Tag Archives: Sikorsky

King Stallion

Sikorsky, a Lockheed Martin company will build 12 production CH-53K King Stallion helicopters under a new $1.13 billion contract from the U.S. Navy. These advanced helicopters are part of the 200 program of record aircraft for the U.S. Marine Corps.

Sikorsky receives contract to build 12 CH-53K Heavy Lift Helicopters

Under the terms of the contract, known as Low Rate Initial Production (LRIP) Lot 2 and 3, Sikorsky will begin deliveries of 12 CH-53K King Stallion helicopters in 2022, and also provide spares and logistical support. Sikorsky remains committed to continuing to reduce costs over the life of the program. Read the Navy’s announcement.

«I’m proud of the joint government and industry team in achieving this award», said Colonel Jack Perrin, U.S. Marine Corps program manager for the Naval Air Systems Command’s Heavy Lift Helicopters program, PMA-261.

The CH-53K King Stallion is the only sea-based, long range, heavy-lift helicopter in production and will immediately provide three times the lift capability of its predecessor. The CH-53K King Stallion will conduct expeditionary heavy-lift transport of armored vehicles, equipment, and personnel to support distributed operations deep inland from a sea-based center of operations. The new CH-53K King Stallion will have heavy-lift capabilities that exceed all other DoD rotary wing-platforms and it is the only heavy lifter that will remain in production through 2032 and beyond.

«Sikorsky employees and our nationwide supply chain are ready to ramp up CH-53K King Stallion production to support deployment of this modern, safe and reliable aircraft in 2023-2024», said Sikorsky Program Director Bill Falk. «This contract demonstrates the U.S. Marine Corps’ confidence in Sikorsky to expand production of this technologically advanced heavy lift helicopter».

Lockheed Martin, Sikorsky, and its suppliers have made significant investments in facilities, machinery, tooling, and workforce training to ramp-up production required for the CH-53K King Stallion program. For example, we have installed more than eight new titanium machining centers, designed and implemented a new final assembly test facility with multi-floor ergonomic work platforms, installed 10-ton cranes, and now have 3D work instructions on the factory floor.

«We have transformed our factory for the future and implemented a model for all future helicopter programs», Falk said. «Additionally, our engineers have implemented the latest technologies such as manufacturing simulation and 3D laser inspection technology. These investments in systems, personnel, and our facilities have elevated Sikorsky’s manufacturing technology and capabilities to meet production requirements of the CH-53K King Stallion for domestic and international customers».

 

King Stallion Progress Update

The all-new CH-53K King Stallion, designed to be intelligent, reliable, low maintenance and survivable in the most difficult conditions, has flown more than 1,400 test hours and has met all the outer reaches of the test envelope. The King Stallion is in the midst of a rigorous test program to ensure militaries can safely move troops and equipment at higher altitudes, quicker and more effectively than ever.

The CH-53K King Stallion, which has proven it can lift more than 36,000 pounds/16,329 kilograms, is the most powerful heavy lift helicopter ever built in the United States. The King Stallion’s technologically advanced design will meet the future warfighting requirements for decades to come, enabling missions like humanitarian aid, troop and equipment transport, CASualty EVACuation (CASEVAC), support of special operations forces, and Combat Search And Rescue (CSAR).

Accomplishments to date include: high altitude, hot temperature, and degraded visual environment flights, maximum weight single-point cargo hook sling load of 36,000 pounds/16,329 kilograms; forward flight speed of over 200 knots/230 mph/370 km/h; 60 degrees angle of bank turns; altitude of 18,500 feet/5,639 m Mean Sea Level (MSL); 12-degree slope landings and takeoffs; external load auto-jettison; and gunfire testing.

