker

Lockheed Martin introduces the LMXT as America’s next strategic tanker – built in America by Americans for Americans. Offered in response to the U.S. Air Force’s KC-Y Program, the LMXT represents the newest chapter in Lockheed Martin’s 60+ year history of producing and delivering tanker and cargo aircraft for the U.S. Air Force, U.S. Marine Corps, U.S. Navy and multiple operators around the world.

LMXT
Lockheed Martin Offers the LMXT for the U.S. Air Force’s KC-Y Program

The LMXT complements the U.S. Air Force’s tanker capabilities by providing the most advanced aerial refueler to meet America’s immediate and long-term mission requirements. The LMXT strengthens and expands the U.S. aerospace industrial base by working with existing and new American suppliers. The LMXT also cultivates and sustains high-tech, high-skill American manufacturing jobs.

«Lockheed Martin has a long and successful track record of producing aircraft for the U.S. Air Force, and we understand the critical role tankers play in ensuring America’s total mission success», said Greg Ulmer, executive vice president, Lockheed Martin Aeronautics. «The LMXT combines proven performance and operator-specific capabilities to meet the Air Force’s refueling requirements in support of America’s National Defense Strategy».

The LMXT offers a proven airframe with distinct U.S. Air Force-only capabilities designed to meet operator requirements, with advantages that include:

  • Significantly improved range and fuel offload capacity;
  • A proven fly-by-wire boom currently certified and used by allies to refuel U.S. Air Force receiver aircraft in operations around the world;
  • The world’s first fully automatic boom/air-to-air refueling (A3R) system;
  • Operational and combat proven advanced camera and vision system;
  • Open system architecture JADC2 systems;
  • A multi-domain operations node that connects the LMXT to the larger battlespace, increasing onboard situational awareness to provide resilient communications and datalink for assets across the force.

The Lockheed Martin strategic tanker builds on the combat-proven design of the Airbus A330 Multi Role Tanker Transport (MRTT). As the prime contractor, Lockheed Martin works directly to implement U.S. Air Force-specific requirements within the LMXT. As the strategic tanker of choice for 13 nations, the MRTT has logged more than 250,000 flight hours refueling U.S. and allied fighter, transport and maritime patrol aircraft in combat theater environments.

AUKUS

Australia, the United Kingdom and the United States have agreed to the creation of an enhanced trilateral security partnership – AUKUS.

AUKUS
Australia to pursue nuclear-powered submarines through new trilateral enhanced security partnership

The security challenges in the Indo-Pacific region have grown significantly. Military modernisation is occurring at an unprecedented rate and capabilities are rapidly advancing and their reach expanding. The technological edge enjoyed by Australia and our partners is narrowing.

AUKUS will build on the three nations’ longstanding and ongoing bilateral ties, and will enable the partners to significantly deepen cooperation on a range of emerging security and defence capabilities, which will enhance joint capability and interoperability. Initial efforts under AUKUS will focus on cyber capabilities, artificial intelligence, quantum technologies, and additional undersea capabilities.

This is an historic opportunity for the three nations, with like-minded allies and partners, to protect shared values and promote security and prosperity in the Indo-Pacific region.

AUKUS will complement Australia’s network of strategic partnerships, including with our ASEAN friends, our Pacific family, our Five Eyes partners, the Quad and other like-minded partners.

 

First initiative under AUKUS

The first initiative under AUKUS is for Australia to acquire nuclear-powered submarine technology, leveraging decades of experience from the US and UK.

Under AUKUS, the three nations will focus immediately on identifying the optimal pathway to deliver at least eight nuclear-powered submarines for Australia.

Over the next 18 months, Australia, the UK and US will intensely examine the full suite of requirements that underpin nuclear stewardship and demonstrate a clear pathway to becoming a responsible and reliable steward of this sensitive technology. Australia will establish a Nuclear-Powered Submarine Taskforce in the Department of Defence to lead this work.

