Tag Archives: Northrop Grumman

James Webb

At Northrop Grumman Corporation in Redondo Beach, NASA’s James Webb Space Telescope Spacecraft Element (SCE) and Optical Telescope Element/Integrated Science Instrument Module (OTIS) are now one. Both halves of the telescope (SCE and OTIS) have been successfully assembled.

NASA’s James Webb Space Telescope fully assembled at Northrop Grumman in Redondo Beach, California (Photo credit: NASA/Chris Gunn)

The Northrop Grumman and NASA team started preparations for the milestone seven years ago, when engineers began the design and build of the flight hardware and tools needed to join the two halves. With the base composite structures for the SCE and OTIS, engineers used an interface transfer tool to physically match the connection interfaces, preparing them for this very moment. At roughly 8,000 pounds/3,629 kg, spanning 131 inches/3.327 m, OTIS had to align with six launch load interfaces. This resulted in stringent alignment requirements to within .004 inches/0.1 mm, about the width of a human hair, and meant engineers had to be meticulous. Over the two-phase operation, OTIS was lifted and suspended in the air, then lowered to connect in tight quarters (up to approximately 0.2 inches/0.5 mm) between in-place hardware and parts of the OTIS.

«This milestone marks a major achievement for all of us at Northrop Grumman and NASA», said Scott Willoughby, vice president and program manager, James Webb Space Telescope, Northrop Grumman. «Seeing the full observatory for the first time further reinforces our commitment to mission success. There is still more work to be done, but it is a great feeling seeing something that was once a concept, become reality».

A view of NASA’s James Webb Space Telescope OTIS, being lowered on the SCE to become a fully assembled observatory at Northrop Grumman in Redondo Beach, California (Photo credit: NASA/Chris Gunn)

Earlier this year, Webb’s SCE completed its final environmental tests in preparation for the milestone. To date, both halves have undergone environmental testing separately. The fully assembled observatory will complete the next steps of the integration process in the coming months in preparation for acoustic and vibration environmental testing next year.

The James Webb Space Telescope will be the world’s premier space science observatory when it launches in 2021. Webb will solve mysteries in our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, ESA (European Space Agency) and the Canadian Space Agency.

NASA’s James Webb Space Telescope Optical Telescope Element/Integrated Science Instrument Module (OTIS) suspended from a crane before being positioned above the Spacecraft Element before being fully assembled at Northrop Grumman in Redondo Beach, California (Photo credit: NASA/Chris Gunn)

Above Mach 4

An Air Force Research Laboratory (AFRL) and Air Force Test Center ground test team set a record for the highest thrust produced by an air-breathing hypersonic engine in Air Force history.

The AEDC Aerodynamic and Propulsion Test Unit at Arnold Air Force Base supports recent testing for the Air Force Research Laboratory Medium Scale Critical Components Scramjet program. The Northrop Grumman-produced engine was successfully operated at conditions above Mach 4 and has set the record for highest thrust produced by an air-breathing hypersonic engine in Air Force history (U.S. Air Force photo)

«AFRL, in conjunction with Arnold Engineering Development Complex (AEDC) and Northrop Grumman, achieved over 13,000 pounds/5,897 kg of thrust from a scramjet engine during testing at Arnold Air Force Base», said Todd Barhorst, AFRL aerospace engineer and lead for the Medium Scale Critical Components program.

The 18-foot-long/5.5-meter-long Northrop Grumman engine endured a half hour of accumulated combustion time during the nine months of testing.

«The series of tests, ran in conjunction with AEDC and AFRL, on this fighter-engine sized scramjet was truly remarkable», said Pat Nolan, vice president, missile products, Northrop Grumman. «The scramjet successfully ran across a range of hypersonic Mach numbers for unprecedented run times, demonstrating that our technology is leading the way in delivering large scale hypersonic platforms to our warfighters».

«The plan for a larger and faster hypersonic air breathing engine was established 10 years ago during the X-51 test program, as the Air Force recognized the need to push the boundaries of hypersonic research», Barhorst said. «A new engine with 10-times the flow of the X-51 would allow for a new class of scramjet vehicles».

