Tag Archives: Raytheon Missiles & Defense

Hypersonic Missile

Raytheon Missiles & Defense, a Raytheon Technologies business, in partnership with Northrop Grumman, has been selected to develop the Hypersonic Attack Cruise Missile (HACM) for the U.S. Air Force (USAF). HACM is a first-of-its-kind weapon developed in conjunction with the Southern Cross Integrated Flight Research Experiment (SCIFiRE), a U.S. and Australia project arrangement.

Hypersonic Attack Cruise Missile (HACM)
U.S. Air Force selects Raytheon Missiles & Defense, Northrop Grumman to deliver first hypersonic air-breathing missile

Under this contract, the Raytheon Missiles & Defense and Northrop Grumman team will deliver operationally ready missiles to the USAF.

«Raytheon Missiles & Defense continues to be at the forefront of hypersonic weapon and air-breathing technology development», said Wes Kremer, president of Raytheon Missiles & Defense. «With advanced threats emerging around the globe, the Hypersonic Attack Cruise Missile will provide our warfighters a much-needed capability».

The Hypersonic Attack Cruise Missile is an air-breathing, scramjet powered munition. Scramjet engines use high vehicle speed to forcibly compress incoming air before combustion, which enables sustained flight at hypersonic speeds – Mach 5 or greater. By traveling at these speeds, hypersonic weapons, like HACM, are able to reach their targets more quickly than similar traditional missiles, allowing them to potentially evade defensive systems.

«The Hypersonic Attack Cruise Missile creates a new class of strategically important weapons for the U.S. military», said Mary Petryszyn, corporate vice president and president, Northrop Grumman Defense Systems. «Our scramjet propulsion technology is ushering in a new era for faster, more survivable and highly capable weapons».

Raytheon Technologies and Northrop Grumman have been working together since 2019 to develop, produce and integrate Northrop Grumman’s scramjet engines onto Raytheon’s air-breathing hypersonic weapons. Their combined efforts enable both companies to produce air-breathing hypersonic weapons, the next generation of tactical missile systems.

Glide Phase Interceptor

Raytheon Missiles & Defense, a Raytheon Technologies business, successfully completed the Systems Requirements Review – Prototype (SRR-P) for the Glide Phase Interceptor (GPI). GPI is designed to intercept hypersonic weapons in the glide phase of flight, providing the U.S. and allies with a regional layer of defense against hypersonic missile threats.

Glide Phase Interceptor (GPI)
Raytheon Missiles & Defense reaches key milestone in Glide Phase Interceptor development

«The Raytheon Missiles & Defense GPI concept employs a low-risk solution that uses proven Standard Missile technology already deployed on Aegis ships, while advancing critical technologies needed in the hypersonic environment», said Tay Fitzgerald, president of Strategic Missile Defense at Raytheon Missiles & Defense. «We have a firm understanding of the requirements, and we’re ready to continue GPI development. This is a major step toward delivering this capability to the warfighter».

The SRR-P determination showcases RMD’s experience with ship launched missiles systems and their ability to mature critical hypersonic technologies that ultimately help meet fleet operational requirements against existing and future threats.

With SRR-P complete, Raytheon Missiles & Defense moves on to preliminary design.

First live-fire test

The U.S. Air Force and Raytheon Missiles & Defense, a Raytheon Technologies business, successfully conducted the first Advanced Medium-Range Air-to-Air Missile (AMRAAM) F3R, an AIM-120D3 missile, live-fire test against a target. The test used production missile hardware developed under the AMRAAM Form, Fit, Function Refresh program, which updates both the missile’s hardware and software.

AMRAAM F3R
An F-15E Strike Eagle equipped with an AIM-120 D3 taxies at Eglin Air Force Base, Florida for the first live-fire test of an AMRAAM F3R missile against a target (Photo: First Lieutenant Lindsey Heflin, U.S. Air Force)

The AIM-120D3 combines System Improvement Program 3F software updates with F3R hardware, putting tremendous capability against advanced threats into the warfighter’s arsenal.