Nuclear-powered submarines do not have the same limitations that face conventional submarines on weapons storage, speed and endurance. They can stay completely submerged for many months, limiting the opportunities for detection by adversaries.

As a three-ocean nation, it is necessary for Australia to have access to the most capable submarine technology available. As a nation, we are ready to take the step to pursue the most advanced submarine technology available to defend Australia and its national interests.

Australia has no plans to acquire nuclear weapons and this proposal will remain consistent with Australia’s longstanding commitment to nuclear non-proliferation. All three nations are deeply committed to upholding leadership on global non-proliferation.

The Government’s intention is to build the nuclear-powered submarines in South Australia, maximising the use of Australian workers.

Building the submarines in Australia is the best way to develop a strong and effective sustainment industry, which will enable us to meet every requirement to safely operate and maintain nuclear-powered submarines.

 

Attack class submarine program

The pursuit of nuclear-powered submarine technology means that Australia will no longer proceed with the Attack class conventional submarine program with Naval Group.

The Government would like to thank the Attack class submarine workforce, Naval Group, the Government of France and Lockheed Martin Australia for their efforts to date. However, accelerating changes to regional security make conventional submarines unsuited to our operational needs in the decades ahead.

The Government will actively work with industry to ensure the people and skills developed under the existing program are not lost to the Government’s Naval Shipbuilding Enterprise as we establish a new program to support the delivery of nuclear-powered submarines to the Navy.

The existing submarine workforce are prime candidates for the unprecedented work that needs to be performed across the Enterprise over the coming decades, where we will rely on their expertise more than ever.

The Government will partner with our Australian-owned sovereign shipbuilder, ASC, to manage and implement a new Sovereign Shipbuilding Talent Pool.

The Government is committed to finding a role within the Sovereign Shipbuilding Talent Pool for each and every skilled shipbuilding worker impacted by this announcement.

The Sovereign Shipbuilding Talent Pool will re-deploy the existing shipbuilding workforce throughout current and new shipbuilding programs, while building the nuclear-powered submarine skills that will be crucial for the success of the nuclear-powered submarine program.

This decision was not taken lightly. Our partnership with the Government of France and Naval Group on the Attack class conventional submarine program would have resulted in the most capable and lethal conventional submarine ever built.

As likeminded liberal democracies, Australia and France share a common commitment to the rules-based global order that has delivered stability and prosperity to the Indo-Pacific.

We look forward to continuing to work closely and positively with our French counterparts. France is a key friend and partner to Australia and the Indo-Pacific.

 

Other capabilities

The Government will also acquire additional long-range strike capabilities for the Australian Defence Force.

Throughout the decade, Australia will rapidly acquire long-range strike capabilities to enhance the ADF’s ability to deliver strike effects across our air, land and maritime domains.

These include:

  • Tomahawk Cruise Missiles, to be fielded on our Hobart class destroyers, enabling our maritime assets to strike land targets at greater distances, with better precision.
  • Joint Air-to-Surface Standoff Missiles (Extended Range) will enable our F/A-18 A/B Hornets and in future, our F-35A Lightning II, to hit targets at a range of 559 miles/900 km.
  • Long-Range Anti-Ship Missiles (Extended Range) (LRASM) for the F/A-18F Super Hornet.
  • Continuing collaboration with the United States to develop hypersonic missiles for our air capabilities.
  • Precision strike guided missiles for our land forces, which are capable of destroying, neutralising and supressing diverse targets from over 248.5 miles/400 km.
  • Accelerating $1 billion for a sovereign guided weapons manufacturing enterprise – which will enable us to create our own weapons on Australian soil.

These capabilities, coupled with the planned Life-of-Type Extension of Australia’s Collins class submarine fleet, will enhance Australia’s ability to deter and respond to potential security challenges.

The management of this transition, and other capability acquisition options that will meet Australia’s strategic requirements, will be at the forefront of consultations through AUKUS over the next 18 months.