 

General Characteristics

Number of Engines 3
Engine Type T408-GE-400
T408 Engine 7,500 shp/5,595 kw
Maximum Gross Weight (Internal Load) 74,000 lbs/33,566 kg
Maximum Gross Weight (External Load) 88,000 lbs/39,916 kg
Cruise Speed 141 knots/162 mph/261 km/h
Range 460 NM/530 miles/852 km
AEO* Service Ceiling 14,380 feet/4,383 m
HIGE** Ceiling (MAGW) 13,630 feet/4,155 m
HOGE*** Ceiling (MAGW) 10,080 feet/3,073 m
Cabin Length 30 feet/9.1 m
Cabin Width 9 feet/2.7 m
Cabin Height 6.5 feet/2.0 m
Cabin Area 264.47 feet2/24.57 m2
Cabin Volume 1,735.36 feet3/49.14 m3

* All Engines Operating

** Hover Ceiling In Ground Effect

*** Hover Ceiling Out of Ground Effect

 

CH-53K Progresses Through Flight Tests, Impressive Feats

First Flight

The Sikorsky HH-60W Combat Rescue Helicopter achieved first flight today at Sikorsky’s West Palm Beach, Florida site, an important step toward bringing this all-new aircraft to service members to perform critical search and rescue operations. The aircraft, developed by Sikorsky, a Lockheed Martin Company and based on the proven UH-60M Black Hawk, is customized for the U.S. Air Force ‘s rescue mission and will ensure the Air Force fulfills its mission to leave no one behind.

Sikorsky HH-60W Combat Rescue Helicopter Achieves First Flight

Total flight time was approximately 1.2 hours and included hover control checks, low speed flight, and a pass of the airfield.

«This achievement is yet another vital step toward a low rate initial production decision and getting this much-needed aircraft and its advanced capabilities to the warfighter», said Dana Fiatarone, vice president, Sikorsky Army & Air Force Systems. «We are very pleased with the results of today’s flight and look forward to a productive and informative flight test program».

Today’s flight paves the way for a Milestone C production decision in September 2019, per the original baseline schedule, to which both Sikorsky and the Air Force are committed. A second HH-60W helicopter is expected to enter flight test next week, with a third and fourth aircraft entering flight test this summer. These aircraft will provide critical data over the course of the program which will enable the Air Force to make an informed production decision.

«The HH-60W’s first flight is the culmination of significant development and design advances. We are excited to now move forward to begin full aircraft system qualification via the flight test program», said Greg Hames, director of the Combat Rescue Helicopter program. «Together with the Air Force, our team is motivated and committed to advancing this program and delivering this superior aircraft to our airmen and women».

The HH-60W Combat Rescue Helicopter is significantly more capable and reliable than its predecessor, the HH-60G Pave Hawk. The aircraft hosts a new fuel system that nearly doubles the capacity of the internal tank on a UH-60M Black Hawk, giving the Air Force crew extended range and more capability to rescue those injured in the battle space. The HH-60W specification drives more capable defensive systems, vulnerability reduction, weapons, cyber-security, environmental, and net-centric requirements than currently held by the HH-60G.

«With the Combat Rescue Helicopter’s successful first flight now behind us, we look forward to completion of Sikorsky’s flight test program, operational testing and production of this aircraft to support the Air Force’s critical rescue mission», said Edward Stanhouse, Chief, U.S. Air Force Helicopter Program Office. «Increased survivability is key and we greatly anticipate the added capabilities this aircraft will provide».

The U.S. Air Force program of record calls for 113 helicopters to replace the Pave Hawks, which perform critical combat search and rescue and personnel recovery operations for all U.S. military services. A total of nine aircraft will be built at Sikorsky’s Stratford, Connecticut, facility during the Engineering & Manufacturing Development (EMD) phase of the program – four EMD aircraft and five System Demonstration Test Articles (SDTA).

Multi-Mission Helicopters

The State Department has made a determination approving a possible Foreign Military Sale to India of twenty-four (24) MH-60R Multi-Mission helicopters for an estimated cost of $2.6 billion. The Defense Security Cooperation Agency delivered the required certification notifying Congress of this possible sale on April 2, 2019.

