Tag Archives: Northrop Grumman

Fire Scout

The U.S. Navy declared Initial Operational Capability (IOC) of the MQ-8C Fire Scout unmanned helicopter June 28 clearing the way for fleet operations and training.

Navair says that the MQ-8C Fire Scout has flown over 1,500 hours in more than 700 sorties to date. Northrop Grumman is under contract to produce 38 MQ-8C aircraft for the U.S. Navy (Navair photo)

The MQ-8 C Fire Scout is a sea-based, vertical lift unmanned system that is designed to provide reconnaissance, situational awareness, and precision targeting support for ground, air and sea forces.

«This milestone is a culmination of several years of hard work and dedication from our joint government and industry team», said Captain Eric Soderberg, MQ-8C Fire Scout program manager. «We are excited to get this enhanced capability out to the fleet».

The MQ-8C Fire Scout variant is an endurance and payload upgrade to its predecessor, the MQ-8B, offering up to twelve hours on station depending on payload, and incorporates the commercial Bell 407 airframe.

The Northrop Grumman-built Fire Scout complements the manned MH-60 helicopter by extending the range and endurance of ship-based operations. It provides unique situational awareness and precision target support for the U.S. Navy.

The MQ-8C Fire Scout has flown over 1,500 hours with more than 700 sorties to date. Over the next few years, Northrop Grumman will continue MQ-8C Fire Scout production deliveries to the U.S. Navy to complete a total of 38 aircraft.

The MQ-8C Fire Scout will be equipped with an upgraded radar that allows for a larger field of view and a range of digital modes including weather detection, air-to-air targeting and a Ground Moving Target Indicator (GMTI). It will deploy with Littoral Combat Ship (LCS) in fiscal year 2021 while the MQ-8B conducts operations aboard LCS in 5th and 7th Fleets.

Hypersonic weapon

Building on years of collaboration, Raytheon Company and Northrop Grumman Corporation have signed a teaming agreement to develop, produce and integrate Northrop Grumman’s scramjet combustors to power Raytheon’s air-breathing hypersonic weapons. The teaming agreement uses the combined capabilities of both companies to accelerate development and demonstrate readiness to produce the next generation of tactical missile systems.

Hypersonic vehicles operate at extreme speeds and high altitudes. Northrop Grumman and Raytheon are teaming to accelerate air-breathing hypersonic vehicle development

Scramjet engines use high vehicle speed to forcibly compress incoming air before combustion to enable sustained flight at hypersonic speeds. Such speeds reduce flight times and increase weapon survivability, effectiveness and flexibility.

«The Raytheon/Northrop Grumman team is quickly developing air-breathing hypersonic weapons to keep our nation ahead of the threat», said Doctor Thomas Bussing, Raytheon Advanced Missile Systems vice president. «This agreement combines Raytheon’s decades of tactical missile expertise with Northrop Grumman’s extensive scramjet engine development experience to produce the best possible weapons».

Northrop Grumman and Raytheon are working under a $200 million Hypersonic Air-breathing Weapon Concept, or HAWC, program contract to deliver an affordable, effective and producible cruise missile for DARPA and the U.S. Air Force.

«This teaming agreement extends our strong partnership with Raytheon on this critical technology capability. Our deep heritage in propulsion, fuzes and warheads will help accelerate readiness of tomorrow’s missiles to meet range, survivability, safety and lethality requirements», said Mike Kahn, vice president and general manager of Northrop Grumman’s Defense Systems. «Together with Raytheon, we intend to make great strides toward improving our nation’s high-speed weapon systems, which are critical to enhancing our warfighters’ capabilities for greater standoff and quicker time to target».

Under the agreement, Raytheon and Northrop Grumman will continue to collaborate on HAWC and future air-breathing hypersonic missiles. Both companies are investing in hypersonic technologies and programs to ensure the military has a robust portfolio.

Launch Abort System

Northrop Grumman Corporation shipped the inert abort motor for NASA’s Orion spacecraft Launch Abort System (LAS) from the Northrop Grumman facility in Magna, Utah, to Kennedy Space Center, Florida. It will be integrated with the LAS and Orion spacecraft destined for the first flight of NASA’s Space Launch System, designated Artemis 1.

The launch abort motor for Artemis 1, the first launch of NASA’s Space Launch System and Orion spacecraft, at Northrop Grumman’s Bacchus facility in Magna, Utah, before leaving June 3 for Kennedy Space Center, Florida

The abort motor is a key component of the LAS, which provides an enhancement in spaceflight safety for astronauts. The shipment of the abort motor brings Orion one step closer to Artemis 1 and to enabling humans to explore the moon, Mars and other deep-space destinations beyond low-Earth orbit.