Mission with F-35C

The U.S. Navy and Boeing have used the MQ-25TM T1 test asset to refuel a U.S. Navy F-35C Lightning II fighter jet for the first time, once again demonstrating the aircraft’s ability to achieve its primary aerial refueling mission.

MQ-25 Stingray
Boeing’s MQ-25 T1 test asset transfers fuel to a U.S. Navy F-35C Lightning II fighter jet Sept. 13 during a flight-test mission. The U.S. Navy and Boeing have conducted three refueling flights in the past three months, including an F/A-18 Super Hornet and E-2D Hawkeye (Kevin Flynn photo)

This was the third refueling mission for the Boeing-owned test asset in just over three months, advancing the test program for the U.S. Navy’s first operational carrier-based unmanned aircraft. T1 refueled an F/A-18 Super Hornet in June and an E-2D Hawkeye in August.

«Every test flight with another Type/Model/Series aircraft gets us one step closer to rapidly delivering a fully mission-capable MQ-25 Stingray to the fleet», said Captain Chad Reed, the U.S. Navy’s Unmanned Carrier Aviation program manager. «Stingray’s unmatched refueling capability is going to increase the U.S. Navy’s power projection and provide operational flexibility to the Carrier Strike Group commanders».

During a test flight September 13, an F-35C Lightning II test pilot from the U.S. Navy’s Air Test and Evaluation Squadron Two Three (VX-23) conducted a successful wake survey behind T1 to ensure performance and stability before making contact with T1’s aerial refueling drogue and receiving fuel.

«This flight was yet another physical demonstration of the maturity and stability of the MQ-25 Stingray aircraft design», said Dave Bujold, Boeing’s MQ-25 Stingray program director. «Thanks to this latest mission in our accelerated test program, we are confident the MQ-25 Stingray aircraft we are building right now will meet the U.S. Navy’s primary requirement – delivering fuel safely to the carrier air wing».

The T1 flight test program began in September 2019 with the aircraft’s first flight. In the following two years, the test program completed more than 120 flight hours – gathering data on everything from aircraft performance to propulsion dynamics to structural loads and flutter testing for strength and stability.

MQ-25 Stingray is benefitting from the two years of early flight test data, which has been integrated back into its digital models to strengthen the digital thread connecting aircraft design to production to test to operations and sustainment. Boeing is currently manufacturing the first two MQ-25 Stingray test aircraft.

T1 will be used to conduct a deck handling demonstration aboard a U.S. Navy carrier in the coming months to help advance the carrier integration progress.

Airspace Threat Detection

As the world’s most capable and flexible ground based multi-function long-range radar, Lockheed Martin’s TPY-4 has received its official U.S. Government nomenclature – AN/TPY-4(V)1 – officially marking the radar’s maturity and its ability to deliver fully-digital technology, and therefore setting a new standard for the future of radars.

AN/TPY-4(V)1
TPY-4 is a fully digital, software-defined sensor architecture, allowing users to maintain ongoing surveillance throughout the mission (Photo courtesy Lockheed Martin)

«Our team has worked diligently to deliver this advanced radar supporting domestic and international air surveillance requirements», said Chandra Marshall, vice president and general manager at Lockheed Martin. «This designation represents our commitment to furthering our radar capabilities to specifically overmatch emerging, complex, and advanced threats».

Lockheed Martin’s specialized team has spent more than 10 years and more than $100 million in research & development funds for the TPY-4 radar, including the construction, operation, and testing of prototype radar systems. TPY-4 offers multi-mission capabilities, such as early warning, situational awareness, tactical ballistic missile surveillance and air defense. It also integrates the latest mature commercial technologies to create a revolutionary radar architecture.

 

Recent Testing Achievements

The first TPY-4 is well ahead of any competition and already in production to be unveiled later this year. The radar’s production sub-assemblies are passing environmental and performance tests, attributed to the foundation built and validated under Lockheed Martin’s investment and the commonality with the U.S. Army’s Sentinel A4 radar. The radar’s test results continue to surpass model predictions, as validated by open air testing, furthering the qualification of this advanced radar.

