Tag Archives: Northrop Grumman

SPOC radio

Northrop Grumman Corporation has been awarded a contract to develop and demonstrate a Software Programmable Open Mission Systems (OMS) Compliant (SPOC) radio terminal for the U.S. Air Force.

Northrop Grumman will deliver an open mission systems-compliant software programmable radio terminal to the U.S. Air Force, unlocking new possibilities for the service’s Advanced Battle Management System (ABMS)

Northrop Grumman’s SPOC solution will provide the Air Force Life Cycle Management Center (AFLCMC) with an air-to-ground and air-to-air communications capability across four radio frequency waveforms: Link-16 Concurrent Multi-Net-4 (CMN-4), Common Data Link (CDL), Multifunction Advanced Data Link (MADL) and Multi User Objective System (MUOS).

This development defines the Air Force’s next generation radio approach.

«Our solution for SPOC provides a mature hardware and software development kit that allows the Air Force to rapidly develop and prototype innovative communications solutions from any provider on an open architecture networking terminal that can be quickly taken into flight test and production», said Roshan Roeder, vice president, communications, airborne sensors and networks division, Northrop Grumman. «With the Air Force taking responsibility for developing the airborne communications network infrastructure for the Advanced Battle Management System (ABMS), SPOC radio will allow the Air Force to rapidly develop, test, fly and iterate».

Northrop Grumman’s SPOC open architecture networking terminal offers numerous benefits to the Air Force customer, including opening the F-35 Communications, Navigation and Identification (CNI) system to third-party developers, ownership of Link-16 development, sharing of intelligence, surveillance and reconnaissance information over a common data link, and Mobile User Objective System (MUOS) beyond line of sight capability.

In-Water Testing

Northrop Grumman Corporation’s AQS-24 mine hunting sonar recently completed initial in-water testing of a next-generation Deploy and Retrieval (D&R) payload. Operated from the Mine Countermeasures Unmanned Surface Vessel (MCM USV), the AQS-24 D&R demonstrated the unmanned operations needed to perform a mine hunting mission off the MCM Mission Package aboard the Littoral Combat Ship (LCS).

The AQS-24B minehunter being deployed from the Mine Countermeasures Unmanned Surface Vessel (MCM USV)

«Achieving this important milestone demonstrated reliable unmanned mine hunting operations, while using operationally representative hardware from the LCS MCM Mission Module», said Alan Lytle, vice president, undersea systems, Northrop Grumman. «This allows the program to begin preparation for further at-sea testing of the system for extended duration missions in rigorous conditions».

The MCM USV tests are ahead of planned user-operated evaluation system testing of the AQS-24 on LCSs. The company has multiple versions of the AQS-24 to provide mine hunting capabilities for navies. The AQS-24B is a deployed system which uses side-scan sonar for real-time detection, localization and classification of bottom and moored mines in addition to a laser line scanner for precise optical identification.

Integration of the AQS-24 sonar with USVs allows for the real-time transmission of all AQS-24 data to a remote sonar operator, who can then commence Real-Time Mission Analysis (RTMA) of all recorded mission data. RTMA significantly reduces MCM detect to engage timelines, as well as the real-time reacquisition and identification of bottom mines following traditional mine hunting sorties.

Alliance Surveillance

Northrop Grumman Corporation successfully ferried the first of five NATO Alliance Ground Surveillance (AGS) aircraft, via a non-stop, 22-hour transatlantic flight. The aircraft took off on Wednesday, November 20, from Palmdale, California and landed approximately 22 hours later on November 21 at Sigonella Air Base, Sigonella, Italy.

NATO Alliance Ground Surveillance Aircraft Completes Successful Ferry Flight

«Northrop Grumman is proud to support NATO in its mission to protect and defend global security, while maintaining a position of collective deterrence for the Alliance», said Brian Chappel, vice president and general manager, autonomous systems, Northrop Grumman. «NATO missions will be enhanced by the strategic surveillance capability NATO AGS provides».

The NATO AGS RQ-4D aircraft is based on the U.S. Air Force wide area surveillance Global Hawk. It has been uniquely adapted to NATO requirements and will provide NATO state-of-the-art intelligence, surveillance and reconnaissance capability. This includes protecting ground troops, civilian populations and international borders in peacetime, times of conflict and for humanitarian missions during natural disasters.

Aircraft, ground and support segments, along with advanced sensor technologies including the Multi-Platform Radar Technology Insertion Program radar, comprise the NATO AGS system.

The NATO AGS aircraft has met the rigorous standards required for the first large unmanned aerial vehicle, military type certification, approved by the Italian Directorate of Aeronautical Armaments and Airworthiness (DAAA).

