Tag Archives: Raytheon

Tactical Boost Glide

Raytheon Company won a $63.3 million DARPA contract to further develop the Tactical Boost Glide hypersonic weapons program. The joint DARPA and U.S. Air Force effort includes a critical design review, a key step in fielding the technology.

Raytheon wins $63.3 million DARPA contract for hypersonic weapons work
Raytheon wins $63.3 million DARPA contract for hypersonic weapons work

«This latest contract adds to Raytheon’s growing number of hypersonic weapons programs», said Doctor Thomas Bussing, Raytheon Advanced Missile Systems vice president. «Raytheon is working closely with our customers to quickly field these advanced weapon systems and provide our nation’s military with the tools they need to stay ahead of the escalating threat».

Hypersonic weapons will enable the U.S. military to engage from longer ranges with shorter response times and enhanced effectiveness compared to current weapon systems.

Systems that operate at hypersonic speeds – five times the speed of sound (Mach 5) and beyond – offer the potential for military operations from longer ranges with shorter response times and enhanced effectiveness compared to current military systems. Such systems could provide significant payoff for future U.S. offensive strike operations, particularly as adversaries’ capabilities advance.

The Tactical Boost Glide (TBG) program is a joint DARPA/U.S. Air Force (USAF) effort that aims to develop and demonstrate technologies to enable future air-launched, tactical-range hypersonic boost glide systems. In a boost glide system, a rocket accelerates its payload to high speeds. The payload then separates from the rocket and glides unpowered to its destination.

The TBG program plans to focus on three primary objectives:

  • Vehicle Feasibility – Vehicle concepts possessing the required aerodynamic and aerothermal performance, controllability and robustness for a wide operational envelope;
  • Effectiveness – System attributes and subsystems required to be effective in relevant operational environments;
  • Affordability – Approaches to reducing cost and increasing value for both the demonstration system and future operational systems.

TBG is a two-phase effort that plans to include ground and flight testing to mature critical technologies, and aims to demonstrate the system performance achievable through the integration of those technologies. The program is using a disciplined systems engineering approach to define demonstration system objectives and identify enabling technologies needed for future systems. The TBG program is exploiting the technical knowledge and lessons derived from development and flight testing of previous boost glide systems, including the Hypersonic Technology Vehicle 2 (HTV-2).

Wind tunnel tests

Raytheon Company successfully completed more than 1,700 rigorous wind tunnel tests on the newest, extended-range variant of the combat-proven Advanced Medium-Range Air-to-Air Missile (AMRAAM). Testing is a major step in the missile’s qualification for integration with the National Advanced Surface-to-Air Missile System (NASAMS).

Raytheon engineers recently completed wind tunnel testing on a new, extended-range variant of the AMRAAM air-to-air missile. Testing is a key step in qualifying the missile for the NASAMS launch system
Raytheon engineers recently completed wind tunnel testing on a new, extended-range variant of the AMRAAM air-to-air missile. Testing is a key step in qualifying the missile for the NASAMS launch system

The AMRAAM-Extended Range (AMRAAM-ER) missile is a ground-launched weapon that will intercept targets at longer distances and higher altitudes. The missile’s bigger rocket motor and smarter flight control algorithms give it a boost in range.

«During these tests, we put AMRAAM-ER through a full range of potential flight conditions to validate the missile’s future performance on the battlefield», said Kim Ernzen, Raytheon Air Warfare Systems vice president. «Raytheon is developing this missile to enhance ground-based air defense for our customers worldwide».

Raytheon engineers will now analyze data from the wind tunnel test runs to verify and update the AMRAAM-ER missile’s aerodynamic models to maximize its performance.

Raytheon AMRAAM-ER Missile Goes Long and Flies High

 

About NASAMS

Manufactured by Raytheon and Norway’s Kongsberg Defence & Aerospace, NASAMS is the most widely used short- and medium-range air defense system in NATO. NASAMS provides a high-firepower, networked and distributed state-of-the-art air defense system that can quickly identify, engage and destroy current and evolving threat aircraft, unmanned aerial vehicles and emerging cruise missile threats.

 

About Raytheon

Raytheon Company, with 2018 sales of $27 billion and 67,000 employees, is a technology and innovation leader specializing in defense, civil government and cybersecurity solutions. With a history of innovation spanning 97 years, Raytheon provides state-of-the-art electronics, mission systems integration, Command, Control, Communications, Computers, Cyber and Intelligence (C5I) products and services, sensing, effects and mission support for customers in more than 80 countries.