MH-60R Multi-Mission Helicopters
MH-60R Multi-Mission Helicopters

The Government of India has requested to buy twenty-four (24) MH-60R Multi-Mission helicopters, equipped with the following:

  • thirty (30) APS-153(V) Multi-Mode radars (24 installed, 6 spares);
  • sixty (60) T700-GE-401C engines (48 installed and 12 spares);
  • twenty-four (24) Airborne Low Frequency System (ALFS) (20 installed, 4 spares);
  • thirty (30) AN/AAS-44C(V) Multi-Spectral Targeting System (24 installed, 6 spares);
  • fifty-four (54) Embedded Global Positioning System/Inertial Navigation Systems (EGI) with Selective Availability/Anti-Spoofing Module (SAASM) (48 installed, 6 spares);
  • one thousand (1,000) AN/SSQ-36/53/62 sonobuoys;
  • ten (10) AGM-114 Hellfire missiles;
  • five (5) AGM-114 M36-E9 Captive Air Training Missiles (CATM);
  • four (4) AGM-114Q Hellfire Training missiles;
  • thirty-eight (38) Advanced Precision Kill Weapons System (APKWS) rockets;
  • thirty (30) MK 54 torpedoes;
  • twelve (12) M-240D Crew Served guns;
  • twelve (12) GAU-21 Crew Served guns;
  • two (2) Naval Strike Missile Emulators;
  • four (4) Naval Strike Missile Captive Inert Training missiles;
  • one (1) MH-60B/R Excess Defense Article (EDA) USN legacy aircraft.

Also included are:

  • seventy (70) AN/AVS-9 Night Vision Devices;
  • fifty-four (54) AN/ARC-210 RT-1990A(C) radios with COMSEC (48 installed, 6 spares);
  • thirty (30) AN/ARC-220 High Frequency radios (24 installed, 6 spares);
  • thirty (30) AN/APX-123 Identification Friend or Foe (IFF) transponders (24 installed, 6 spares);
  • spare engine containers;
  • facilities study, design, and construction; spare and repair parts; support and test equipment; communication equipment; ferry support; publications and technical documentation; personnel training and training equipment; U.S. Government and contractor engineering, technical and logistics support services; and other related elements of logistical and program support.

The total estimated cost is $2.6 billion.

This proposed sale will support the foreign policy and national security of the United States by helping to strengthen the U.S.-Indian strategic relationship and to improve the security of a major defensive partner which continues to be an important force for political stability, peace, and economic progress in the Indo-Pacific and South Asia region.

The proposed sale will provide India the capability to perform anti-surface and anti-submarine warfare missions along with the ability to perform secondary missions including vertical replenishment, search and rescue, and communications relay. India will use the enhanced capability as a deterrent to regional threats and to strengthen its homeland defense. India will have no difficulty absorbing these helicopters into its armed forces.

The proposed sale of this equipment and support will not alter the basic military balance in the region.

The principal contractor will be Lockheed Martin Rotary and Mission Systems, Owego, New York. The purchaser typically requests offsets. Any offset agreement will be defined in negotiations between the purchaser and the contractor.

Implementation of this proposed sale will require the assignment of 20-30 U.S. Government and/or contractor representatives to India.

There will be no adverse impact on U.S. defense readiness as a result of this proposed sale.

This notice of a potential sale is required by law and does not mean the sale has been concluded.

First Flight

The Sikorsky-Boeing SB>1 Defiant helicopter achieved first flight on March 21, 2019, at Sikorsky’s West Palm Beach, Florida site. This revolutionary aircraft, developed by Sikorsky, a Lockheed Martin Company, and Boeing, will help inform the next generation of military helicopters as part of the U.S. Army’s Future Vertical Lift program.

Sikorsky-Boeing SB>1 Defiant Helicopter Achieves First Flight
Sikorsky-Boeing SB>1 Defiant Helicopter Achieves First Flight

«Defiant is designed to fly at nearly twice the speed and has twice the range of conventional helicopters while retaining the very best, if not better low-speed and hover performance of conventional helicopters», said Dan Spoor, vice president, Sikorsky Future Vertical Lift. «This design provides for exceptional performance in the objective area, where potential enemy activity places a premium on maneuverability, survivability and flexibility. We are thrilled with the results of today’s flight and look forward to an exciting flight test program».