Companies from across NATO’s member nations, including Leonardo, Airbus and Kongsberg, comprise the Northrop Grumman-led industry team that developed the NATO AGS capability.

Fire control radar

Northrop Grumman Corporation has delivered its 500th AN/APG-81 fire control radar for the F-35 Lightning II. The Northrop Grumman AN/APG-81 active electronically scanned array is the cornerstone of the F-35’s advanced sensor suite, providing unparalleled battlespace situational awareness that translates into platform lethality, effectiveness and survivability.

Northrop Grumman delivered its 500th AN/APG-81 radar for the F-35 Lightning II (Photo Credit: Northrop Grumman Corporation)

«As a principal member of the Lockheed Martin-led F-35 industry team, our continued investment in facilities and equipment, production enhancements in process and design, and expanded supply chain capability through second sourcing helped reach this milestone», said Chris Fitzpatrick, director, F-35 programs, Northrop Grumman. «The 500th delivery of this top-of-the-line fighter radar was made possible by our continuous focus on quality and excellence across our company».

The AN/APG-81 radar has long-range active and passive air-to-air and air-to-ground modes that support a wide range of demanding missions. These modes are complemented by an array of stealth features as well as electronic warfare and intelligence, surveillance and reconnaissance functions.

Northrop Grumman plays a key role in the development, modernization, sustainment and production of the F-35. In addition to producing the AN/APG-81 radar, the company manufactures the center fuselage and wing skins for the aircraft, produces and maintains several sensor systems, avionics, mission systems and mission-planning software, pilot and maintainer training systems courseware, electronic warfare simulation test capability, and low-observable technologies.

Minehunting sonar

Northrop Grumman Corporation successfully operated the AQS-24 minehunting sonar at depths greater than 400 feet/122 m during system testing off the coast of Fort Lauderdale, Florida.

Northrop Grumman successfully tests AQS-24 Deep Tow

Embarked on the M/V Richard Becker, the Northrop Grumman test team demonstrated reliable AQS-24 system operations with excellent sonar performance at all tested depths, while using the system to classify bottom objects of interest.

«The AQS-24 minehunting system performed superbly at tow depths up to and beyond 400 feet/122 m», said Alan Lytle, vice president, undersea systems, Northrop Grumman. «This latest internal research and development effort underscores our commitment to provide the most innovative, affordable and operationally-proven capabilities to meet the Navy’s Littoral Combat Ship (LCS) Mine Countermeasures Mission (MCM) package requirements and future expeditionary MCM needs».

Earlier this year, Northrop Grumman demonstrated an autonomy upgrade path for the AQS-24’s minehunting system by integrating and successfully testing the company’s image exploitation suite, incorporating state-of-the-art machine learning for Automatic Target Recognition (ATR) using multiple ATR algorithms. Following this successful demonstration, the U.S. Navy plans to incorporate this new capability into existing AQS-24 minehunting systems.

The success of Deep Tow is now followed by the recently commenced in-water testing of Northrop Grumman’s AQS-24 system on the Navy’s MCM Unmanned Surface Vessel (USV) at Naval Surface Warfare Center Panama City. This is in preparation for user operated evaluation system testing aboard the LCS in 2020. The AQS-24’s newly doubled depth capability is planned for integration and test with the MCM USV system.

These major enhancements to the U.S. Navy’s only operational mine hunting towed sonar – running deeper, automatically detecting and reporting targets, and providing the transition to the LCS MCM USV – increases the operational effectiveness of the AQS-24 system while providing the warfighter with an unprecedented capability that affordably meets operational needs and provides a proven path for continued integration of state-of-the-art technology.

Doubles the current AQS-24 program of record depth performance metric

James Webb

At Northrop Grumman Corporation in Redondo Beach, NASA’s James Webb Space Telescope Spacecraft Element (SCE) and Optical Telescope Element/Integrated Science Instrument Module (OTIS) are now one. Both halves of the telescope (SCE and OTIS) have been successfully assembled.

NASA’s James Webb Space Telescope fully assembled at Northrop Grumman in Redondo Beach, California (Photo credit: NASA/Chris Gunn)

The Northrop Grumman and NASA team started preparations for the milestone seven years ago, when engineers began the design and build of the flight hardware and tools needed to join the two halves. With the base composite structures for the SCE and OTIS, engineers used an interface transfer tool to physically match the connection interfaces, preparing them for this very moment. At roughly 8,000 pounds/3,629 kg, spanning 131 inches/3.327 m, OTIS had to align with six launch load interfaces. This resulted in stringent alignment requirements to within .004 inches/0.1 mm, about the width of a human hair, and meant engineers had to be meticulous. Over the two-phase operation, OTIS was lifted and suspended in the air, then lowered to connect in tight quarters (up to approximately 0.2 inches/0.5 mm) between in-place hardware and parts of the OTIS.