 

The TPY-4 Radar: A Fully Digital Solution for Today’s and Tomorrow’s Threats

TPY-4 is an internationally available, transportable, multi-mission radar that can operate in contested RF environments and provide the warfighter an ability to detect and track threats better than any previous radar available today. It accomplishes this with a fully digital, software-defined sensor architecture, allowing users to maintain ongoing surveillance throughout the mission.

That’s because the TPY-4 radar users are not locked by the system’s hardware. Users have the ability to transmit and receive digitally, allowing for more enhanced target identification and classification. Earlier radars may have some level of digitization, but Lockheed Martin’s software-defined TPY-4 radar is digital at every element and across the entire architecture. Users don’t have to account for downtime for time-consuming actions, like hardware upgrades or manual data transfers.

«Our digital transmitter and receiver architecture provides flexibility to adjust performance for evolving missions, threats, and environments», said Rick Herodes, Lockheed Martin’s Radar and Sensor System’s Ground Based Air Surveillance program director. «TPY-4 provides unprecedented flexibility through software updates without invasive or time-consuming architectural redesigns, therefore making it the most effective risk management solution for national defense».

 

Lockheed Martin Radar Family History

TPY-4 was developed to include all the experience that Lockheed Martin’s radar product family offers. The technology investments include Gallium Nitride (GaN), which Lockheed Martin has been delivering worldwide since 2017, providing greater efficiency and improved reliability as compared to legacy systems.

Lockheed Martin’s long range and medium range surveillance radars have set the industry standard for ground-based air surveillance for decades. With more than 60 years of experience developing and delivering ground-based radar solutions to its customers around the world, Lockheed Martin has a long history of high-performing, high-reliability radar systems.

Future vision

The future of the Royal Navy and how it could further embrace autonomous technology, including drones, has been unveiled.

Persistent Operational Deployment Systems (PODS)
Royal Navy outlines future vision

Led by a design challenge for young engineers from UK Naval Engineering Science and Technology (UKNEST), the Royal Navy will develop a Future Autonomous Fleet programme that could shape how it operates over the next 50 years.

Stemming from the design challenge, the future vision envisages drones based in the stratosphere to be launched at a moment’s notice; uncrewed fast attack crafts housing smaller autonomous boats; aircraft carriers propelled by both sea-based biofuels and wind power; and an underwater flagship at the centre of the fleet. Other conceptual ideas include the increased use of artificial intelligence to assist with low-level planning and underwater transport units carrying anything from munitions to food.

Although in the conceptual phase, the Royal Navy is on track to implement one of these futuristic visions into reality over the coming decade – The Persistent Operational Deployment Systems (PODS).

PODS are interchangeable modules that can be fitted to the surface fleet. Similar in design to a shipping container, the PODS create the idea of a ‘plug and play’ warship and will enable Royal Navy ships of all sizes to be more adaptable and versatile when deployed.

Delivered using innovative technology such as heavy-lift drones or autonomous boats, a ship will be able to receive the equipment it needs to be re-tasked quicker without the need to go into a port to collect it.

Large in size, the PODS will house assets vital to supporting Royal Navy operations. These may include an autonomous boat for surveillance and reconnaissance, quadcopter drones to deliver supplies, humanitarian aid and disaster relief stores or medical equipment. Versatile in their approach, they have the capacity to become an additional medical room for service personnel at sea or a control centre for Royal Marines’ operations.

Second Sea Lord, Vice Admiral Nick Hine said: «In a future scenario if we find ourselves unable to compete traditionally in terms of mass, we must think differently if we are to regain operational advantage. The young engineers who worked on this project are thinking radically and with real imagination and reflects how the Royal Navy is thinking too».

Outlined in the recent Defence Command Paper, the Royal Navy is focussed on investing in a more innovative and automated fleet. Enhanced by the £24 billion increase in spending across four years as announced by the Prime Minister last November, the Royal Navy will improve the sustainability, lethality and availability of its vessels.

