Tag Archives: Northrop Grumman

NGJ program

The U.S. Navy has awarded Northrop Grumman Corporation a $35.1 million, 20-month contract to demonstrate existing technologies for the low-band frequency jammer, the second increment of the Next Generation Jammer (NGJ) program.

The U.S. Navy selected Northrop Grumman to demonstrate existing technologies for the Next Generation Jammer Low Band, which will fly on the EA-18G Growler to provide advanced airborne electronic attack capabilities. The NGJ system will give Growlers – including this aircraft assigned to the Cougars of Electronic Attack Squadron (VAQ) 139 – the ability to defeat increasingly advanced and capable threats, making the carrier strike group more survivable (U.S. Navy photo by Mass Communication Specialist Seaman Bill M. Sanders/Released)
The U.S. Navy selected Northrop Grumman to demonstrate existing technologies for the Next Generation Jammer Low Band, which will fly on the EA-18G Growler to provide advanced airborne electronic attack capabilities. The NGJ system will give Growlers – including this aircraft assigned to the Cougars of Electronic Attack Squadron (VAQ) 139 – the ability to defeat increasingly advanced and capable threats, making the carrier strike group more survivable (U.S. Navy photo by Mass Communication Specialist Seaman Bill M. Sanders/Released)

Northrop Grumman has been the Navy’s airborne electronic attack integrator for more than 50 years. In addition to its work on NGJ Low Band (NGJ-LB), the company continues to support the fleet with advanced electronic attack capabilities.

The NGJ system will augment, and ultimately replace the EA-18G Growler aircraft’s aging ALQ-99 tactical jammer with advanced airborne electronic attack capabilities for defeating increasingly advanced and capable threats. Developed in three frequency-focused increments – high-band, mid-band and low-band – NGJ will be capable of jamming multiple radar signals at the same time, including surveillance and air-defense radars.

The Naval Air Systems Command (NAVAIR) selected Northrop Grumman for the NGJ-LB Demonstration of Existing Technology phase. The contract was awarded October 25.

Northrop Grumman’s offer was selected based on technical merit and potential maturity for accomplishing the low-band mission. The company’s solution also provides rapid operational capability to the fleet.

«Northrop Grumman will deliver a mature, low-risk and exceedingly capable solution for Next Generation Jammer Low Band that outpaces evolving threats and enables the Navy’s speed-to-fleet path», said Thomas Jones, vice president and general manager, airborne Command, Control, Communications, Computer, Intelligence, Surveillance, and Reconnaissance (C4ISR) systems, Northrop Grumman.

«Our NGJ-LB pod provides multi-mission capability for electromagnetic maneuver warfare. We stand ready to demonstrate advancements in this mission area and deliver ahead of schedule».

Work primarily will be performed in Linthicum, Maryland, and Bethpage and Amityville, New York.

Full Rate Production

The U.S. Navy has awarded Northrop Grumman Corporation a $171 million contract for Lot 7 Full Rate Production (FRP) of the AGM-88E Advanced Anti-Radiation Guided Missile (AARGM). The contract will deliver advanced capability to U.S. warfighters as well as the Italian Air Force and Royal Australian Air Force to counter the accelerating proliferation of surface-to-air threats.

Northrop Grumman’s Advanced Anti-Radiation Guided Missile impacting a target
Northrop Grumman’s Advanced Anti-Radiation Guided Missile impacting a target

«The rapid proliferation of today’s threats require the most advanced solution to detect and defeat surface-to-air-threats and protect our nation and allies», said Cary Ralston, vice president and general manager, defense electronic systems, Northrop Grumman. «AARGM is an affordable, game-changing solution and we are proud to provide this capability to the warfighter».

AARGM is a supersonic, air-launched tactical missile system, upgrading legacy AGM-88 HARM systems with capability to perform destruction of enemy air defense missions. AARGM is the most advanced system for pilots, with in-cockpit, real-time electronic order of battle situational awareness against today’s modern surface-to-air threats. It is able to rapidly engage traditional and non-traditional advanced land- and sea-based air-defense threats, as well as striking, time-sensitive targets.