«This milestone marks a major achievement for all of us at Northrop Grumman and NASA», said Scott Willoughby, vice president and program manager, James Webb Space Telescope, Northrop Grumman. «Seeing the full observatory for the first time further reinforces our commitment to mission success. There is still more work to be done, but it is a great feeling seeing something that was once a concept, become reality».

A view of NASA’s James Webb Space Telescope OTIS, being lowered on the SCE to become a fully assembled observatory at Northrop Grumman in Redondo Beach, California (Photo credit: NASA/Chris Gunn)

Earlier this year, Webb’s SCE completed its final environmental tests in preparation for the milestone. To date, both halves have undergone environmental testing separately. The fully assembled observatory will complete the next steps of the integration process in the coming months in preparation for acoustic and vibration environmental testing next year.

The James Webb Space Telescope will be the world’s premier space science observatory when it launches in 2021. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

NASA’s James Webb Space Telescope Optical Telescope Element/Integrated Science Instrument Module (OTIS) suspended from a crane before being positioned above the Spacecraft Element before being fully assembled at Northrop Grumman in Redondo Beach, California (Photo credit: NASA/Chris Gunn)

Above Mach 4

An Air Force Research Laboratory (AFRL) and Air Force Test Center ground test team set a record for the highest thrust produced by an air-breathing hypersonic engine in Air Force history.

The AEDC Aerodynamic and Propulsion Test Unit at Arnold Air Force Base supports recent testing for the Air Force Research Laboratory Medium Scale Critical Components Scramjet program. The Northrop Grumman-produced engine was successfully operated at conditions above Mach 4 and has set the record for highest thrust produced by an air-breathing hypersonic engine in Air Force history (U.S. Air Force photo)

«AFRL, in conjunction with Arnold Engineering Development Complex (AEDC) and Northrop Grumman, achieved over 13,000 pounds/5,897 kg of thrust from a scramjet engine during testing at Arnold Air Force Base», said Todd Barhorst, AFRL aerospace engineer and lead for the Medium Scale Critical Components program.

The 18-foot-long/5.5-meter-long Northrop Grumman engine endured a half hour of accumulated combustion time during the nine months of testing.

«The series of tests, ran in conjunction with AEDC and AFRL, on this fighter-engine sized scramjet was truly remarkable», said Pat Nolan, vice president, missile products, Northrop Grumman. «The scramjet successfully ran across a range of hypersonic Mach numbers for unprecedented run times, demonstrating that our technology is leading the way in delivering large scale hypersonic platforms to our warfighters».

«The plan for a larger and faster hypersonic air breathing engine was established 10 years ago during the X-51 test program, as the Air Force recognized the need to push the boundaries of hypersonic research», Barhorst said. «A new engine with 10-times the flow of the X-51 would allow for a new class of scramjet vehicles».

An evaluation of the nation’s test facilities concluded that none could test an engine at this large of a scale in a thermally-relevant environment. To address the issue, AEDC’s Aerodynamic and Propulsion Test Unit facility underwent a two-year upgrade to enable large-scale scramjet combustor tests over the required range of test conditions. The AEDC team also successfully leveraged technology developed by CFD Research Corporation under the Small Business Innovative Research program. This technology proved crucial in achieving most of the required test conditions.

«Our collective team has worked hard over the past few years to get to where we are today», said Sean Smith, lead for the AEDC Hypersonic Systems Combined Test Force ground test team. «We’ve encountered numerous challenges along the way that we’ve been able to overcome thanks to the dedication and creativity of the team. We’ve learned quite a bit, and I’m proud of what we’ve accomplished. These groundbreaking tests will lead the way for future hypersonic vehicles for a range of missions».

«After years of hard work, performing analysis and getting hardware ready, it was a great sense of fulfillment completing the first successful test of the world’s largest hydrocarbon fueled scramjet», added Barhorst.

Re-scalable Aperture

Northrop Grumman Corporation has received a contract award from the U.S. Army to develop the next generation tactical radar antenna. The Re-scalable Aperture for Precision Targeting Radar (RAPTR) will be composed of small radar building blocks to allow the antenna to be scaled to fit a wide range of mission and platform requirements.

Northrop Grumman’s Re-scalable Aperture for Precision Targeting Radar (RAPTR), composed of small radar building blocks, will provide advanced surveillance and precision targeting capabilities for a wide range of missions and platforms

RAPTR will improve upon the precision and range of the previous, combat-proven Northrop Grumman tactical radar family to provide a greater level of situational understanding to warfighters. The system will operate in multiple radar modes, including Synthetic Aperture Radar and Ground Moving Target Indicator, to provide a comprehensive operating picture.