During the June 30, 2022 test, the missile was fired from an F-15E Strike Eagle and guided toward an aerial target at long range. The primary objective was to prove out sub-system integration to support all phases of guided flight. The test also demonstrated full system integration and performance.

«Our warfighters deserve to have the most advanced technology in the air when they need it», said Paul Ferraro, president of Air Power at Raytheon Missiles & Defense. «F3R upgrades multiple circuit cards to address obsolescence, enhances the weapon’s capabilities, and extends the production line for the U.S. Air Force, the U.S. Navy, and our Allied partners».

The live fire was the first of five planned missile shots in an integrated test series for the AIM-120D3 to qualify the new configuration for production and fielding. These tests incorporate various scenarios and targets to prove out the weapon’s advanced functionality and capabilities. An additional live fire for the Foreign Military Sales AIM-120C8 variant will occur in the near future. These live-fire tests are the culmination of captive flight tests, workup flights, and simulations.

Under the F3R program, engineers used model-based systems engineering initiatives and other digital technologies to upgrade multiple circuit cards and hardware into the guidance section of the missile and to re-host legacy software in the AIM-120D3 and AIM-120C8 AMRAAMs. Over the past year, F3R software was merged with SIP 3F advanced software capabilities to accelerate the fielding of this combined upgrade to the warfighter.

SPY-6 radar

Raytheon Missiles & Defense, a Raytheon Technologies business, has delivered SPY-6 radar arrays to the future U.S.S. John F. Kennedy (CVN-79), the first aircraft carrier to receive the advanced radar.

SPY-6(V)3
When three SPY-6(V)3 radar arrays (left) are combined, they provide 360 degree coverage for aircraft carriers, like the future-U.S.S. John F. Kennedy (CVN-79)

This delivery is the first of three for the aircraft carrier. Together, the three fixed-face radar arrays will form a SPY-6(V)3, also known as the Enterprise Air Surveillance Radar, which provides 360-degree coverage for the ship. In addition to the proven multi-mission capabilities across the SPY-6 family, SPY-6(V)3 has unique features that meet the needs of an aircraft carrier, including weather mapping and air traffic control functionality.

«This is the first aircraft carrier that will be equipped with SPY-6 radars, the leading naval radar system in the world», said Kim Ernzen, president of Naval Power at Raytheon Missiles & Defense. «With the recent contract, SPY-6 will provide premier detection and coverage for more than 40 ships in the U.S. Navy throughout the next decade».

The SPY-6 family of radars provides integrated air and missile defense for seven classes of ships. Its radar modular assemblies, known as RMAs, allow SPY-6 to be scalable and modular to support production for the U.S. and partner nations across all variants.

Missiles & Defense

Raytheon Missiles & Defense, a Raytheon Technologies business, is awarded an $867 million Missile Defense Agency contract to deliver SM-3 Block IIAs to the United States and partners.

SM-3 Block IIA
Missile Defense Agency awards Raytheon Missiles & Defense $867 million for SM-3 Block IIA

«The SM-3 Block IIA interceptor was developed in partnership with Japan, and it features a larger rocket motor and kinetic warhead that allow it to defend broader areas from long-range ballistic missile threats», said Tay Fitzgerald, president of Strategic Missile Defense at Raytheon Missiles & Defense. «Our strong cooperation with Japanese industry was essential to the development of this next-generation solution that can defeat complex threats around the world from sea and land».

The SM-3 Block IIA interceptor is a defensive weapon the U.S. Navy uses to destroy short- to intermediate-range ballistic missiles. The interceptor uses sheer force, rather than an explosive warhead, to destroy targets in space. Its «kill vehicle» hits threats with the force of a 10-ton truck traveling 600 mph/966 km/h. This technique, referred to as «hit-to-kill», has been likened to intercepting a bullet with another bullet.