With its two coaxial main rotors and rear-mounted pusher propulsor, SB>1 Defiant is unlike production rotorcraft available today. It represents a leap forward in technology to achieve the U.S. government’s desire for vast increases in speed and range, while improving maneuverability and survivability in a cost-effective way. SB>1 Defiant aircraft’s use of X2 Technology will allow the Army to penetrate from strategic standoff and exploit gaps created in complex Anti-Access Area Denial systems against near-peer adversaries.

«The design and development of Defiant has revealed the capability advancement that is truly possible for Future Vertical Lift», said David Koopersmith, vice president and general manager, Boeing Vertical Lift. «Clearly, the performance, speed, and agility of Defiant will be a game changer on the battlefield and we look forward to demonstrating for the U.S. Army the tremendous capabilities of this aircraft».

The helicopter is participating in the Army’s Joint Multi-Role-Medium Technology Demonstrator program. Data from SB>1 Defiant will help the Army develop requirements for new utility helicopters expected to enter service in the early 2030s. This flight marks a key milestone for the Sikorsky-Boeing team, and is the culmination of significant design, simulation and test activity to further demonstrate the capability of the X2 Technology.

X2 Technology is scalable to a variety of military missions such as attack and assault, long-range transportation, infiltration and resupply. SB>1 Defiant is the third X2 aircraft in less than 10 years.

The Sikorsky-Boeing SB>1 Defiant helicopter completed its first flight on March 21, 2019

First Look

Sikorsky, a Lockheed Martin company, and Boeing provided the first look at the SB>1 DEFIANT helicopter the companies have developed for the U.S. Army’s Joint Multi-Role technology demonstrator program. The SB>1 DEFIANT is designed to fly at twice the speed and range of today’s conventional helicopters and offers advanced agility and maneuverability. It will help inform the next generation of military helicopters as part of the U.S. Army’s Future Vertical Lift program.

Sikorsky, Boeing Provide First Look At SB>1 DEFIANT
Sikorsky, Boeing Provide First Look At SB>1 DEFIANT

The helicopter is participating in the Army’s Joint Multi-Role-Medium Technology Demonstrator program. Data from SB>1 DEFIANT will help the Army develop requirements for new utility helicopters expected to enter service in the early 2030s.

As the lead providers of Attack, Assault, and Heavy Lift Helicopters for the Department of Defense (DoD) and with a proven track record and a demonstrated ability to exceed customer requirements for those missions with these programs of record, Boeing and Sikorsky have joined forces to develop the SB>1 DEFIANT for the DoD. Defiant is a fully integrated aircraft that represents an evolution of the military’s most capable platforms. Designed for the Army’s attack and assault missions as well as the Marine Corps long-range transportation, infiltration and resupply missions, the SB>1 DEFIANT is uniquely suited to provide the warfighter with unmatched capabilities for the U.S. Military’s various missions.

Sikorsky and Boeing have designed the SB>1 DEFIANT to provide the right combination of speed, lift and range that are paramount to both the assault and attack missions while increasing overall maneuverability and agility. Developed with 85 percent commonality between attack and assault aircraft, the SB>1 DEFIANT will reduce development and life-cycle costs and ensure minimal disruption or loss of existing rotorcraft expertise. Its open mission systems architecture allows rapid technology and capability insertion to meet evolving FVL requirements and provide the U.S. Military with evolutionary sustainability, affordability and readiness for years to come.

The aircraft’s capabilities are largely derived from the X2 rigid co-axial rotor system which has already proven its airworthiness through flights of the X2 and S-97 Raider. With two coaxial rotors on top that rotate in opposite directions, the extra lift from each rotor’s advancing blade balances out the diminished lift from the opposite side’s retreating blade to eliminate retreating blade stall. To provide the raw forward thrust for fast flight, the back of the SB>1 DEFIANT mounts a pusher propulsor, allowing the aircraft to fly twice as fast and twice as far as today’s conventional helicopter while increasing the overall maneuverability and agility required for specific mission objectives. This additional flight component also provides unique and unmatched maneuverability in all flight regimes including hover, low-speed flight and high-speed flight.

