Tag Archives: Proteus

Wireless Transmission

Northrop Grumman Corporation and the Defense Advanced Research Projects Agency (DARPA) have set a new standard for wireless transmission by operating a data link at 100 gigabits per second (Gbps) over a distance of 20 kilometers/12.4 miles in a city environment.

100G hardware will be flown aboard the Proteus demonstration aircraft developed by Northrop Grumman subsidiary Scaled Composites
100G hardware will be flown aboard the Proteus demonstration aircraft developed by Northrop Grumman subsidiary Scaled Composites

The two-way data link, which featured active pointing and tracking, was demonstrated January 19, 2018 in Los Angeles.

The blazing data rate is fast enough to download a 50 Gigabyte blue ray video in four seconds. The demonstration marked the successful completion of Northrop Grumman’s Phase 2 contract for DARPA’s 100 Gbps (100G) RF Backbone program.

The 100G system is capable of rate adaptation on a frame by frame basis from 9 Gbps to 102 Gbps to maximize data rate throughout dynamic channel variations. Extensive link characterization demonstrated short-term error-free performance from 9 to 91 Gbps, and a maximum data rate of 102 Gbps with 1 erroneous bit received per ten thousand bits transmitted.

The successful data link results from the integration of several key technologies. The link operates at millimeter wave frequencies (in this case, 71-76 gigahertz and 81-86 gigahertz) with 5 gigahertz of bandwidth, or data carrying capacity, and uses a bandwidth efficient signal modulation technique to transmit 25 Gbps data streams on each 5 gigahertz channel. To double the rate within the fixed bandwidth, the data link transmits dual orthogonally polarized signals from each antenna. Additionally, the link transmits from two antennas simultaneously (spatial multiplexing) and uses Multiple-Input-Multiple-Output (MIMO) signal processing techniques to separate the signals at two receiving antennas, thus again doubling the data rate within the fixed bandwidth.

According to Louis Christen, director, research and technology, Northrop Grumman, «This dramatic improvement in data transmission performance could significantly increase the volume of airborne sensor data that can be gathered and reduce the time needed to exploit sensor data».

«Next generation sensors such as hyperspectral imagers typically collect data faster, and in larger quantity than most air-to-ground data links can comfortably transmit», said Christen. «Without such a high data rate link data would need to be reviewed and analyzed after the aircraft lands».

By contrast, a 100G data link could transmit high-rate data directly from the aircraft to commanders on the ground in near real time, allowing them to respond more quickly to dynamic operations.

The successful 100G ground demonstration sets the stage for the flight test phase of the 100G RF Backbone program. This next phase, which started in June, demonstrates the 100G air-to-ground link up to 100 Gbps over a 100 km/62.1 miles range and extended ranges with lower data rates. The 100G hardware will be flown aboard the Proteus demonstration aircraft developed by Northrop Grumman subsidiary Scaled Composites.

Northrop Grumman’s 100G industry team includes Raytheon, which developed the millimeter wave antennas and related RF electronics and Silvus Technologies, which provides the key spatial multiplexing and MIMO signal processing technologies.

Northrop Grumman and DARPA 100 gigabits per second link demonstrated over 20 kilometer city environment on January 19, 2018 in Los Angeles
Northrop Grumman and DARPA 100 gigabits per second link demonstrated over 20 kilometer city environment on January 19, 2018 in Los Angeles

Proteus
completed testing

Huntington Ingalls Industries (HII) announced on April 26 that Proteus, the dual-mode undersea vehicle developed by the company’s Undersea Solutions Group (USG) subsidiary and Battelle, successfully completed endurance testing earlier this month.

Proteus successfully completed a 30-day simulated unmanned mission (HII photo)
Proteus successfully completed a 30-day simulated unmanned mission (HII photo)

The 30-day simulated unmanned mission was performed in a test tank at USG’s Panama City, Florida, facility to demonstrate the vehicle’s reliability and ability to perform long-duration missions contemplated for the U.S. Navy’s future Unmanned Undersea Vehicles (UUVs).

Computers in a van beside the test tank fed navigational and depth data to Proteus’ autonomy and vehicle control systems to simulate the vehicle running a mission in open water. All systems necessary for an autonomous mission were operational and responded to commands. During the test, Proteus simulated traveling 2,412 nautical miles/2,776 miles/4,467 km and ran submerged for 720 hours while executing a full range of simulated mission behaviors.

«HII is committed to developing undersea technologies and systems that support the increased employment of UUVs in the future», said Ross Lindman, USG’s vice president, operations. «This test helps provide reliability data and a technical foundation for development of a new generation of long-endurance UUVs to support the U.S. Navy».

USG develops and builds specialized manned and unmanned undersea vehicles for military customers around the world. USG has built or converted specialized craft for a variety of purposes, including support of submersibles and submarines, special warfare, testing of mine warfare systems, torpedo countermeasures and more. Originally established in 1972, USG operates in Panama City Beach, Florida, and reports to HII’s Newport News Shipbuilding division.

Battelle is an industry leader in innovative and reliable undersea technology providing rapid development, transition and deployment of technologies to sustain U.S. under sea dominance.