An evaluation of the nation’s test facilities concluded that none could test an engine at this large of a scale in a thermally-relevant environment. To address the issue, AEDC’s Aerodynamic and Propulsion Test Unit facility underwent a two-year upgrade to enable large-scale scramjet combustor tests over the required range of test conditions. The AEDC team also successfully leveraged technology developed by CFD Research Corporation under the Small Business Innovative Research program. This technology proved crucial in achieving most of the required test conditions.

«Our collective team has worked hard over the past few years to get to where we are today», said Sean Smith, lead for the AEDC Hypersonic Systems Combined Test Force ground test team. «We’ve encountered numerous challenges along the way that we’ve been able to overcome thanks to the dedication and creativity of the team. We’ve learned quite a bit, and I’m proud of what we’ve accomplished. These groundbreaking tests will lead the way for future hypersonic vehicles for a range of missions».

«After years of hard work, performing analysis and getting hardware ready, it was a great sense of fulfillment completing the first successful test of the world’s largest hydrocarbon fueled scramjet», added Barhorst.

Re-scalable Aperture

Northrop Grumman Corporation has received a contract award from the U.S. Army to develop the next generation tactical radar antenna. The Re-scalable Aperture for Precision Targeting Radar (RAPTR) will be composed of small radar building blocks to allow the antenna to be scaled to fit a wide range of mission and platform requirements.

Northrop Grumman’s Re-scalable Aperture for Precision Targeting Radar (RAPTR), composed of small radar building blocks, will provide advanced surveillance and precision targeting capabilities for a wide range of missions and platforms

RAPTR will improve upon the precision and range of the previous, combat-proven Northrop Grumman tactical radar family to provide a greater level of situational understanding to warfighters. The system will operate in multiple radar modes, including Synthetic Aperture Radar and Ground Moving Target Indicator, to provide a comprehensive operating picture.

«RAPTR’s building block architecture allows us to scale the antenna up or down to suit a wide range of platforms and missions, so it is well suited to the demands of today’s multi-domain battlespace», said Brent Toland, vice president, land and avionics C4ISR (Command, Control, Communications, Computer, Intelligence, Surveillance, and Reconnaissance), Northrop Grumman.

The system will take advantage of common building blocks, allowing for rapid, cost effective production for a variety of applications.

Air Defense

Northrop Grumman Corporation has been awarded a contract for the U.S. Army Maneuver Short Range Air Defense (M-SHORAD) directed energy prototyping initiative. The initiative includes integrating a directed energy weapon system on a Stryker vehicle as a pathfinding effort toward the U.S. Army M-SHORAD objective to provide more comprehensive protection of frontline combat units.

Northrop Grumman has been selected to develop and integrate a directed energy prototype solution on a Stryker combat vehicle for the U.S. Army to better protect highly mobile frontline units. The effort will culminate in a competitive performance checkout leading into a range demonstration that informs Maneuver Short Range Air Defense (M-SHORAD) requirements

«Northrop Grumman is eager to leverage its portfolio of innovative, proven technologies and integration expertise to accelerate delivery of next-generation protection to our maneuver forces», said Dan Verwiel, vice president and general manager, missile defense and protective systems, Northrop Grumman. «Our flexible, open systems approach offers an end-to-end solution for the Army’s growing and ever-changing mission requirements in today’s complex threat environment».

Under the initiative from the Rapid Capabilities and Critical Technologies Office and a contract from Kord Technologies, Northrop Grumman will build and integrate a suite of advanced sensors; target acquisition and tracking; a 50-kilowatt class laser system; and battle-tested command-and-control on an Army Stryker combat vehicle. The effort will culminate in a competitive performance checkout leading into a range demonstration that informs M-SHORAD requirements.

The directed energy M-SHORAD prototypes are part of the progression of an Army technology maturation initiative known as the Multi-Mission High Energy Laser (MMHEL).

The integrated platform allows early involvement with warfighter users to develop tactics, techniques, procedures and concepts of operations for future high energy laser weapons.

The Army’s future M-SHORAD protection for forward-deployed soldiers includes laser weapon systems as an effective complement to kinetic capabilities in countering rockets, artillery and mortars; unmanned aircraft systems; and other aerial threats.

The M-SHORAD directed energy prototyping initiative is managed by the U.S. Army Rapid Capabilities and Critical Technologies Office, Redstone Arsenal, Alabama.