The perfect paradigm for upgradability and survivability in an open architecture environment, the SB>1 DEFIANT is ready to serve the U.S. Military for decades to come.

  • X2 Rotor System: A rigid, co-axial rotor system with pusher propulsor that provides improved mission objective capability, reduced wear on parts and systems, increased reliability and lower total lifecycle costs
  • Maneuverability and Agility: Improved agility and flight control augmentation allow tight assault formations with close proximity landings to deliver embarked troops as a cohesive unit and minimize exposure to hostile threats
  • Speed and Range: Twice the speed and distance of today’s conventional helicopters while increasing the overall maneuverability and agility needed for the US Military’s various missions
  • Survivability: Propulsor thrust coupled with large angular rates and precision attitude control enable the SB>1 DEFIANT to rapidly and precisely displace the aircraft position or flight path in response to threats or evolving tactical environments
  • Lethality: Rapid and precise acquisition of targets and prolonged engagement windows
  • Deployability: When folded for shipboard stowage, the SB>1 DEFIANT fits the footprint of a folded AH-1
Future Vertical Lift: the next-generation rotorcraft of the U.S. Military
Future Vertical Lift: the next-generation rotorcraft of the U.S. Military

First-Of-Its-Kind

U.S. Army pilots exercised supervised autonomy to direct an Optionally-Piloted Helicopter (OPV) through a series of missions to demonstrate technology developed by Sikorsky, a Lockheed Martin company and the Defense Advanced Research Projects Agency (DARPA). The series of flights marked the first time that non-Sikorsky pilots operated the Sikorsky Autonomy Research Aircraft (SARA), a modified S-76B commercial helicopter, as an OPV aircraft.

U.S. Army Pilots Fly Autonomous Sikorsky Helicopter in First-Of-Its-Kind Demonstration
U.S. Army Pilots Fly Autonomous Sikorsky Helicopter in First-Of-Its-Kind Demonstration

«Future vertical lift aircraft will require robust autonomous and optimally-piloted systems to complete missions and improve safety», said Chris Van Buiten, vice president, Sikorsky Innovations. «We could not be more thrilled to welcome Army aviators to the cockpit to experience first-hand the reliability of optimally-piloted technology developed by the innovative engineers at Sikorsky and DARPA. These aviators experienced the same technology that we are installing and testing on a Black Hawk that will take its first flight over the next several months».

SARA, which has more than 300 hours of autonomous flight, successfully demonstrated the advanced capabilities developed as part of the third phase of DARPA’s Aircrew Labor In-Cockpit Automation System (ALIAS) program. The aircraft was operated at different times by pilots on board and pilots on the ground. Sikorsky’s MATRIX Technology autonomous software and hardware, which is installed on SARA, executed various scenarios including:

  • Automated Take Off and Landing: The helicopter autonomously executed take-off, traveled to its destination, and autonomously landed;
  • Obstacle Avoidance: The helicopter’s LIDAR and cameras enabled it to detect and avoid unknown objects such as wires, towers and moving vehicles;
  • Automatic Landing Zone Selection: The helicopter’s LIDAR sensors determined a safe landing zone;
  • Contour Flight: The helicopter flew low to the ground and behind trees.

The recent Mission Software Flight Demonstration was a collaboration with the U.S. Army’s Aviation Development Directorate, Sikorsky and DARPA. The Army and DARPA are working with Sikorsky to improve and expand ALIAS capabilities developed as a tailorable autonomy kit for installation in both fixed wing airplanes and helicopters.

Over the next few months, Sikorsky will for the first time fly a Black Hawk equipped with ALIAS. The company is working closely with the Federal Aviation Administration to certify ALIAS/MATRIX technology so that it will be available on current and future commercial and military aircraft.

«We’re demonstrating a certifiable autonomy solution that is going to drastically change the way pilots fly», said Mark Ward, Sikorsky Chief Pilot, Stratford, Conn. Flight Test Center. «We’re confident that MATRIX Technology will allow pilots to focus on their missions. This technology will ultimately decrease instances of the number one cause of helicopter crashes: Controlled Flight Into Terrain (CFIT)».