UKNEST young engineer, Fiona McIntosh said: «The collaborative nature of the project, coupled with us being unconstrained in the ideas and technologies we discussed, really helped us base our concept on technologies we thought would be key to innovation over the coming decades. The sessions were really interesting and it was great to see all of the concept designs in a presentation to senior Royal Navy Officers at the end. It was encouraging to see that the designs had some similar features and the groups had envisioned similar technologies being utilised by the future fleet. Hopefully we’ll see some of our ideas incorporated into future platforms».

Supported by the future conceptual ideas, the Royal Navy continues to be at the forefront of maritime technology as it adapts to meet future threats and maintain competitive advantage.

Keel Laying of Utah

On September 01, 2021, Electric Boat (EB) held a keel laying ceremony for the 28th ship of the Virginia class, the submarine USS Utah (SSN-801), at Quonset Point. EB senior staff, including President Kevin Graney and Vice President for QP Operations Sean Davies, joined U.S. Navy leadership, EB employees, and members of the USS Utah (SSN-801) commissioning committee to mark this important construction milestone.

USS Utah (SSN-801)
Quonset Point employee Steven Tavares, an X-Ray Welder in Dept. 921, welds Ship Sponsor Kate Mabus’ initials into the Keel Plate that will be installed on the Utah

Utah will be the second U.S. Navy vessel named after the «Beehive State», the first being a Florida-class battleship (BB-31) commissioned in 1911. BB-31 served during the Mexican Revolution, World War I, and provided a covering force for Allied convoys near Britain in 1918.

The battleship met its fate during the attack on Pearl Harbor in 1941 where it was moored as an anti-aircraft gunnery training ship. «The six torpedoes used on Utah could have potentially destroyed a third or fourth battleship, further crippling U.S. naval power in the Pacific and changing the course of the war», said Graney. «Today the hull of Utah remains at Pearl Harbor as a memorial to the 58 officers and crew who lost their lives that day. May the spirit of those brave souls guide the future crew of the second USS Utah, whose keel-laying today celebrates the ceremonial birth of the ship. In the days of wooden ships, the start of construction was marked by the laying of the first timber – the backbone of the vessel». Graney explained how this tradition has been modified to reflect current manufacturing methods and the cylindrical shape of modern submarines, also noting that the bottom centerline of these ships is referred to as the keel.

Ship Sponsor, Ms. Kate Mabus, delivered her remarks and expressed her dedication to the future crew of the USS Utah (SSN-801). «This Utah will be a fitting tribute to those who served on the original USS Utah. I recognize the responsibility I have as sponsor to be a part of this submarine’s life. I am immensely excited to meet the sailors that will serve on the Utah, and the Captain who will command her. As a plank owner and honorary member of the first crew, I will be connected with the Utah for the decades she serves in the fleet. As we lay the keel today, I also want to celebrate the amazing ship builders here at Electric Boat as well as those at Huntington Ingalls in Newport News, Virginia who are building the other parts».

Steven Tavares, an X-Ray welder in D921 was selected to weld the sponsor’s initials on the keel plate that will permanently be installed in the USS Utah (SSN-801). Tavares joined EB in 2013 as an entry level welder in D915 after working in the concrete/masonry industry for 11 years. He was selected for his high weld acceptance rate, as well as the quality and complexity of the welds he performs.

After verifying her initials on the plate that will be installed in the Utah for the entire service life of the boat, Ms. Mabus concluded the event with the declaration, «I declare this keel to be well and truly laid».