The SM-3 Block IIA interceptor’s kinetic warhead has been enhanced, improving the search, discrimination, acquisition and tracking functions, to address advanced and emerging threats. The missile intercepted an advanced ballistic missile threat in its first live target test in early 2017.

The SM-3 interceptor is a critical piece of the Phased Adaptive Approach for missile defense in Europe. The interceptor is being carried by U.S. Navy ships deployed off Europe’s coast and is now operational at a land-based site in Romania, further enhancing Europe’s protection.

GhostEye Medium‐Range

Right now, that’s especially true of the medium‐range mission space, which has seen a proliferation of adversarial cruise missiles, drones, fixed‐wing and rotary wing aircraft.

GhostEye MR
GhostEye MR: a new radar for medium‐range air defense

«Today’s battlefield moves at a very rapid pace, and it’s riddled with a large portfolio of threats», said Joe DeAntona, a retired U.S. Army colonel who is now vice president for Land Warfare and Air Defense requirements and capabilities at Raytheon Missiles & Defense. «Informed decisions must be made in seconds – not minutes or hours».

Modern missile defense is about more than speed, said DeAntona, who was an air and missile defender for more than 30 years. He added that militaries also require radars that see in 360 degrees and can search, track, discriminate and cue interceptors against multiple types of threats.

 

Integrates with a proven system

Raytheon Missiles & Defense, or RMD, is offering GhostEye MR radar for integration with the National Advanced Surface-to-Air Missile System, or NASAMS.

This medium‐range air defense solution, made in partnership with Kongsberg Defence & Aerospace, has been operational for more than three decades and is currently used by the U.S. and 11 allied nations. The widespread adoption of NASAMS «indicates the highest level of confidence by a global customer base», DeAntona said.

GhostEye MR «integrates with NASAMS and absolutely takes that system to the next level», said Lindsay Viana, director of ground‐based air defense on RMD’s Requirements and Capabilities team.

«This radar expands the range and altitude that the proven NASAMS defends, dramatically increasing overall effectiveness of the air defense capability». Viana said.

As a component of NASAMS, the sensor maximizes the range of that system’s effectors – including RMD’s Advanced Medium Range Air-to-Air Missile Extended Range variant, or AMRAAM‐ER – improving accuracy and performance.

In particular, GhostEye MR’s combination of two key technologies – Active Electronically Scanned Array, or AESA, and military‐grade Gallium Nitride, or GaN – give the sensor a distinct advantage.

«With the addition of GhostEye MR, we extend battlespace coverage to the full kinematic envelope, or reachable area, of the Advanced Medium-Range Air-to-Air Missile Extended Range (AMRAAM‐ER) effector», Viana said.

 

Leveraging LTAMDS commonality

As the latest product in RMD’s GhostEye family of radars, the medium‐range sensor leverages commonality with the Lower Tier Air and Missile Defense Sensor, or LTAMDS, technology that the company is making for the U.S. Army.

«The architecture of our GhostEye family of radars is scalable and modular, enabling a wide range of missions», DeAntona said, adding that «these advancements are now being applied to the GhostEye MR mission set. It’s all logistically streamlined, cost‐effective and easy to integrate».

Raytheon Missiles & Defense adds and extends capabilities through secure software upgrades via «software‐defined aperture» digital technology – similar to that used in updating smartphones, though far more sophisticated. And, there’s no need to take the radar out of the field for these upgrades.

 

Adaptability and interoperability

As sophisticated threats evolve, so too does NASAMS with GhostEye MR. The system’s open architecture allows technology adaptations and updates that empower it to counter adversaries in the ever‐expanding medium range.

Another advantage is its interoperability – the capability to communicate with other systems – for strengthening strategic agility and flexibility.

«That is crucial, and NASAMS has it», said DeAntona. «NASAMS meets all NATO requirements for interoperability. It can communicate with other weapons systems on the NATO network – doing so in real time».