«Crew safety is always a top priority, and Orion’s Launch Abort System is state-of-the-art», said Charlie Precourt, vice president, propulsion systems, Northrop Grumman, and former four-time shuttle astronaut. «The solid propulsion we use in the abort motor is high-performing and reliable; it should inspire confidence in any future Orion crew members and their families».

The purpose of Orion’s LAS is to safely pull the spacecraft and crew out of harm’s way in the event of an emergency on the launch pad or during initial launch ascent. The abort motor underwent a series of component tests culminating in a successful static test in December 2018 at the Northrop Grumman facility in Promontory, Utah. Data from these tests confirmed motor activation within milliseconds and under both extreme cold and hot temperatures, ensuring crew safety.

The abort motor, which stands over 17 feet/5.2 m tall and spans three feet in diameter, is unique in that it has a manifold with four exhaust nozzles. The motor, shipped via thoroughfare in a transporter, will be unloaded at Kennedy Space Center. Integrating the abort motor is the first step in Orion’s LAS integration process.

Northrop Grumman’s next major abort motor milestone is the Ascent Abort-2 Flight Test (AA-2) set to take place at Cape Canaveral Air Force Station, Florida, in early July. In addition to the launch abort motor, Northrop Grumman is providing the launch vehicle designed to simulate an SLS launch for AA-2. The abort will take place during Max-Q, when the dynamic pressure on the spacecraft is greatest.

Northrop Grumman is responsible for the launch abort motor through a contract to Lockheed Martin, Orion’s prime contractor. The Orion LAS program is managed out of NASA’s Langley Research Center in Virginia. Northrop Grumman produces the abort motor at its Magna, Utah facility and the attitude control motor for the LAS at the company’s Elkton, Maryland facility. The company also manufactures the composite case for the abort motor at its facility in Clearfield, Utah.

GaN-based design

Northrop Grumman Corporation demonstrated its in-production, innovative solution for the U.S. Army’s Lower Tier Air and Missile Defense Sensor (LTAMDS) program during an open «Sense Off» competition at White Sands Missile Range in New Mexico from May 16 – June 1.

Northrop Grumman’s 360-degree coverage, GaN-based LTAMDs capability was successfully demonstrated to the U.S. Army during a two-week Sense Off at White Sands Missile Range, New Mexico

«Our mature, gallium nitride (GaN)-based design demonstrated an advanced system with our current capabilities aligned with the Army’s requirements», said Christine Harbison, vice president, land and avionics C4ISR division, Northrop Grumman. «Our solution supports the need for rapid deployment with an architecture that allows for significant margin of capability growth to protect our warfighters today and in the rapidly changing threat environment».

Northrop Grumman’s LTAMDS solution demonstrated a mission capable system with growth potential leveraging advanced, affordable, low-risk, in-production and fielded technologies from across the company’s Active Electronically Scanned Array (AESA) portfolio. The system provides a 360-degree full-sector mission capability. Designed from the outset to meet the warfighters’ current and future needs, Northrop Grumman’s LTAMDS solution aligns with the Army’s top requirements, including speed to field. An embedded logistics capability enables quicker and more affordable modernization and better sustainability over the life-cycle of the program.

Northrop Grumman’s LTAMDS solution builds upon the company’s decades of expertise in sea, land, air and space-based military radar technology and high-performance microelectronics. The company’s offering is the latest Northrop Grumman sensor product to incorporate and use GaN high power density radio frequency components for greater performance.

Having successfully completed the demonstration phase, the company will deliver its final LTAMDS proposal to the Army in the coming weeks for evaluation.

Environmental Test

NASA’s James Webb Space Telescope Spacecraft Element (SCE) successfully completed its last environmental test, thermal vacuum testing, at Northrop Grumman Corporation in Redondo Beach.

A view of NASA’s James Webb Space Telescope’s Spacecraft Element surrounded by heater plates before testing a spectrum of hot protoflight temperatures for thermal vacuum testing

Thermal vacuum testing exposes Webb’s SCE to the extreme hot and cold temperatures it will experience in space. To test these extreme temperature ranges, the chamber uses liquid nitrogen shrouds and heater panels to expose the SCE to cold temperatures as low as -300 degrees Fahrenheit/-184.4 degrees Celsius and hot temperatures as high as 220 degrees Fahrenheit/101.4 degrees Celsius. Real-time data collection via flight sensors on the SCE allow engineers to monitor Webb’s electrical/unit functionality and ensures the structure will withstand the rigors of its cold journey to and operation at the second Lagrange point.

«The world’s largest space telescope has to perform in extreme temperatures», said Scott Willoughby, vice president and program manager, James Webb Space Telescope, Northrop Grumman. «Successful completion of thermal vacuum testing ensures the SCE can endure the volatile conditions it will face and further validates Webb’s readiness for launch».