Ballistic Missile Test

Raytheon Company’s AN/SPY-6(V)1 air and missile defense radar completed its latest test, exceeding all performance requirements. In the most stressing test to date, the radar searched for, detected, and maintained track on the target as predicted.

Raytheon's SPY-6 aces most complex test yet
Raytheon’s SPY-6 aces most complex test yet

«Now in production, AN/SPY-6(V)1 continues to stack up test successes and milestones, proving the maturity of its design and its exceptional capabilities», said U.S. Navy Captain Seiko Okano, Major Program Manager for Above Water Sensors, Program Executive Office Integrated Warfare Systems. «The radar is on track to deliver game-changing integrated air and missile defense technology to the surface fleet through its ability to simultaneously address air and missile defense targets. This will provide an unprecedented level of comprehensive protection to naval forces and assets».

Since its inception in January 2014, the program has met 20 of 20 milestones, ahead of or on schedule. The radar has progressed well through the U.S. Navy’s dedicated AN/SPY-6(V)1 testing program. Currently in production, the radar is on schedule for delivery to the Navy’s first modernized DDG-51 Flight III, the future USS Jack H Lucas (DDG-125), in 2020.

Throughout testing at the Navy’s Pacific Missile Range Facility, Kauai, Hawaii, AN/SPY-6(V)1 has consistently proved its multi-mission capability to extend the battlespace and safeguard the fleet from multiple, simultaneous threats. The radar has now demonstrated its performance against an array of singular and multiple targets of increasing complexity. This includes integrated air and missile defense targets, as well as targets of opportunity, satellites and aircraft.

AN/SPY-6(V)1 provides greater range, increased accuracy, greater resistance to environmental and man-made electronic clutter, higher reliability and sustainability than currently deployed radars. The radar’s demonstrated sensitivity – significantly more than current radars in the U.S. Navy – provides greater coverage for early and accurate detection.

Swiss army knife

The U.S. Army awarded Raytheon Company a $191 million contract for Ku-band radio frequency radars. KuRFS, an advanced electronically scanned array system, fills an immediate U.S. Army operational need for a counter-unmanned aerial vehicle radar.

Raytheon's KuRFS radar is a multi-mission radar providing detection of rocket, artillery, mortar and UAS threats by providing a critical sense and warn capability
Raytheon’s KuRFS radar is a multi-mission radar providing detection of rocket, artillery, mortar and UAS threats by providing a critical sense and warn capability

Already deployed, KuRFS delivers precision fire control as well as «sense and warn» capability for multiple missions including detection of rocket, artillery, mortar and swarming Unmanned Aircraft Systems (UAS) threats.

«Seeing threats – like swarming drones – as soon as possible on the battlefield is essential to protecting critical assets and saving soldiers’ lives», said Andrew Hajek, senior director of tactical radars at Raytheon Integrated Defense Systems. «KuRFS makes this possible by delivering a unique combination 360-degree situational awareness, precision and mobility».

KuRFS enables defense against multiple threat types through integration with the Land-Based Phalanx Weapon System (LPWS), .50-caliber/12.7-mm guns and 30-mm cannons. The radar also supports high-energy laser and the Coyote weapon system in both a ground mounted or vehicle mounted configuration.

Raytheon’ KuRFS is able to quickly address the urgent needs of the Army through a model of rapid-turn development and deployment. This reduces time to fielding, while providing enhanced flexibility to adapt to a quickly-changing threat environment in the drone space.

Shaped Trajectory

Raytheon Company and the U.S. Army completed development of a revolutionary capability for cannon artillery by upgrading the combat-proven Excalibur precision-guided projectile. The Excalibur Shaped Trajectory, or EST, variant will enable soldiers to eliminate targets in hard-to-reach locations by selecting the projectile’s terminal or final phase attack angle.

Raytheon, US Army upgrade Excalibur projectile
Raytheon, US Army upgrade Excalibur projectile

With the Excalibur EST munition, soldiers can attack a bunker positioned on the opposite side of a mountain slope, target a multi-story building from the side rather than the top or defeat enemy assets positioned under highway overpasses.

«This new version of Excalibur represents a major leap forward in capability for this already advanced guided projectile», said Kim Ernzen, Raytheon Land Warfare Systems vice president. «With these enhancements, enemy forces can no longer hide from the long arm of Excalibur».