Electronic warfare pod

Northrop Grumman Corporation has received a $44 million contract award for the Electronic Attack Pod Upgrade Program (EAPUP) from the U.S. Air Force. Placed under an existing contract, this third production order will significantly increase the number of EAPUP systems for the Air Force.

Northrop Grumman’s Electronic Attack Pod Upgrade Program brings fifth-generation electronic countermeasures to the fourth-generation fleet

Operating in the modern air warfare environment with advanced, rapidly proliferating electronic warfare systems and radar-guided weapons requires an equally sophisticated level of protection and proven technology. The EAPUP – an upgraded, digital AN/ALQ-131 pod – will replace the Air Force’s current electronic attack pods. The AN/ALQ-131A is currently available to international partners.

«The new technology in EAPUP will protect U.S. Air Force pilots and coalition partner aircraft from modern and future threats», said Michelle Scarpella, vice president and general manager, global logistics and modernization, Northrop Grumman.

Northrop Grumman received the order following a series of rigorous tests designed to verify the system’s capabilities and readiness for operations. The tests were representative of modern combat scenarios and involved multiple, simultaneous threats. The pod demonstrated the ability to identify, locate and counter sophisticated threats and keep aircrews safe during missions in contested airspace.

«The advanced electronic warfare capability integrated in EAPUP is mature, scalable and in production today. Available globally, it is ready to give aircrews the protection they need in dense electromagnetic spectrum environments», said Brent Toland, vice president, land and avionics C4ISR (Command, Control, Communications, Computer, Intelligence, Surveillance, and Reconnaissance), Northrop Grumman.

EAPUP will bring the Air Force’s electronic attack pod inventory into the digital age, delivering fifth-generation capability to fourth-generation aircraft and making it among the most capable electronic warfare pod in the Department of Defense inventory. At the core of EAPUP is Northrop Grumman’s advanced electronic warfare technology, built upon the expertise gained from the company’s broad portfolio of programs for multiple services.

Northrop Grumman has more than 60 years of experience delivering electronic warfare systems for a wide variety of fighter, bomber and transport aircraft.

E-2D Program

Lockheed Martin’s Radar Sensor Systems market segment has been awarded a contract from Northrop Grumman worth over $600 million for Multi-Year Production (MYP) of 24 additional APY-9 radars for the U.S. Navy’s E-2D aircraft program. It’s also known as the Advanced Hawkeye program.

The E2-D Advanced Hawkeye aircraft (Photo courtesy – Navy Visual News Service)

The APY-9 radar program is nearing completion of a current five-year production contract in 2020, and this new award calls for another five years of production – with deliveries spanning from 2021 to 2025. The latest radar order will include Lockheed Martin’s new Advanced Radar Processor.

«We’re excited to have the opportunity to continue producing APY-9 radars for the Navy’s use on its Advanced Hawkeye aircraft and to continue supporting our customers with performance upgrades on a regular basis», Ken Kaminski, Airborne & National Surveillance Radar program director, said.

The APY-9 radar is an Ultra High Frequency (UHF) surveillance system that provides both mechanical and electronic scanning capabilities designed to «see» smaller targets – and more of them – at a greater range, particularly in coastal regions and over land.

«The team has performed extremely well to date in terms of delivering all of our APY-9 systems on or ahead of schedule», Kaminski said.

Production work is performed at Lockheed Martin sites in Syracuse and Owego, New York, and Clearwater, Florida.

 

General Characteristics

Wingspan 24.56 m/80 feet 7 in
Width, wings folded 8.94 m/29 feet 4 in
Length overall 17.60 m/57 feet 8.75 in
Height overall 5.58 m/18 feet 3.75 in
Diameter of rotodome 7.32 m/24 feet
Weight empty 19,536 kg/43,068 lbs
Internal fuel 5,624 kg/12,400 lbs
Takeoff gross weight 26,083 kg/57,500 lbs
Maximum level speed 648 km/h/350 knots/403 mph
Maximum cruise speed 602 km/h/325 knots/374 mph
Cruise speed 474 km/h/256 knots/295 mph
Approach speed 200 km/h/108 knots/124 mph
Service ceiling 10,576 m/34,700 feet
Minimum takeoff distance 410 m/1,346 feet ground roll
Minimum landing distance 537 m/1,764 feet ground roll
Ferry range 2,708 km/1,462 NM/1,683 miles
Crew Members 5
Power Plant 2 × Rolls-Royce T56-A-427A, rated at 5,100 eshp each
Unrefueled >6 hours
In-flight refueling 12 hours

 

Fire Scout

The U.S. Navy declared Initial Operational Capability (IOC) of the MQ-8C Fire Scout unmanned helicopter June 28 clearing the way for fleet operations and training.