Webb’s SCE completed its two prior environmental tests (acoustic and sine vibration). After thermal vacuum testing, the SCE will return to Northrop Grumman’s clean room to begin post-environmental testing, including deployments. Later this year, the Webb telescope will become a fully integrated observatory for the first time through integration of the SCE to the Optical Telescope Element/Integrated Science Instrument Module.

The James Webb Space Telescope will be the world’s premier space science observatory of the next decade. Webb will solve mysteries in our solar system, look to distant worlds around other stars, and probe the mysterious structures and the origins of our universe. Webb is an international program led by NASA with its partners, the European Space Agency and the Canadian Space Agency.

First Stage Test

Northrop Grumman Corporation successfully conducted a full-scale static fire test of the first stage of its new OmegA rocket on May 30, 2019, in Promontory, Utah. This milestone keeps OmegA on track to perform its first launch in 2021 and begin operational launches of national security payloads in 2022.

Northrop Grumman successfully completes first stage test for OmegA rocket

«The OmegA rocket is a top priority and our team is committed to provide the U.S. Air Force with assured access to space for our nation’s most critical payloads», said Scott Lehr, vice president and general manager, flight systems, Northrop Grumman. «We committed to test the first stage of OmegA in spring 2019, and that’s exactly what we’ve done».

During today’s test, the first stage motor fired for approximately 122 seconds, producing more than two million pounds of maximum thrust – roughly the equivalent to that of eight-and-a-half jumbo jets. The test verified the performance of the motor’s ballistics, insulation and joints as well as control of the nozzle position.

Last October, the U.S. Air Force awarded Northrop Grumman a $792 million contract to complete detailed design and verification of OmegA and launch sites. Today’s test verified performance of the first stage solid rocket motor for the intermediate version of OmegA.

The 2015 National Defense Authorization Act specified that a domestic next-generation rocket propulsion system «shall be developed by not later than 2019». With today’s successful test fire, Northrop Grumman demonstrated the company is on track to meet this Congressionally-mandated schedule.

«Congratulations to the entire team on today’s successful test», said Kent Rominger, OmegA vice president, Northrop Grumman. «OmegA’s design using flight-proven hardware enables our team to meet our milestones and provide an affordable launch system that meets our customer’s requirements and timeline».

A full-scale static fire test of OmegA’s second stage is planned for this fall.

OmegA’s design leverages flight proven technologies from Northrop Grumman’s Pegasus, Minotaur and Antares rockets as well as the company’s interceptors, targets and strategic rockets. Northrop Grumman has conducted nearly 80 successful space launch missions and has decades of experience launching critical payloads for the U.S. Department of Defense, civil and commercial customers.

The company’s vehicle development team is working on the program in Arizona, Utah, Mississippi and Louisiana, with launch integration and operations planned at Kennedy Space Center in Florida, and Vandenberg Air Force Base in California. The program will also support thousands of jobs across the country in its supply chain.

Flight Test

Northrop Grumman Corporation, in partnership with the Air Force Research Laboratory Sensors Directorate, demonstrated the first Software Defined Radio (SDR)-based, M-code enabled GPS receiver on production-capable hardware during a recent flight test. In real-time, the SDR acquired and tracked the modernized GPS military signal, known as M-code, during a live-sky demonstration.

Northrop Grumman Demonstrates GPS Software Defined Radio Navigation Solution During Flight Test

Additionally, Northrop Grumman achieved a security certification milestone by attaining Certification Requirements Review approval for the SDR-based GPS receiver from the GPS Directorate. This milestone constitutes a critical step on the way to fielding an M-code enabled GPS receiver that can be operated in an unclassified environment.

«Northrop Grumman’s secure software defined GPS solution provides an unprecedented level of agility and enables our customers to outpace the threat», said Vern Boyle, vice president, advanced technologies, Northrop Grumman.

Using a system-on-a-chip SDR approach, in lieu of the traditional fixed application specific integrated circuit (ASIC) design, enabled the platform to make rapid real-time field changes, an important capability in an evolving threat environment.

Joint Threat Emitter

Northrop Grumman Corporation has received a $46 million delivery order for eight Joint Threat Emitter (JTE) Units. This award is a part of the indefinite delivery, indefinite quantity JTE Enhanced Delivery Initiative contract awarded by the U.S. Air Force in December 2018.

JTE is a ruggedized system that is easily relocated, reactive to aircrew/aircraft for fast-jet, fixed-wing and rotary-wing defensive measures, and can be rapidly reprogrammed with new threat parameters

JTE is a mobile air defense electronic warfare threat simulator that provides high-fidelity replication of surface-to-air missiles and anti-aircraft artillery threats for aircrew training.