The EST variant was successfully demonstrated in August 2018 at the U.S. Army Yuma Proving Ground, Arizona, and is now being deployed to U.S. forces. This capability will be made available to allies approved to procure the Excalibur projectile through foreign military sales.

With more than 1,400 rounds fired in combat, Excalibur is the revolutionary, extended-range, precision munition for the U.S. and international artillery forces. The weapon is fully qualified in multiple systems, including the M777, M109 series, M198, the Archer and PzH2000. It’s also been tested in the AS90, K9 and G6 howitzers, with plans to integrate it with other mobile artillery systems.

In addition to the Excalibur EST variant, Raytheon has developed Excalibur S, a laser-guided version of the projectile. The company has also developed a 5-inch sea-based variant, the Excalibur N5 munition. It’s expected to more than double the maximum range of conventional 5-inch munitions and will provide the same accuracy as the land-based version.

Overmatch Minute: Excalibur

DeepStrike

Raytheon Company completed a significant milestone in the development of its long-range DeepStrike missile to meet the U.S. Army’s Precision Strike Missile, or PrSM, requirement. The company has integrated its new launch pod missile container into the Army’s M142 HIMARS and M270 MLRS launchers.

Raytheon accelerates DeepStrike missile development
Raytheon accelerates DeepStrike missile development

The launch pod missile container integration took place at Fort Sill, Oklahoma, in July. During the integration, Raytheon technicians worked side-by-side with soldiers and Marines on operational launchers to ensure proper fit and functionality.

«Raytheon is responding to the U.S. Army’s desire to accelerate its PrSM program», said Doctor Thomas Bussing, Raytheon Advanced Missile Systems vice president. «We are on a fast track to deliver an advanced surface-to-surface missile that exceeds the Army’s requirements by doubling the firepower while reducing the cost».

Featuring an innovative, two-in-the-pod design and an advanced guidance system, Raytheon’s new long-range precision strike missile will fly farther, faster and pack more punch than the current weapon, which is approaching the end of its service life.

As the next-generation surface-to-surface weapon for the Army, the DeepStrike missile will defeat fixed land targets 60-499 kilometers away, improve lethality and responsiveness compared to current systems, and restore the Army’s capability to overmatch the threat.

Double the combat power with Raytheon’s DeepStrike missile system

Next-Generation

Raytheon Company and Rheinmetall Defence have joined forces to meet the U.S. Army’s requirement for the Next-Generation Combat Vehicle-Optionally Manned Fighting Vehicle (NGCV) program. The global industry team will offer the new Lynx Infantry Fighting Vehicle (IFV) paired with Raytheon weapons, sensors and system integration expertise to provide the Army with an advanced, modular, survivable and lethal solution with unmatched growth potential.

The Lynx Infantry Fighting Vehicle will be paired with Raytheon weapons, sensors and system integration expertise to provide the U.S. Army with an advanced, modular and combat-ready solution (Photo: Rheinmetall Defence)
The Lynx Infantry Fighting Vehicle will be paired with Raytheon weapons, sensors and system integration expertise to provide the U.S. Army with an advanced, modular and combat-ready solution (Photo: Rheinmetall Defence)

Scheduled for fielding in 2026, the Next-Generation Combat Vehicle will be optimized for urban combat and rural terrain. The Army has named the NGCV as a top modernization priority supported under the service’s new Futures Command structure.

«We fully understand the Army’s need to quickly modernize its aging family of combat vehicles. Our team offers a fresh, innovative approach, not business as usual», said Doctor Taylor W. Lawrence, Raytheon Missile Systems president. «Raytheon will equip the new Lynx with the world’s most advanced technology to deliver a modern fighting vehicle that will keep U.S. soldiers far ahead of battlefield threats for decades to come».

Raytheon will equip the new Lynx with the world’s most advanced technology to deliver a modern fighting vehicle that will keep U.S. soldiers far ahead of battlefield threats for decades to come (Photo: Rheinmetall Defence)
Raytheon will equip the new Lynx with the world’s most advanced technology to deliver a modern fighting vehicle that will keep U.S. soldiers far ahead of battlefield threats for decades to come (Photo: Rheinmetall Defence)

Raytheon technology earmarked for the Lynx could include advanced variants of Raytheon weapons, next-generation thermal sights, the Coyote unmanned aircraft system and the company’s Active Protection System. Like those systems, the vehicle will be made in America.