Navair says that the MQ-8C Fire Scout has flown over 1,500 hours in more than 700 sorties to date. Northrop Grumman is under contract to produce 38 MQ-8C aircraft for the U.S. Navy (Navair photo)

The MQ-8 C Fire Scout is a sea-based, vertical lift unmanned system that is designed to provide reconnaissance, situational awareness, and precision targeting support for ground, air and sea forces.

«This milestone is a culmination of several years of hard work and dedication from our joint government and industry team», said Captain Eric Soderberg, MQ-8C Fire Scout program manager. «We are excited to get this enhanced capability out to the fleet».

The MQ-8C Fire Scout variant is an endurance and payload upgrade to its predecessor, the MQ-8B, offering up to twelve hours on station depending on payload, and incorporates the commercial Bell 407 airframe.

The Northrop Grumman-built Fire Scout complements the manned MH-60 helicopter by extending the range and endurance of ship-based operations. It provides unique situational awareness and precision target support for the U.S. Navy.

The MQ-8C Fire Scout has flown over 1,500 hours with more than 700 sorties to date. Over the next few years, Northrop Grumman will continue MQ-8C Fire Scout production deliveries to the U.S. Navy to complete a total of 38 aircraft.

The MQ-8C Fire Scout will be equipped with an upgraded radar that allows for a larger field of view and a range of digital modes including weather detection, air-to-air targeting and a Ground Moving Target Indicator (GMTI). It will deploy with Littoral Combat Ship (LCS) in fiscal year 2021 while the MQ-8B conducts operations aboard LCS in 5th and 7th Fleets.

Hypersonic weapon

Building on years of collaboration, Raytheon Company and Northrop Grumman Corporation have signed a teaming agreement to develop, produce and integrate Northrop Grumman’s scramjet combustors to power Raytheon’s air-breathing hypersonic weapons. The teaming agreement uses the combined capabilities of both companies to accelerate development and demonstrate readiness to produce the next generation of tactical missile systems.

Hypersonic vehicles operate at extreme speeds and high altitudes. Northrop Grumman and Raytheon are teaming to accelerate air-breathing hypersonic vehicle development

Scramjet engines use high vehicle speed to forcibly compress incoming air before combustion to enable sustained flight at hypersonic speeds. Such speeds reduce flight times and increase weapon survivability, effectiveness and flexibility.

«The Raytheon/Northrop Grumman team is quickly developing air-breathing hypersonic weapons to keep our nation ahead of the threat», said Doctor Thomas Bussing, Raytheon Advanced Missile Systems vice president. «This agreement combines Raytheon’s decades of tactical missile expertise with Northrop Grumman’s extensive scramjet engine development experience to produce the best possible weapons».

Northrop Grumman and Raytheon are working under a $200 million Hypersonic Air-breathing Weapon Concept, or HAWC, program contract to deliver an affordable, effective and producible cruise missile for DARPA and the U.S. Air Force.

«This teaming agreement extends our strong partnership with Raytheon on this critical technology capability. Our deep heritage in propulsion, fuzes and warheads will help accelerate readiness of tomorrow’s missiles to meet range, survivability, safety and lethality requirements», said Mike Kahn, vice president and general manager of Northrop Grumman’s Defense Systems. «Together with Raytheon, we intend to make great strides toward improving our nation’s high-speed weapon systems, which are critical to enhancing our warfighters’ capabilities for greater standoff and quicker time to target».

Under the agreement, Raytheon and Northrop Grumman will continue to collaborate on HAWC and future air-breathing hypersonic missiles. Both companies are investing in hypersonic technologies and programs to ensure the military has a robust portfolio.