Meanwhile, GhostEye MR is on an accelerated path toward integration in NASAMS. For instance, it is already approved to be part of that system’s fire direction‐and‐control loop. Raytheon Missiles & Defense employed a comprehensive digital design environment spanning the radar’s physical and functional characteristics as well as modeling and simulation to assess its effective performance in a variety of mission scenarios.

The sensor is currently undergoing open‐air testing and multi‐mission demonstrations. The data collected through these events is being used to enhance the fidelity of the digital design models.

«When GhostEye MR searches for something», DeAntona said, «it does so with such fidelity, such accuracy, that it can provide the effector the real time information it needs to take action».

The latest addition to the GhostEye MR family of radars made by Raytheon Missiles & Defense will counter escalating medium-range threats and fortify layered air and missile defense

Stinger missile production

Raytheon Missiles & Defense, a Raytheon Technologies business, was awarded a $624 million U.S. Army contract to produce 1,300 Stinger missiles. The contract includes provisions for engineering support, as well as the test equipment and support needed to address obsolescence, modernize key components, and accelerate production.

Stinger
The Stinger missile’s seeker and guidance system enables the weapon to acquire, track and engage a target with one shot (Photo: U.S. Army)

«We’re aligned with the U.S. Army on a plan that ensures we fulfill our current foreign military sale order, while replenishing Stingers provided to Ukraine and accelerating production», said Wes Kremer, president of Raytheon Missiles & Defense. «The funding will be used to enhance Stinger’s producibility in an effort to meet the urgent need for replenishment».

The combat-proven Stinger missile is a lightweight, self-contained air defense system that can be rapidly deployed by ground troops. Its supersonic speed, agility and highly accurate guidance and control system give the weapon an operational edge against cruise missiles and all classes of aircraft.

The contract is being funded from the Ukraine Supplemental, which contains emergency funding to support Ukrainian defense forces. Raytheon Missiles & Defense continues to work closely with the U.S. Army and its supplier partners to rapidly support the growing demand for Stinger.

Missile Defense Sensor

The first Lower Tier Air and Missile Defense Sensor (LTAMDS), built by Raytheon Missiles & Defense, a Raytheon Technologies business, arrived at the U.S. Army’s White Sands Missile Range on April 11th. The radar is the newest air and missile defense sensor for the U.S. Army, providing significantly more capacity and capability against the wide range of advancing threats facing air defenders around the world.

LTAMDS
Lower Tier Air and Missile Defense Sensor (LTAMDS) arrives at White Sands Missile Range

This is the first of six radars planned for delivery to the Army in 2022 and marks the beginning of a series of extensive tests to prove LTAMDS performance and functionality in an operational environment.

«Together with the Army, we set out to build a radar that could detect and defend against complex and evolving threats while reducing the workload on operators – and we’ve done it with LTAMDS», said Tom Laliberty, president of RMD’s Land Warfare & Air Defense business unit. «LTAMDS provides dramatically more performance against the range of threats, from manned and unmanned aircraft to cruise missiles and ballistic missiles. Air defense forces around the world are taking notice of LTAMDS, with over a dozen countries showing formal interest in acquiring the radar».

LTAMDS is a 360-degree, Active Electronically Scanned Array radar powered by RMD-manufactured Gallium Nitride, a substance that strengthens the radar’s signal, enhances its sensitivity, and increases its reliability. LTAMDS is designed to operate as a sensor in the U.S. Army’s Integrated Air and Missile Defense Battle Command System.

LTAMDS, designed specifically for the U.S. Army’s lower tier mission, is the first sensor in a family of radars Raytheon is calling GhostEye. These sensors can detect otherwise unseen threats at greater distances, higher velocities, and from any direction. Leveraging the advancements of GaN technology and commonality with LTAMDS, Raytheon has separately developed GhostEye MR, a medium-range battlefield radar.