Through the DARPA ALIAS program, Sikorsky is developing an OPV approach it describes as pilot directed autonomy that will give operators the confidence to fly aircraft safely, reliably and affordably in optimally piloted modes enabling flight with two, one or zero crew. The program will improve operator decision aiding for manned operations while also enabling both unmanned and reduced crew operations.

200 Knots

The Sikorsky S-97 Raider light tactical prototype helicopter is advancing rapidly through its flight test schedule, recently exceeding 200 knots/230 mph/370 km/h at the Sikorsky Development Flight Center. Raider, developed by Sikorsky, a Lockheed Martin company, is based on the company’s proven X2 Technology, enabling speeds twice that of conventional helicopters.

Flight testing of the Sikorsky S-97 Raider helicopter is exceeding expectations at the Sikorsky Development Flight Center (Photo courtesy Sikorsky, a Lockheed Martin company)
Flight testing of the Sikorsky S-97 Raider helicopter is exceeding expectations at the Sikorsky Development Flight Center (Photo courtesy Sikorsky, a Lockheed Martin company)

«The Sikorsky S-97 Raider flight test program is exceeding expectations, demonstrating Raider’s revolutionary speed, maneuverability and agility», said Tim Malia, Sikorsky director, Future Vertical Lift Light. «X2 Technology represents a suite of technologies needed for the future fight, enabling the warfighter to engage in high-intensity conflict anytime, anywhere as a member of a complex, multi-domain team».

Sikorsky continues to demonstrate the application of its X2 Technology as the company prepares its proposal for the U.S. Army’s Future Attack Reconnaissance Aircraft (FARA) competition, driving forward the Army’s efforts to revolutionize its aircraft fleet as part of what is known as Future Vertical Lift.

Raider incorporates the latest advances in fly-by-wire flight controls, vehicle management systems and systems integration. The suite of X2 Technologies enables the aircraft to operate at high speeds while maintaining the low-speed handling qualities and maneuverability of conventional single main rotor helicopters.

«It’s exciting to achieve these high speeds with X2 Technology», said Sikorsky experimental test pilot Bill Fell, a retired U.S. Army pilot. «It’s undeniably important for the warfighter to get to the mission fast. And once they get there, X2 Technology provides the critical handling qualities that make the aircraft survivable, lethal and agile. Sikorsky X2 Technology changes the way we fly and fight – we can get there fast, be more effective while on the scene and we can get out fast».

Sikorsky’s X2 Technology at the heart of the Raider helicopter is scalable to a variety of military missions including light assault, light attack, armed reconnaissance, close-air support, combat search and rescue and unmanned applications.

The development of X2 Technology and the Raider program has been funded entirely by significant investments by Sikorsky, Lockheed Martin and industry partners.

Combat Rescue
Helicopter

Sikorsky, a Lockheed Martin company, announced on September 18, 2018 that final assembly of the first HH-60W Combat Rescue Helicopter Weapons System and Operational Flight Trainers is underway, supporting the smooth entry of the aircraft into the U.S. Air Force fleet in 2020.

Sikorsky HH-60W Combat Rescue Helicopter Weapons System, Operational Flight Trainers in Final Assembly
Sikorsky HH-60W Combat Rescue Helicopter Weapons System, Operational Flight Trainers in Final Assembly

Completion of the HH-60W training systems at subcontractor FlightSafety International’s facility in Broken Arrow, Oklahoma, is expected in the first quarter of 2019. The Weapons System Trainer will be based at Kirtland Air Force Base, New Mexico, home of the formal HH-60W training unit. The Operational Flight Trainer will be at Moody Air Force Base, Georgia, site of the first operational unit.

The HH-60W flight trainers will conform to the highest Federal Aviation Administration standards and include the capability to link with other simulators on the Combat Air Forces Distributed Mission Operations (CAF DMO) network. The flight simulators will train the full aircrew, allowing pilots and special mission aviators to train together in the same device while experiencing more complex and realistic training scenarios.