 

General Characteristics

Builder General Dynamics Electric Boat Division and Huntington Ingalls Industries Inc. – Newport News Shipbuilding
Date Deployed October 3, 2004
Propulsion One GE PWR S9G* nuclear reactor, two turbines, one shaft; 40,000 hp/30 MW
Length 377 feet/114.8 m
Beam 33 feet/10.0584 m
Hull Diameter 34 feet/10.3632 m
Displacement Approximately 7,800 tons/7,925 metric tons submerged
Speed 25+ knots/28+ mph/46.3+ km/h
Diving Depth 800+ feet/244+ m
Crew 132: 15 officers; 117 enlisted
Armament: Tomahawk missiles Two 87-in/2.2 m Virginia Payload Tubes (VPTs), each capable of launching 6 Tomahawk cruise missiles
Armament: MK-48 ADCAP (Advanced Capability) Mod 7 heavyweight torpedoes 4 torpedo tubes
Weapons MK-60 CAPTOR (Encapsulated Torpedo) mines, advanced mobile mines and UUVs (Unmanned Underwater Vehicles)

* – Knolls Atomic Power Laboratories

 

Nuclear Submarine Lineup

 

Block IV

Ship Yard Christening Commissioned Homeport
SSN-792 Vermont EB 10-20-18 04-18-20 Groton, Connecticut
SSN-793 Oregon EB 10-05-19
SSN-794 Montana NNS 09-12-20
SSN-795 Hyman G. Rickover EB 07-31-21
SSN-796 New Jersey NNS Under Construction
SSN-797 Iowa EB Under Construction
SSN-798 Massachusetts NNS Under Construction
SSN-799 Idaho EB Under Construction
SSN-800 Arkansas NNS Under Construction
SSN-801 Utah EB Under Construction

 

Fleet mission

The CH-53K King Stallion successfully recovered a Navy MH-60S Knighthawk helicopter from Mount Hogue in the White Mountains of California on Sunday, September 5. The two-day operation was the first official fleet mission for the Marine Corps’ new heavy lift capability, which is in the midst of Initial Operational Test and Evaluation with Marine Operational Test and Evaluation Squadron One (VMX-1) at Marine Corps Air Ground Combat Center Twentynine Palms, California.

CH-53K King Stallion
A Marine Corps CH-53K King Stallion lifts a Navy MH-60S Knighthawk helicopter from a draw in Mount Hogue, California, September 5, 2021. The Knighthawk conducted a hard landing during a search-and-rescue mission, which resulted in no casualties or injuries of its crew. The two-day operation was the first official fleet mission for the CH-53K King Stallion, as it is currently undergoing an operational assessment while the Marine Corps modernizes and prepares to respond globally to emerging crises or contingencies (U.S. Marine Corps photo by Corporal Therese Edwards)

«VMX-1 received a request for assistance from the Naval Safety Center about an MH-60S Knighthawk that suffered a hard landing near Mount Hogue, California, at an elevation of 12,000’ Mean Sea Level (MSL) in July», said Lieutenant Colonel Luke Frank, CH-53K King Stallion Detachment Officer in Charge for VMX-1.

The MH-60S Knighthawk was sitting on a high altitude ridge in very rugged terrain near the California-Nevada line on July 16 following a hard landing. The helicopter was supporting a search and rescue effort for a lost hiker. All four crewmembers survived without injury and were rescued the following day.

According to Frank, both the MH-60S Knighthawk unit and the Naval Safety Center had exhausted all other resources for recovery, including Army National Guard, Navy and Marine Corps fleet squadrons. «They all lacked the capability to lift the aircraft without an extensive disassembly», he said.

VMX-1’s CH-53K King Stallion detachment quickly examined the environmental conditions and conducted a quick feasibility assessment of support and determined that the CH-53K King Stallion could conduct the lift. The CH-53K King Stallion fulfills the heavy lift mission of the Marine Corps as it greatly expands the fleet’s ability to move equipment and personnel throughout its area of operations.

«After two weeks of exhaustive planning and assembling a team of more than 25 Marines and sailors from VMX-1 and 1st Landing Support Battalion from Camp Pendleton, California we deployed two CH-53Ks to Bishop, California, and got to work», he said.

The CH-53K King Stallion was designed to lift nearly 14 tons (27,000 lbs.) at a mission radius of 110 nautical miles/126.6 miles/203.7 km in high and hot environments; a capability that expands the service’s range in supporting joint and coalition forces against potential adversaries.