«JTE is critical to the success of the U.S. military and our international allies», said James Conroy, vice president, land and avionics C4ISR, Northrop Grumman. «The system ensures aircrews are better equipped to identify and effectively counter the most advanced enemy missile and artillery threats».

Awarded by the Air Force Life Cycle Management Center, this award includes the delivery of eight wide-band variants of the threat emitter unit, as well as retrofit kits for some existing systems. Deliveries are slated for U.S. training ranges across the country and to select international locations. This will mark the second set of JTE systems delivered internationally. All work under this contract will be performed in Buffalo.

Northrop Grumman’s JTE is the current U.S. Air Force program of record with 30 systems fielded both domestically and internationally. The JTE provides a modern, reactive battlespace war environment, designed to help train military personnel to identify and effectively counter enemy missile or artillery threats.

Navigation system

Northrop Grumman Corporation has released SeaFIND (Sea Fiber Optic Inertial Navigation with Data Distribution), a next generation maritime inertial navigation system succeeding the company’s MK-39 Mod 3 and 4 series Inertial Navigation System product line.

SeaFIND is significantly smaller, lighter and uses less power than its predecessor, the MK-39 Mod 3A
SeaFIND is significantly smaller, lighter and uses less power than its predecessor, the MK-39 Mod 3A

SeaFIND provides proven navigation capabilities in a compact and affordable package, making it ideal for applications where low cost as well as reduced size, weight and power requirements are critical. It is the first maritime inertial navigation system to move from the existing ring laser technology to Northrop Grumman’s new enhanced fiber optic gyro technology (eFOG). The system has embedded navigation data distribution capabilities, leveraging Northrop Grumman’s proprietary algorithms for low data latency and allowing for the system to interface with a multitude of users that require accurate position and timing.

«SeaFIND allows us to meet a critical customer need where low size, weight and power requirements, as well as reliable position-keeping performance in GPS-denied environments, are critical», said Todd Leavitt, vice president, maritime systems, Northrop Grumman. «This new approach features eFOG technology, which allows us to maintain performance equivalent to our ring laser gyro-based systems, but in a much smaller footprint and at a reduced cost».

The system is designed using a modular system architecture and is comprised of an Inertial Measurement Unit (IMU) and a separate Electronics Unit (EU) connected via a single cable. Its smaller coil size and denser IMU package allows for flexible installation in tight places.

Applications include guidance systems for unmanned underwater vehicles and unmanned surface vehicles, coastal and offshore patrol vessels, as well as small, medium and large surface vessels. SeaFIND is non ITAR (International Traffic in Arms Regulations) and available for use by domestic and international navies.

Operations center

Northrop Grumman Corporation has delivered to the U.S. Army the first production-representative Engagement Operations Center (EOC) for the Integrated Air and Missile Defense (IAMD) Battle Command System (IBCS).

Northrop Grumman has delivered to the U.S. Army the first production-representative engagement operations center for the Integrated Air and Missile Defense (IAMD) Battle Command System (IBCS)
Northrop Grumman has delivered to the U.S. Army the first production-representative engagement operations center for the Integrated Air and Missile Defense (IAMD) Battle Command System (IBCS)

«This milestone is testament of the significant progress toward operational capability that will make pivotal differences to warfighters, commanders and acquisition officials», said Dan Verwiel, vice president and general manager, missile defense and protective systems, Northrop Grumman. «We will be delivering more EOCs as well as IBCS Integrated Fire Control Network (IFCN) relays in the near future. These articles will be used for Initial Operational Test and Evaluation (IOT&E), which informs future production decisions».

The delivered IBCS EOC has completed all functional configuration audits for major configuration items and system verification review, and is representative of the production configuration for hardware and software that will undergo qualification testing before IOT&E. Northrop Grumman is on pace to deliver 11 EOCs and 18 IFCN relays for the IBCS program by the end of the year.

«Northrop Grumman will continue to closely collaborate with our customer and user communities to realize the groundbreaking vision of IBCS and its transformative impact on the air and missile defense mission», said Verwiel.

IBCS is a paradigm shift for IAMD by replacing legacy stove-piped systems with a next-generation, net-centric approach to better address an evolving array of threats. The system integrates disparate radars and weapons to construct a far more effective IAMD enterprise. IBCS delivers a single integrated air picture with unprecedented accuracy as well as broader surveillance and protection areas. With its truly open systems architecture, IBCS allows incorporation of current and future sensors and effectors and enables interoperability with joint C2 and the ballistic missile defense system.

IBCS is managed by the U.S. Army Program Executive Office for Missiles and Space, Redstone Arsenal, Alabama.