Launch Abort System

Northrop Grumman Corporation shipped the inert abort motor for NASA’s Orion spacecraft Launch Abort System (LAS) from the Northrop Grumman facility in Magna, Utah, to Kennedy Space Center, Florida. It will be integrated with the LAS and Orion spacecraft destined for the first flight of NASA’s Space Launch System, designated Artemis 1.

The launch abort motor for Artemis 1, the first launch of NASA’s Space Launch System and Orion spacecraft, at Northrop Grumman’s Bacchus facility in Magna, Utah, before leaving June 3 for Kennedy Space Center, Florida

The abort motor is a key component of the LAS, which provides an enhancement in spaceflight safety for astronauts. The shipment of the abort motor brings Orion one step closer to Artemis 1 and to enabling humans to explore the moon, Mars and other deep-space destinations beyond low-Earth orbit.

«Crew safety is always a top priority, and Orion’s Launch Abort System is state-of-the-art», said Charlie Precourt, vice president, propulsion systems, Northrop Grumman, and former four-time shuttle astronaut. «The solid propulsion we use in the abort motor is high-performing and reliable; it should inspire confidence in any future Orion crew members and their families».

The purpose of Orion’s LAS is to safely pull the spacecraft and crew out of harm’s way in the event of an emergency on the launch pad or during initial launch ascent. The abort motor underwent a series of component tests culminating in a successful static test in December 2018 at the Northrop Grumman facility in Promontory, Utah. Data from these tests confirmed motor activation within milliseconds and under both extreme cold and hot temperatures, ensuring crew safety.

The abort motor, which stands over 17 feet/5.2 m tall and spans three feet in diameter, is unique in that it has a manifold with four exhaust nozzles. The motor, shipped via thoroughfare in a transporter, will be unloaded at Kennedy Space Center. Integrating the abort motor is the first step in Orion’s LAS integration process.

Northrop Grumman’s next major abort motor milestone is the Ascent Abort-2 Flight Test (AA-2) set to take place at Cape Canaveral Air Force Station, Florida, in early July. In addition to the launch abort motor, Northrop Grumman is providing the launch vehicle designed to simulate an SLS launch for AA-2. The abort will take place during Max-Q, when the dynamic pressure on the spacecraft is greatest.

Northrop Grumman is responsible for the launch abort motor through a contract to Lockheed Martin, Orion’s prime contractor. The Orion LAS program is managed out of NASA’s Langley Research Center in Virginia. Northrop Grumman produces the abort motor at its Magna, Utah facility and the attitude control motor for the LAS at the company’s Elkton, Maryland facility. The company also manufactures the composite case for the abort motor at its facility in Clearfield, Utah.

GaN-based design

Northrop Grumman Corporation demonstrated its in-production, innovative solution for the U.S. Army’s Lower Tier Air and Missile Defense Sensor (LTAMDS) program during an open «Sense Off» competition at White Sands Missile Range in New Mexico from May 16 – June 1.

Northrop Grumman’s 360-degree coverage, GaN-based LTAMDs capability was successfully demonstrated to the U.S. Army during a two-week Sense Off at White Sands Missile Range, New Mexico

«Our mature, gallium nitride (GaN)-based design demonstrated an advanced system with our current capabilities aligned with the Army’s requirements», said Christine Harbison, vice president, land and avionics C4ISR division, Northrop Grumman. «Our solution supports the need for rapid deployment with an architecture that allows for significant margin of capability growth to protect our warfighters today and in the rapidly changing threat environment».

Northrop Grumman’s LTAMDS solution demonstrated a mission capable system with growth potential leveraging advanced, affordable, low-risk, in-production and fielded technologies from across the company’s Active Electronically Scanned Array (AESA) portfolio. The system provides a 360-degree full-sector mission capability. Designed from the outset to meet the warfighters’ current and future needs, Northrop Grumman’s LTAMDS solution aligns with the Army’s top requirements, including speed to field. An embedded logistics capability enables quicker and more affordable modernization and better sustainability over the life-cycle of the program.

Northrop Grumman’s LTAMDS solution builds upon the company’s decades of expertise in sea, land, air and space-based military radar technology and high-performance microelectronics. The company’s offering is the latest Northrop Grumman sensor product to incorporate and use GaN high power density radio frequency components for greater performance.

Having successfully completed the demonstration phase, the company will deliver its final LTAMDS proposal to the Army in the coming weeks for evaluation.