Rheinmetall unveiled the latest version of the Lynx Infantry Fighting Vehicle earlier this year. The new, tracked, armored vehicle is designed to address the critical challenges of the future battlefield, with a focus on growth capacity and lower life-cycle costs.

The Lynx Infantry Fighting Vehicle is the ultimate future-proof platform, blending unsurpassed protection with massive firepower and unbeatable mobility in a uniquely modular concept (Photo: Rheinmetall Defence)
The Lynx Infantry Fighting Vehicle is the ultimate future-proof platform, blending unsurpassed protection with massive firepower and unbeatable mobility in a uniquely modular concept (Photo: Rheinmetall Defence)

The Lynx IFV will provide the Army a next-generation lethal, powerful, lifesaving and adaptable fighting vehicle that represents true leap ahead capability compared to legacy vehicles. The Lynx can also be adapted to enable optional manning features, such as remote operation of the vehicle and Lance turret.

«Rheinmetall and Raytheon have worked together successfully for many years on numerous programs», said Ben Hudson, global head of Rheinmetall’s Vehicle Systems division. «We are once again combining the best of German and American engineering to provide the U.S. Army with a step change in capability, giving soldiers the overmatch advantage, they expect and deserve. Production of the Lynx in the U.S. will enable additional development and sustainment of the world-class American defense industrial base».

The NGCV is expected to replace the Bradley fighting vehicle.

Introducing the Lynx Infantry Fighting Vehicle

Flight Test

The Japan Maritime Self-Defense Force (JMSDF) and the United States Missile Defense Agency (MDA) completed a successful intercept flight test in cooperation with the U.S. Navy off the coast of Kauai in Hawaii. A Raytheon Company Standard Missile 3 (SM-3) Block IB missile intercepted a ballistic missile target, marking the first time Japan has tested the sophisticated interceptor as announced by MDA.

The Japan Maritime Self-Defense Force destroyer Atago launched an SM-3 Block IB air-defense missile for the first time during the latest Aegis Ballistic Missile Defense (BMD) flight test on September 12 (MDA photo)
The Japan Maritime Self-Defense Force destroyer Atago launched an SM-3 Block IB air-defense missile for the first time during the latest Aegis Ballistic Missile Defense (BMD) flight test on September 12 (MDA photo)

The target missile was launched from the Pacific Missile Range Facility in Hawaii, and the interceptor was launched from the Japanese ship JS Atago (DDG-177), verifying the newest ballistic missile defense engagement capability of the upgraded destroyer. The flight test mission is a significant milestone in missile defense cooperation between Japan and the U.S. Japan currently employs the SM-3 Block IA interceptor, but the IB variant’s improved two-color seeker and upgraded throttling divert and attitude control system enables engagements with a larger set of threats.

«The Standard Missile-3 family consistently demonstrates capability against sophisticated threats, both on land and at sea», said Doctor Taylor W. Lawrence, Raytheon Missile Systems president. «This test underlines the importance of allied ballistic missile defense interoperability and the powerful results we generate when we work together with our allies».

The SM-3 is produced at Raytheon’s Space Factory in Tucson, Arizona, and the company’s integration facility in Huntsville, Alabama.

Phase I Complete

The Tactical Airlift Program Office (PMA-207) Commercial Modifications and Range Support (CMARS) Team accepted delivery of their newest commercial-derivative aircraft platform, July 30.

The U.S. Navy accepts the Gulfstream G550 with structural modifications on July 30. The aircraft is unique to the U.S. Navy and after further modifications will replace the aging range support aircraft in Point Mugu, California (U.S. Navy photo)
The U.S. Navy accepts the Gulfstream G550 with structural modifications on July 30. The aircraft is unique to the U.S. Navy and after further modifications will replace the aging range support aircraft in Point Mugu, California (U.S. Navy photo)

The Gulfstream G550, with structural modifications, was further modified to house specialized telemetry equipment, unique to the U.S. Navy’s application. The G550 is slated to serve as the replacement for one of the aging P-3 range support aircraft operated out of Naval Air Warfare Center Weapons Division (NAWCWD) in Point Mugu, California. The aircraft’s Airborne Early Warning (AEW) structural modifications allow room for installation of a telemetry system and additional equipment to support future missions.

During a ribbon cutting ceremony attended by Gulfstream executives and PMA-207 leadership, Program Manager Captain Steven Nassau spoke to the complexity of this acquisition.