SPY-6 radars

Raytheon Missiles & Defense (RMD), a Raytheon Technologies business, was awarded a $651 million, with options totaling $2.5 billion, hardware, production and sustainment contract for full-rate production of the AN/SPY-6(V) Family of Radars. The contract, with options, totals $3.2 billion and five years of radar production to equip up to 31 U.S. Navy ships with SPY-6 radars.

SPY-6(V)1
Raytheon Missiles & Defense awarded $651 million to produce SPY-6 radars for next-gen U.S. Navy ships

Under the contract, RMD will produce solid state, fixed-face and rotating SPY-6 variants that will deliver unprecedented integrated air and missile defense capabilities for seven types of U.S. Navy ships over the next 40 years. Those vessels include the Navy’s new Arleigh Burke class Flight III destroyers, aircraft carriers and amphibious ships; today’s Flight IIA destroyers will be backfit with an upgraded radar.

«There is no other radar with the surface maritime capabilities of SPY-6», said Wes Kremer, president of Raytheon Missiles & Defense. «SPY-6 is the most advanced naval radar in existence, and it will provide our military a giant leap forward in capability for decades to come».

Since its inception, more than $600 million has been invested in the development and manufacturing of the SPY-6 family of radars. When compared to legacy radars, SPY-6 will bring new capabilities to the surface fleet, such as advanced electronic warfare protection and enhanced detection abilities.

SPY-6 array radar variants have between nine and 37 Radar Modular Assemblies, known as RMAs. Common RMAs allow SPY-6 to be scalable and modular to support production for the U.S. and partner nations across all variants, to include the Enterprise Air Surveillance Radar. This commonality supports standardized logistics and training for those who work on the radars.

SPY-6 radar installation is complete on the Navy’s first Flight III destroyer, the USS Jack H. Lucas (DDG-125), which is scheduled to be operational in 2024. Radar array deliveries are complete for the next ship in the class, the future USS Ted Stevens (DDG-128).

Excalibur projectile

Raytheon Missiles & Defense, a Raytheon Technologies business, in partnership with the U.S. Army and French company Nexter successfully fired Excalibur artillery projectiles from a CAESAR self-propelled howitzer. The test proved compatibility between Excalibur, the U.S. Army’s Modular Artillery Charge System (MACS) and CAESAR.

CAESAR howitzer
Raytheon Missiles & Defense’s Excalibur artillery projectile fired at record range from CAESAR howitzer

During the demonstration the CAESAR-fired Excalibur directly struck two targets at a distance of more than 46 kilometers/28.6 miles, a record setting range from the gun system.

«Integration with CAESAR now adds a level of mobility to the long-range and proven precision of Excalibur, providing the U.S. Army and partner nations more flexibility for this advanced, versatile weapons system for contested environments», said Sam Deneke, vice president of execution for Land Warfare & Air Defense at Raytheon Missiles & Defense. «This success highlights the interoperability of a French howitzer with a U.S. munition and offers our customers more options to deploy Excalibur artillery from a range of platforms».

Building on previous compatibility tests, this demonstration marked an important milestone toward operational capability for Excalibur’s integration with CAESAR.

«Chosen by eight partner nations, CAESAR is arguably the most successful truck mounted artillery system available today», said Thierry Soulat, program manager at Nexter. «This demonstration with Excalibur underscores CAESAR’s compatibility with NATO standards for both conventional and smart ammunition».

The Excalibur projectile is a true precision weapon, impacting at a radial miss distance of less than two meters from the target, providing accurate first-round effects at all ranges in all weather conditions. With its GPS-guided capabilities and multiple fuze modes, it is already a premiere artillery option for multiple countries using the M777, M109 series, M198, the Archer, the PzH2000, and the SIAC systems. Initial assessments indicate likely compatibility with the AS90, K9 and G6 howitzers.

Raytheon’s Excalibur artillery projectile fired at record range from CAESAR howitzer