AARGM is a U.S. Navy and Italian Air Force international cooperative major acquisition program with the U.S. Navy as the executive agent. AARGM is currently deployed and supporting operational requirements for the U.S. Navy and U.S. Marine Corps. The missile is integrated into the weapons systems on the FA-18C/D Hornet, FA-18E/F Super Hornet and EA-18G Growler aircraft. The Italian Air Force (ItAF) recently completed operational testing of AARGM on their Tornado Electronic Combat and Reconnaissance (ECR) aircraft. A series of flight tests culminated with direct hits on critical air defense threat targets, confirming the operational effectiveness and suitability of AARGM on the Italian Air Force Tornado and allowing the Italian Air Force to transition AARGM into operational squadrons.

Infrared
Countermeasure

Northrop Grumman Corporation teamed with the U.S. Army to develop the Common Infrared Countermeasure (CIRCM) system, and after undergoing a rigorous testing process to ensure system readiness for the demands of combat operations, the CIRCM system has achieved Milestone C. This critical milestone, awarded by the Department of Defense Milestone Decision Authority, marks the end of the development and testing phase and enables the beginning of production and deployment.

CIRCM is designed to protect aircraft from infrared guided missiles. The system has now received Milestone C approval from the Department of Defense, indicating readiness for production and fielding. Northrop Grumman teamed with the U.S. Army to develop the CIRCM system
CIRCM is designed to protect aircraft from infrared guided missiles. The system has now received Milestone C approval from the Department of Defense, indicating readiness for production and fielding. Northrop Grumman teamed with the U.S. Army to develop the CIRCM system

CIRCM is a lightweight system that uses laser energy to defend aircraft against advanced infrared missiles. It has a modular open systems architecture designed to evolve to defeat emerging infrared threats.

To achieve Milestone C, Northrop Grumman has worked closely with the Army to thoroughly test CIRCM. The system has undergone thousands of hours of laboratory, flight and free flight missile testing to verify its performance in a range of realistic combat scenarios. Throughout the process, CIRCM demonstrated its ability to protect aircrews by countering threats.

«With the achievement of Milestone C, we have collectively taken an important step toward getting this critical, life-saving technology to the warfighter», said Bob Gough, vice president, land and avionics Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) division, Northrop Grumman. «The CIRCM capability is mature, reliable and has proven to be mission-effective».

Northrop Grumman’s infrared countermeasures systems have been installed on more than 1,500 aircraft, representing more than 80 different aircraft types, including large and small fixed-wing, rotary wing and tilt-rotor platforms.

«Vanguard» radar

Northrop Grumman Corporation unveiled its «Vanguard» radar solution; a multi-function, open architecture system that can be easily scaled and applied to multiple missions and platforms.

Northrop Grumman’s Vanguard radar is a modular, scalable radar architecture that can meet a wide range of mission requirements and integrate into a variety of platforms across domains
Northrop Grumman’s Vanguard radar is a modular, scalable radar architecture that can meet a wide range of mission requirements and integrate into a variety of platforms across domains

«Our Vanguard solution redefines the way we produce radars and the capabilities possible within one flexible, scalable design», said Paul Kalafos, vice president, surveillance and electromagnetic maneuver warfare, Northrop Grumman. «Vanguard’s modular radar panels are a building block for a multitude of future radar aperture applications».

With its modular, panel-based structure, each radar panel represents a flexible building block that can be tailored to meet changing mission requirements. Each panel can act independently as its own radar, but can also be connected with the desired number of other radar panels to form one single, larger radar array. Each panel is also field replaceable, creating life-cycle cost savings and preventing long maintenance delays that prevent operation.

Large and small systems alike can use the same Vanguard radar building block, allowing for rapid, cost effective production and maximum system maturity.