The MH-60S Knighthawk weighed approximately 15,200 lbs./6,894.6 kg and was positioned in a tight ravine at nearly 12,000’ MSL and needed to be transported over 23 nautical miles/26.5 miles/42.6 km to the Bishop, California airport.

«After six months of flight operations with the CH-53K King Stallion, the detachment had every confidence in the aircraft’s abilities to conduct the mission safely. Our main concern was the environmental factors ground support personnel would have to endure», said Frank.

«This is exactly what the K is made to do», he said. «Heavy lift is a unique and invaluable mission for the Marine Corps. Horsepower is our weapon system and the CH-53K King Stallion is armed to the teeth. The entire team of Marines at VMX-1, 1st Landing Support Battalion, and Naval Air Station (NAS) Fallon Search and Rescue were extremely motivated to execute this mission and we are all very proud to have completed this one flawlessly. To be the first group of professionals to complete a real-world, heavy lift/high altitude mission in support of a unit who thought all options were off the table is extremely rewarding», said Frank. «This is sure to be the first of what will be many, many successful missions for this aircraft and for heavy lift squadrons».

 

General Characteristics

Number of Engines 3
Engine Type T408-GE-400
T408 Engine 7,500 shp/5,595 kw
Maximum Gross Weight (Internal Load) 74,000 lbs/33,566 kg
Maximum Gross Weight (External Load) 88,000 lbs/39,916 kg
Cruise Speed 141 knots/162 mph/261 km/h
Range 460 NM/530 miles/852 km
AEO* Service Ceiling 14,380 feet/4,383 m
HIGE** Ceiling (MAGW) 13,630 feet/4,155 m
HOGE*** Ceiling (MAGW) 10,080 feet/3,073 m
Cabin Length 30 feet/9.1 m
Cabin Width 9 feet/2.7 m
Cabin Height 6.5 feet/2.0 m
Cabin Area 264.47 feet2/24.57 m2
Cabin Volume 1,735.36 feet3/49.14 m3

* All Engines Operating

** Hover Ceiling In Ground Effect

*** Hover Ceiling Out of Ground Effect

Friend-or-Foe

The U.S. Navy has awarded BAE Systems a $26 million contract for Identification Friend-or-Foe (IFF) spares for the E-2D Advanced Hawkeye aircraft. Under the contract, BAE Systems will provide Beamforming Networks (BFNs), an integral part of antenna control for the AN/APX-122A IFF Interrogator system, onboard the carrier-capable tactical aircraft.

E-2D Advanced Hawkeye
Delivering situational awareness for U.S. Navy warfighters

«These sets will provide situational awareness and early warning for U.S. Navy sailors and warfighters», said Donna Linke-Klein, director of Tactical Systems at BAE Systems. «The Advanced Hawkeye is essential for battle management command and control, and our interrogator systems enable operators to identify friendly forces and make informed decisions in a variety of threat environments».

The AN/APX-122A IFF Interrogator system provides positive identification of friendly aircraft, giving E-2D Advanced Hawkeye operators the situational awareness, they need to safely complete their missions. These missions include command and control, border security, search and rescue, and missile defense. The AN/APX-122A IFF Interrogator system is produced exclusively for the E-2D Advanced Hawkeye, due to the extraordinary requirements for this aircraft.

BAE Systems’ IFF aircraft identification systems provide time-critical insights that reduce friendly fire incidents, support mission success, and save lives – especially in hostile environments. BAE Systems has been a leader in IFF systems technology for more than seven decades, having delivered more than 14,000 transponders, 1,500 interrogators, and 6,000 combined interrogator transponder systems for use across a multitude of platforms.

50kW-class laser

Raytheon Intelligence & Space (RI&S), a Raytheon Technologies business, has been awarded a $123 million contract to build and deliver three additional combat-capable 50kW-class high-energy laser weapon systems as part of the U.S. Army’s Directed Energy Maneuver-Short Range Air Defense, or DE M-SHORAD, program. RI&S is a subcontractor in an Other Transaction Authority (OTA) agreement between the Army and Kord, a wholly owned subsidiary of KBR based in Huntsville, Alabama. The systems will be mounted on Stryker combat vehicles that the Army plans to deploy for field operations in 2022.