«I am excited to get these trainers in the hands of the U.S. Air Force Rescue Warriors», said Tim Healy, Director, Air Force Programs, Sikorsky. «The combat rescue mission is uniquely challenging in that it requires much of the mission planning to occur while in flight rather than prior to flight. This is due to the time-critical nature of the mission and the reality that the threat, location and condition of isolated personnel to be rescued are not fully known prior to takeoff. This requires that the aircrew become highly skilled at using the enormous networking and information capabilities that reside within the HH-60W, and that takes training and practice. These Weapons Systems and Operational Flight trainers will allow that training at the highest fidelity and realism ever seen».

Sikorsky’s current contract with the U.S. Air Force for the Engineering, Manufacturing and Development (EMD) phase of the program includes delivery of nine HH-60W helicopters as well as six aircrew and maintenance training devices, and instructional courseware designed specifically for the HH-60W aircraft. The Program of Record calls for 112 helicopters to replace the Air Force’s aging H-60G Pave Hawk fleet, which performs critical combat search and rescue and personnel recovery operations for all U.S. military services.

Limited User Testing

Northrop Grumman Corporation has delivered software to the U.S. Army for the UH-60V Black Hawk helicopter to enter Limited User Testing (LUT) – a critical milestone leading into production.

As the supplier of the Integrated Avionics Suite for the UH-60V Black Hawk helicopter, Northrop Grumman has delivered software for the helicopter to enter Limited User Testing – a critical milestone leading into production
As the supplier of the Integrated Avionics Suite for the UH-60V Black Hawk helicopter, Northrop Grumman has delivered software for the helicopter to enter Limited User Testing – a critical milestone leading into production

Under a contract awarded in 2014, Northrop Grumman is partnering with the U.S. Army Prototype Integration Facility and prime contractor Redstone Defense Systems to modernize the Army’s fleet of UH‑60L helicopters through cost-effective cockpit upgrades, replacing older analog gauges with digital electronic instrument displays.

Northrop Grumman is supplying the Integrated Avionics Suite for the upgraded aircraft, designated the UH-60V, which features one of the Army’s most advanced avionics solutions to enable the complex missions of the army aviation warfighter.

Through this latest milestone, Northrop Grumman has provided a digital cockpit software build that includes all the functionality required for LUT, which will evaluate the system’s operational readiness, capabilities and compatibility with the UH-60M Pilot-Vehicle Interface. This important test informs the Milestone C Low Rate Initial Production (LRIP) decision. The UH-60V is scheduled to enter LRIP in 2019.

«This software delivery milestone is an important step forward in our journey to provide cutting-edge capabilities and mission-enabling solutions to warfighters through an affordable, low-risk digital cockpit upgrade», said Ed Griebel, director, land & avionics C4ISR division, Northrop Grumman. «Our mission solution preserves investment in the Black Hawk fleet while modernizing the aircraft to provide warfighters with a decisive advantage».

Northrop Grumman’s scalable, fully integrated mission equipment package enables enhanced pilot situational awareness and mission safety, as well as decreased pilot workload and life cycle cost. The UH-60V’s Pilot-Vehicle Interface (PVI) is nearly identical to the UH‑60M PVI, providing common training and operational employment.

Northrop Grumman’s open architecture approach provides greater flexibility and enables upgrades to be done with or without the original equipment manufacturer’s involvement. In addition to the UH-60V, Northrop Grumman’s scalable and fully integrated architecture is and can be applied to numerous platforms such as the E‑2D, AH-1F/S and other aircraft worldwide. The operators of these aircraft can reduce their logistics footprint by having common avionics in multiple platforms and avoid sustaining large component inventories.

The UH-60V meets the standards for safety-critical software development and is designed to comply with the Federal Aviation Administration and European Aviation Safety Agency’s Global Air Traffic Management requirements, enabling the system to traverse military and civilian airspace worldwide. It is also certifiable and compliant with safety-critical avionics standards such as DO-178C.