Northrop Grumman has conducted more than 10 rigorous test flights and the Vanguard radar continues to exceed expectations and show exceptional stability, reliability and performance.

Crucial modes to the air-to-ground radar mission, including Ground Moving Target Indicator, Dismounted Moving Target Indicator, and Synthetic Aperture Radar mapping were executed successfully in Northrop Grumman’s first test flight of its solution in April 2017. Since that achievement, Vanguard has also shown the ability to rapidly adopt third party software and interface with the Open Mission Suite Battle Management Command and Control system.

Flight tests

Northrop Grumman Corporation recently began flight tests for MQ-8C Fire Scout aircraft produced in Moss Point at the Trent Lott International Airport, a major milestone for the company and the region’s aerospace economy.

Northrop Grumman’s MQ-8C Fire Scout takes off for its first flight out of Trent Lott International Airport in Moss Point, Mississippi
Northrop Grumman’s MQ-8C Fire Scout takes off for its first flight out of Trent Lott International Airport in Moss Point, Mississippi

Northrop Grumman’s Moss Point facility is key to producing and testing the MQ-8C Fire Scout, the U.S. Navy’s newest autonomous helicopter that is bringing increased speed, endurance and payload capacity to distributed maritime operations. The U.S. Navy recently completed initial operational test and evaluation aboard the USS Coronado (LCS-4) for the MQ-8C Fire Scout, which has over 1,500 program flight hours. The aircraft is a modified Bell 407 helicopter that is produced in Moss Point and supports quality manufacturing jobs in Mississippi.

«Building on Northrop Grumman’s recent announcement of new production capabilities in Moss Point and a 40 percent increase in employment at the site, the ability to now conduct MQ-8C Fire Scout flight tests where the production occurs will bring new efficiencies and effectiveness to our local operations and improve our ability to serve the U.S. Navy», said Melissa Packwood, program director, Fire Scout, Northrop Grumman.

In June, elected officials joined local employees to cut the ribbon on the new machine shop section that delivers important capabilities at Northrop Grumman’s Moss Point manufacturing center. For more than a decade, Gulf Coast employees have manufactured rotary and fixed wing autonomous systems in Moss Point that support the U.S. and its global allies. Recent facility upgrades have allowed for new work on manned aircraft to come to the site, diversifying the portfolio of work and bringing new jobs to the region.

In April 2004, Northrop Grumman broke ground in Moss Point with site construction beginning in 2005. In April 2006, Northrop Grumman contributed to aerospace industry growth in southern Mississippi when the ribbon was cut on the 101,000 square-foot facility. The company celebrated its 10-year anniversary at the site in 2016 and recently extended its lease adjacent to Trent Lott International Airport through 2026.

 

Specifications

Length 41.4 feet/12.6 m
Width 7.8 feet/2.4 m
Blades Folded Hangar 7.8×34.7×10.9 feet/2.4×10.6×3.3 m
Height 10.9 feet/3.3 m
Rotor Diameter 35 feet/10.7 m
Gross Takeoff Weight 6,000 lbs./2,721.5 kg
Engine Rolls-Royce M250-C47B with FADEC (Full Authority Digital Electronic Control)

 

Performance

Speed 140 knots/161 mph/259 km/h (maximum)
Operational Ceiling 17,000 feet/5,182 m
Maximum Endurance 14 hrs.
Maximum Payload (Internal) 1,000 lbs./453.6 kg
Typical Payload 600 lbs./272 kg (11 hrs. endurance)
Maximum Sling Load 2,650 lbs./1,202 kg

 

Engine Specifications

Power 651 shp/485.45 kW
Pressure ratio 9.2
Length 42.95 inch/1.09 m
Diameter 24.81 inch/0.63 m
Basic weight 274 lbs./124.3 kg
Compressor 1CF (centrifugal high-pressure)
Turbine 2HP (two-stage high-pressure turbine), 2PT (two-stage power turbine)

 

Inertial Navigator

Northrop Grumman Corporation has successfully completed the Critical Design Review (CDR) phase of the U.S. Navy’s WSN-12 Inertial Sensor Module and will begin production of ten pre-production units.