«RAPTR’s building block architecture allows us to scale the antenna up or down to suit a wide range of platforms and missions, so it is well suited to the demands of today’s multi-domain battlespace», said Brent Toland, vice president, land and avionics C4ISR (Command, Control, Communications, Computer, Intelligence, Surveillance, and Reconnaissance), Northrop Grumman.

The system will take advantage of common building blocks, allowing for rapid, cost effective production for a variety of applications.

Air Defense

Northrop Grumman Corporation has been awarded a contract for the U.S. Army Maneuver Short Range Air Defense (M-SHORAD) directed energy prototyping initiative. The initiative includes integrating a directed energy weapon system on a Stryker vehicle as a pathfinding effort toward the U.S. Army M-SHORAD objective to provide more comprehensive protection of frontline combat units.

Northrop Grumman has been selected to develop and integrate a directed energy prototype solution on a Stryker combat vehicle for the U.S. Army to better protect highly mobile frontline units. The effort will culminate in a competitive performance checkout leading into a range demonstration that informs Maneuver Short Range Air Defense (M-SHORAD) requirements

«Northrop Grumman is eager to leverage its portfolio of innovative, proven technologies and integration expertise to accelerate delivery of next-generation protection to our maneuver forces», said Dan Verwiel, vice president and general manager, missile defense and protective systems, Northrop Grumman. «Our flexible, open systems approach offers an end-to-end solution for the Army’s growing and ever-changing mission requirements in today’s complex threat environment».

Under the initiative from the Rapid Capabilities and Critical Technologies Office and a contract from Kord Technologies, Northrop Grumman will build and integrate a suite of advanced sensors; target acquisition and tracking; a 50-kilowatt class laser system; and battle-tested command-and-control on an Army Stryker combat vehicle. The effort will culminate in a competitive performance checkout leading into a range demonstration that informs M-SHORAD requirements.

The directed energy M-SHORAD prototypes are part of the progression of an Army technology maturation initiative known as the Multi-Mission High Energy Laser (MMHEL).

The integrated platform allows early involvement with warfighter users to develop tactics, techniques, procedures and concepts of operations for future high energy laser weapons.

The Army’s future M-SHORAD protection for forward-deployed soldiers includes laser weapon systems as an effective complement to kinetic capabilities in countering rockets, artillery and mortars; unmanned aircraft systems; and other aerial threats.

The M-SHORAD directed energy prototyping initiative is managed by the U.S. Army Rapid Capabilities and Critical Technologies Office, Redstone Arsenal, Alabama.

Electronic warfare pod

Northrop Grumman Corporation has received a $44 million contract award for the Electronic Attack Pod Upgrade Program (EAPUP) from the U.S. Air Force. Placed under an existing contract, this third production order will significantly increase the number of EAPUP systems for the Air Force.

Northrop Grumman’s Electronic Attack Pod Upgrade Program brings fifth-generation electronic countermeasures to the fourth-generation fleet

Operating in the modern air warfare environment with advanced, rapidly proliferating electronic warfare systems and radar-guided weapons requires an equally sophisticated level of protection and proven technology. The EAPUP – an upgraded, digital AN/ALQ-131 pod – will replace the Air Force’s current electronic attack pods. The AN/ALQ-131A is currently available to international partners.

«The new technology in EAPUP will protect U.S. Air Force pilots and coalition partner aircraft from modern and future threats», said Michelle Scarpella, vice president and general manager, global logistics and modernization, Northrop Grumman.

Northrop Grumman received the order following a series of rigorous tests designed to verify the system’s capabilities and readiness for operations. The tests were representative of modern combat scenarios and involved multiple, simultaneous threats. The pod demonstrated the ability to identify, locate and counter sophisticated threats and keep aircrews safe during missions in contested airspace.

«The advanced electronic warfare capability integrated in EAPUP is mature, scalable and in production today. Available globally, it is ready to give aircrews the protection they need in dense electromagnetic spectrum environments», said Brent Toland, vice president, land and avionics C4ISR (Command, Control, Communications, Computer, Intelligence, Surveillance, and Reconnaissance), Northrop Grumman.

EAPUP will bring the Air Force’s electronic attack pod inventory into the digital age, delivering fifth-generation capability to fourth-generation aircraft and making it among the most capable electronic warfare pod in the Department of Defense inventory. At the core of EAPUP is Northrop Grumman’s advanced electronic warfare technology, built upon the expertise gained from the company’s broad portfolio of programs for multiple services.

Northrop Grumman has more than 60 years of experience delivering electronic warfare systems for a wide variety of fighter, bomber and transport aircraft.