«Just getting to this point has been a process», said Nassau. «The team had to coordinate with AIR-5.0 Test and Evaluation leadership, AIR-2.0 Contracts, AIR-5.2 Ranges and AIR-5.1 test squadrons for mission equipment and airframe expertise, as well as AIR-6.0 Logistics for sustainment to keep this acquisition on schedule. Delivering the aircraft under cost and on schedule is a major milestone for such a complicated project».

PMA-207 CMARS Integrated Program Team Lead Chris Mullaney said credit should not only be given to those currently working on this project, but to those who have in the past as well.

«One of the original leads for this project was Jaimie Grubb. She, along with her Range Support Aircraft Team, had impressive foresight and solid planning at the beginning of this endeavor that paved the way for the successes we are seeing here today – delivery of a high-quality product on cost and on schedule», said Mullaney.

From here, the Phase II Integrator, Raytheon, will receive the G550 aircraft as Government furnished property and will develop, procure and integrate systems that will give the aircraft a multi-role capability in telemetry data collection, range safety and surveillance and communications relay. This modern, phased-array telemetry system will have the capability to support major programs in complex, robust and dynamic test environments for many years.

The aircraft is projected to be delivered for Initial Operating Capability (IOC) by August 2021.

Wireless Transmission

Northrop Grumman Corporation and the Defense Advanced Research Projects Agency (DARPA) have set a new standard for wireless transmission by operating a data link at 100 gigabits per second (Gbps) over a distance of 20 kilometers/12.4 miles in a city environment.

100G hardware will be flown aboard the Proteus demonstration aircraft developed by Northrop Grumman subsidiary Scaled Composites
100G hardware will be flown aboard the Proteus demonstration aircraft developed by Northrop Grumman subsidiary Scaled Composites

The two-way data link, which featured active pointing and tracking, was demonstrated January 19, 2018 in Los Angeles.

The blazing data rate is fast enough to download a 50 Gigabyte blue ray video in four seconds. The demonstration marked the successful completion of Northrop Grumman’s Phase 2 contract for DARPA’s 100 Gbps (100G) RF Backbone program.

The 100G system is capable of rate adaptation on a frame by frame basis from 9 Gbps to 102 Gbps to maximize data rate throughout dynamic channel variations. Extensive link characterization demonstrated short-term error-free performance from 9 to 91 Gbps, and a maximum data rate of 102 Gbps with 1 erroneous bit received per ten thousand bits transmitted.

The successful data link results from the integration of several key technologies. The link operates at millimeter wave frequencies (in this case, 71-76 gigahertz and 81-86 gigahertz) with 5 gigahertz of bandwidth, or data carrying capacity, and uses a bandwidth efficient signal modulation technique to transmit 25 Gbps data streams on each 5 gigahertz channel. To double the rate within the fixed bandwidth, the data link transmits dual orthogonally polarized signals from each antenna. Additionally, the link transmits from two antennas simultaneously (spatial multiplexing) and uses Multiple-Input-Multiple-Output (MIMO) signal processing techniques to separate the signals at two receiving antennas, thus again doubling the data rate within the fixed bandwidth.

According to Louis Christen, director, research and technology, Northrop Grumman, «This dramatic improvement in data transmission performance could significantly increase the volume of airborne sensor data that can be gathered and reduce the time needed to exploit sensor data».

«Next generation sensors such as hyperspectral imagers typically collect data faster, and in larger quantity than most air-to-ground data links can comfortably transmit», said Christen. «Without such a high data rate link data would need to be reviewed and analyzed after the aircraft lands».

By contrast, a 100G data link could transmit high-rate data directly from the aircraft to commanders on the ground in near real time, allowing them to respond more quickly to dynamic operations.

The successful 100G ground demonstration sets the stage for the flight test phase of the 100G RF Backbone program. This next phase, which started in June, demonstrates the 100G air-to-ground link up to 100 Gbps over a 100 km/62.1 miles range and extended ranges with lower data rates. The 100G hardware will be flown aboard the Proteus demonstration aircraft developed by Northrop Grumman subsidiary Scaled Composites.

Northrop Grumman’s 100G industry team includes Raytheon, which developed the millimeter wave antennas and related RF electronics and Silvus Technologies, which provides the key spatial multiplexing and MIMO signal processing technologies.

Northrop Grumman and DARPA 100 gigabits per second link demonstrated over 20 kilometer city environment on January 19, 2018 in Los Angeles
Northrop Grumman and DARPA 100 gigabits per second link demonstrated over 20 kilometer city environment on January 19, 2018 in Los Angeles