The U.S. Navy WSN-12 Inertial Navigator will be used on the Virginia Submarines and on the Arleigh-Burke class destroyers, as well as a host of other ships (Image courtesy U.S. Navy)
The U.S. Navy WSN-12 Inertial Navigator will be used on the Virginia Submarines and on the Arleigh-Burke class destroyers, as well as a host of other ships (Image courtesy U.S. Navy)

The WSN-12 is poised to become the primary shipboard inertial navigation system for most U.S. combatant vessels and will be installed on all vessels of the DDG, CG, CVN and SSN classes. The system brings new technology and improved accuracy to these platforms. The Inertial Sensor Module is a primary subsystem of the WSN-12, and includes the inertial sensors, electromechanical equipment supporting them and software to compute the navigation solution. The shipboard inertial navigation system measures, computes and distributes navigation data to all users, including attitude, velocity and position information.

«Northrop Grumman has met or exceeded objectives in all aspects of the sensor design and was able to demonstrate performance in the testing of the engineering development models», said Captain Jon Garcia, Naval Sea Systems Command (NAVSEA) Integrated Warfare Systems 6.0 (IWS6.0). «We are looking forward to successful integration testing this year and receiving the sensor pre-production units next year».

«Completion of this CDR keeps this program on track to deliver exceptional navigation accuracy to the fleet», said Todd Leavitt, vice president, maritime systems, Northrop Grumman. «The WSN-12 Inertial Sensor Module provides technology that enables improvements to navigation accuracy and reliability, benefiting all systems that depend upon it».

Northrop Grumman is a leading global security company providing innovative systems, products and solutions in autonomous systems, cyber, Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR), space, strike, and logistics and modernization to customers worldwide.

Wireless Transmission

Northrop Grumman Corporation and the Defense Advanced Research Projects Agency (DARPA) have set a new standard for wireless transmission by operating a data link at 100 gigabits per second (Gbps) over a distance of 20 kilometers/12.4 miles in a city environment.

100G hardware will be flown aboard the Proteus demonstration aircraft developed by Northrop Grumman subsidiary Scaled Composites
100G hardware will be flown aboard the Proteus demonstration aircraft developed by Northrop Grumman subsidiary Scaled Composites

The two-way data link, which featured active pointing and tracking, was demonstrated January 19, 2018 in Los Angeles.

The blazing data rate is fast enough to download a 50 Gigabyte blue ray video in four seconds. The demonstration marked the successful completion of Northrop Grumman’s Phase 2 contract for DARPA’s 100 Gbps (100G) RF Backbone program.

The 100G system is capable of rate adaptation on a frame by frame basis from 9 Gbps to 102 Gbps to maximize data rate throughout dynamic channel variations. Extensive link characterization demonstrated short-term error-free performance from 9 to 91 Gbps, and a maximum data rate of 102 Gbps with 1 erroneous bit received per ten thousand bits transmitted.

The successful data link results from the integration of several key technologies. The link operates at millimeter wave frequencies (in this case, 71-76 gigahertz and 81-86 gigahertz) with 5 gigahertz of bandwidth, or data carrying capacity, and uses a bandwidth efficient signal modulation technique to transmit 25 Gbps data streams on each 5 gigahertz channel. To double the rate within the fixed bandwidth, the data link transmits dual orthogonally polarized signals from each antenna. Additionally, the link transmits from two antennas simultaneously (spatial multiplexing) and uses Multiple-Input-Multiple-Output (MIMO) signal processing techniques to separate the signals at two receiving antennas, thus again doubling the data rate within the fixed bandwidth.

According to Louis Christen, director, research and technology, Northrop Grumman, «This dramatic improvement in data transmission performance could significantly increase the volume of airborne sensor data that can be gathered and reduce the time needed to exploit sensor data».