The first King

Sikorsky, a Lockheed Martin company, delivered the first CH-53 King Stallion helicopter to the U.S. Marine Corps (USMC) on May 16, 2018. The aircraft is the first of an expected 200 helicopters for the Marine Corps’ fleet.

Sikorsky Begins CH-53 King Stallion Heavy Lift Helicopter Deliveries to the U.S. Marine Corps
Sikorsky Begins CH-53 King Stallion Heavy Lift Helicopter Deliveries to the U.S. Marine Corps

The CH-53K is the new build replacement for the U.S. Marine Corps’ aging CH-53E Super Stallion fleet. The CH-53E first flew in 1974 and entered service with the USMC in 1981.

«Our first delivery of a CH-53K to the Marine Corps marks the start of a new generation of true heavy lift helicopter deliveries by Sikorsky that bring unsurpassed and expanded capability across the modern battlefield to provide tremendous mission flexibility and efficiency in delivering combat power, humanitarian assistance or disaster relief for those in need», said Dan Schultz, Sikorsky President and former CH-53 pilot. «With 18 additional aircraft in various stages of production already, the entire Sikorsky team, in partnership with our suppliers, is looking forward to additional deliveries to delight our customer».

This first CH53K King Stallion heavy lift helicopter will be stationed at Marine Corps Air Station New River in Jacksonville, North Carolina.

There the helicopter enters into the Supportability Test Plan. U.S. Marines will conduct a logistics assessment on the maintenance, sustainment and overall aviation logistics support of the King Stallion. This assessment also will validate maintenance procedures with Marine Corps maintainers conducting hands-on care/upkeep of the aircraft. The Supportability Test Plan will ensure readiness and support on the flightline when CH-53K helicopters enter into service with the USMC.

Sikorsky expects to deliver its second CH-53K King Stallion helicopter to the USMC in early 2019.

The CH-53K King Stallion test program recently completed the following milestones: maximum weight single-point cargo hook sling load of 36,000 pounds/16,329 kilograms; forward flight speed of over 200 knots/230 mph/370 km/h; 60 degrees angle of bank turns; altitude of 18,500 feet/5,639 meters Mean Sea Level (MSL); 12-degree slope landings and takeoffs; external load auto-jettison; and gunfire testing.

«I am very proud of the work accomplished to deliver the most powerful helicopter ever designed into the hands of our Marines», Lieutenant General Steven Rudder, Deputy Commandant for Aviation, said. «And confident in the teamwork and dedication in this program which will carry us to IOC (Initial Operational Capability) next year».

Sikorsky is preparing its manufacturing facility in Stratford, Connecticut, to house CH-53K King Stallion production beginning this summer.

The heavy lift helicopter made its international debut and showcased its maneuverability and advanced fly-by-wire technology during demonstration flights at the recent ILA Berlin Air Show in Berlin, Germany. For the latest video and photos from the air show please visit our Twitter and Facebook channels.

The CH-53K King Stallion is an all new aircraft, using modern intelligent design. The rugged CH-53K King Stallion helicopter is designed to ensure reliability, low maintenance, high availability and enhanced survivability in the most austere and remote forward operating bases.

 

General Characteristics

Number of Engines 3
Engine Type T408-GE-400
T408 Engine 7,500 shp/5,595 kw
Maximum Gross Weight (Internal Load) 74,000 lbs/33,566 kg
Maximum Gross Weight (External Load) 88,000 lbs/39,916 kg
Cruise Speed 141 knots/162 mph/261 km/h
Range 460 NM/530 miles/852 km
AEO* Service Ceiling 14,380 feet/4,383 m
HIGE** Ceiling (MAGW) 13,630 feet/4,155 m
HOGE*** Ceiling (MAGW) 10,080 feet/3,073 m
Cabin Length 30 feet/9.1 m
Cabin Width 9 feet/2.7 m
Cabin Height 6.5 feet/2.0 m
Cabin Area 264.47 feet2/24.57 m2
Cabin Volume 1,735.36 feet3/49.14 m3

* All Engines Operating

** Hover Ceiling In Ground Effect

*** Hover Ceiling Out of Ground Effect