DE M-SHORAD
Raytheon Intelligence & Space to build mobile 50kW-class laser for U.S. Army

«The U.S. Army is leading the charge to give soldiers the first-ever operational capability of a mobile high-energy laser weapon», said Annabel Flores, vice president for Electronic Warfare Systems at RI&S. «Two years ago, the Army set a goal to deliver a powerful, maneuverable and proven laser system that was ready for operators to use in the field right away, and our team demonstrated that capability».

The award follows a U.S. Army DE M-SHORAD Combat Shoot-Off at Fort Sill, Oklahoma, this summer. RI&S’ solution was employed in a series of realistic scenarios designed to evaluate the performance of the system, establish threshold requirements for the laser and demonstrate its technical maturity and readiness. At the shoot-off, soldiers operated the system and effectively tracked, identified and engaged a variety of targets.

«In just a few days, soldiers went from training to operating the system and engaging targets to providing valuable feedback to our team that will help improve future systems», added Flores.

DE M-SHORAD will offer protection to maneuvering ground forces and equipment from threats such as Unmanned Aircraft Systems, or UAS, rotary-wing aircraft, and rockets, artillery and mortars.

RI&S’ weapons system for DE M-SHORAD combines a 50kW-class High-Energy Laser, a beam director, an Electro-Optical and InfraRed (EO/IR) target acquisition and tracking system, and a Ku720 multi-mission radar. This gives soldiers an effective counter-UAS solution as well as providing counterintelligence, surveillance and reconnaissance capabilities.

Work for DE M-SHORAD will be performed in McKinney, Texas.

Defensive laser weapon systems can complement kinetic weapons during field missions by providing a low cost per kill, speed-of-light delivery and a deep magazine limited only by vehicle fuel.

Previously, RI&S also delivered three high-energy laser systems to the U.S. Air Force. The systems have accrued more than 9,000 hours during operator training and operational assessment. Raytheon Technologies’ counter-UAS solutions include sensors, and kinetic and non-kinetic effectors that, when networked into a command-and-control system, provide layers of air defense and force protection designed to meet a variety of threats.

Assault Aircraft

On September 7, 2021 the Sikorsky-Boeing team released the following statement on the early submittal of the proposal for DEFIANT X for the U.S. Army’s Future Long-Range Assault Aircraft (FLRAA).

DEFIANT X
DEFIANT X is a helicopter that offers high-speed performance while retaining traditional helicopter agility and maneuverability, delivering more combat power on the objective than other proposals for the U.S. Army’s Future Long-Range Assault Aircraft. While operating in the same footprint as the BLACK HAWK, DEFIANT X delivers transformational capability and affordability – including efficient sustainment, advanced manufacturing techniques and minimized training time and costs (Image courtesy Sikorsky and Boeing)

This statement can be attributed to Paul Lemmo, president, Sikorsky, and to Mark Cherry, vice president and general manager, Vertical Lift, Boeing Defense, Space & Security:

«Continuing a 75-year partnership with the U.S. Army, providing and sustaining the iconic BLACK HAWK, Chinook and Apache, the Sikorsky-Boeing team looks to the future with the Future Long-Range Assault Aircraft – DEFIANT X. Today, Team DEFIANT completed and submitted the proposal for the U.S. Army’s FLRAA competition, offering low-risk, transformational capability that delivers on an Army critical modernization priority and advances the future of Army aviation. DEFIANT X delivers speed where it matters, survivability, unsurpassed power, maneuverability, superior handling in any environment and lower lifecycle costs – while operating in the same footprint as the BLACK HAWK. We are confident that DEFIANT X, supported by our longstanding Army industrial base suppliers, is the best choice for delivering overmatch on the Multi-Domain Operational battlefield in United States Indo-Pacific Command (INDOPACOM) and across the globe».