«Next generation sensors such as hyperspectral imagers typically collect data faster, and in larger quantity than most air-to-ground data links can comfortably transmit», said Christen. «Without such a high data rate link data would need to be reviewed and analyzed after the aircraft lands».

By contrast, a 100G data link could transmit high-rate data directly from the aircraft to commanders on the ground in near real time, allowing them to respond more quickly to dynamic operations.

The successful 100G ground demonstration sets the stage for the flight test phase of the 100G RF Backbone program. This next phase, which started in June, demonstrates the 100G air-to-ground link up to 100 Gbps over a 100 km/62.1 miles range and extended ranges with lower data rates. The 100G hardware will be flown aboard the Proteus demonstration aircraft developed by Northrop Grumman subsidiary Scaled Composites.

Northrop Grumman’s 100G industry team includes Raytheon, which developed the millimeter wave antennas and related RF electronics and Silvus Technologies, which provides the key spatial multiplexing and MIMO signal processing technologies.

Northrop Grumman and DARPA 100 gigabits per second link demonstrated over 20 kilometer city environment on January 19, 2018 in Los Angeles
Northrop Grumman and DARPA 100 gigabits per second link demonstrated over 20 kilometer city environment on January 19, 2018 in Los Angeles

Hornet upgrade

Northrop Grumman Corporation has successfully installed a production APG-83 Scalable Agile Beam Radar (SABR) on a U.S. Marine Corps F/A-18C Hornet at Marine Corps Air Station Miramar, California.

At the request of the Marine Corps, Northrop Grumman successfully performed a fit check of a production APG-83 Scalable Agile Beam Radar (SABR) on a F/A-18C Hornet at Marine Corps Air Station (MCAS) Miramar in California
At the request of the Marine Corps, Northrop Grumman successfully performed a fit check of a production APG-83 Scalable Agile Beam Radar (SABR) on a F/A-18C Hornet at Marine Corps Air Station (MCAS) Miramar in California

The fit check, performed August 2 at the request of the Marine Corps, demonstrated APG-83 SABR is a low-risk option for installation on F/A-18C/D Hornets and that the radar can be integrated with the aircraft’s power, cooling and avionics systems.

«The Marine Corps asked for an Active Electronically Scanned Array (AESA) solution due to the radar’s increase in reliability and sustainability with no decrease in operational performance», said Greg Simer, vice president, integrated avionics systems, Northrop Grumman. «The Marine Corps’ stated objective is to modify an in-production, fielded AESA while meeting the current size, weight, power and cooling requirements of the F/A-18 C/D. We have proven our production APG-83 SABR radar fits into the F/A-18 C/D, achieving the objectives and bringing the technical maturity needed to attain the Marine Corps fleet insertion timelines».

The APG-83 is a multifunction AESA fire control radar that delivers fifth-generation fighter capabilities to counter and defeat increasingly sophisticated threats.

Northrop Grumman is competing to replace the mechanically-scanned radar on F/A-18C/Ds with an AESA radar. The Marine Corps plans to upgrade the radar on approximately 100 F/A-18C/Ds. The APG-83 SABR will address survivability, reliability and maintainability concerns for the U.S. Marine Corps.

Design Review

Northrop Grumman Corporation supported Eastern Shipbuilding Group (ESG) in their Final Critical Design Review (FCDR) for the U.S. Coast Guard’s (USCG) Offshore Patrol Cutter (OPC) Program.

The Coast Guard Offshore Patrol Cutter. Rendering courtesy Eastern Shipbuilding Group
The Coast Guard Offshore Patrol Cutter. Rendering courtesy Eastern Shipbuilding Group

Northrop Grumman serves as ESG’s C4ISR and control systems integrator for OPC, with responsibilities that include the integrated bridge, navigation, command and control, computing network, data distribution, machinery control, and propulsion control system design and production.

«Northrop Grumman has been a trusted member of the ESG team since the inception of the OPC program», said Joey D’Isernia, president, ESG. «Their expertise in systems design and integration has contributed to ESG’s ongoing success in achieving the USCG’s requirements for the OPC platform».

The OPC will be the Coast Guard’s newest class of cutters, with 25 ships planned for the class. It will provide the majority of offshore presence by the Coast Guard’s cutter fleet, assisting in missions ranging from combating transnational organized criminal networks off Central America to patrolling in the increasingly accessible Arctic.

«Northrop Grumman’s C4ISR and control systems architecture for OPC is innovative, affordable and open», said Todd Leavitt, vice president, maritime systems, Northrop Grumman. «FCDR approval establishes a C4ISR/control systems design baseline that fulfills the newest generation of Coast Guard mission requirements, and is easily scalable for future platforms».

FCDR was held on June 27-28, with OPC Production Readiness Review to follow later this year. Northrop Grumman will operate the OPC Test and Integration Facility for C4ISR, and the Land-Based Test Facility for control systems, at their facility in Charlottesville.

Desired stable orbit

Northrop Grumman Corporation announced that NASA’s Transiting Exoplanet Survey Satellite (TESS) has successfully reached its desired stable orbit and begun science operations. The spacecraft was built and operated by Northrop Grumman. The TESS spacecraft instrument is the set of four wide-field cameras designed and built by Massachusetts Institute of Technology (MIT) and MIT Lincoln Lab. The principal goal of the TESS mission is to use its four wide-field cameras to detect planets around bright host stars in the solar neighborhood so that detailed characterizations of the planets and their atmospheres can be performed through follow-up observations from telescopes on Earth and in space. As the first-ever satellite to perform an exoplanet survey of nearly the entire sky, TESS will identify planets ranging from Earth-sized to Jupiter-sized, orbiting a wide range of stellar types at various orbital distances.

NASA’s Transiting Exoplanet Survey Satellite (TESS) was designed, manufactured and tested by Northrop Grumman in the company’s Dulles, Virginia, satellite manufacturing facility. The company is also responsible for handling mission operations for the observatory
NASA’s Transiting Exoplanet Survey Satellite (TESS) was designed, manufactured and tested by Northrop Grumman in the company’s Dulles, Virginia, satellite manufacturing facility. The company is also responsible for handling mission operations for the observatory

The TESS spacecraft was designed, manufactured and tested by Northrop Grumman at the company’s satellite manufacturing facility in Dulles. The company is also responsible for handling mission operations for the observatory. TESS was launched April 18, 2018, from Cape Canaveral Air Force Station, Florida. After launch, the observatory went through a series of tests and began preparation for a series of in-space maneuvers, including a lunar gravity assist, to reach its targeted highly-elliptical orbit. This lunar flyby was executed May 17 and the final period-adjustment maneuver was performed May 29.

«The TESS observatory is in excellent condition after completing the journey to its final orbit», said Steve Krein, vice president, science and environmental satellite programs, Northrop Grumman. «TESS is another example of our ability to deliver successful scientific space missions that shape our knowledge of the known universe. We are proud to provide critical mission operations for TESS as it continues a historic journey to identify new planets outside our solar system».

The four TESS cameras developed by MIT project partners are integrated with Northrop Grumman’s LEOStar-2 bus, a flight-proven and flexible satellite platform that accommodates a wide variety of missions. The company has several other satellites in production for upcoming NASA missions including the Earth science ICESat-2 and Landsat-9 satellites and the JPSS-2, -3 and -4 weather spacecraft which use the larger LEOStar-3 bus, as well as the Ionospheric Connection Explorer (ICON) LEOStar-2 satellite to be launched later this year.

TESS is a NASA astrophysics explorer mission led by the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners besides Northrop Grumman include NASA’s Ames Research Center in California’s Silicon Valley; the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts; MIT’s Lincoln Laboratory in Lexington, Massachusetts; and the Space Telescope Science Institute in Baltimore, Maryland. More than a dozen universities, research institutes and observatories worldwide are participants in the mission.