Tag Archives: Northrop Grumman

Radar Upgrade

The U.S. Air Force selected Northrop Grumman Corporation’s APG-83 Scalable Agile Beam Radar (SABR) as the Active Electronically Scanned Array (AESA) for its F-16 radar upgrade.

AESA (advanced electronically scanned array)
AESA (advanced electronically scanned array)

Northrop Grumman will upgrade 72 U.S. Air National Guard F-16s to meet a U.S. Northern Command Joint Emergent Operational Need for homeland defense.

«AESA radar upgrades are critically important to give the F-16 community, the tactical advantage it deserves, and we are honored to provide this differentiating technology for the safety and mission effectiveness of our warfighters», said Bob Gough, vice president, combat avionics systems, Northrop Grumman. «The APG-83 SABR system is in full rate production and available now for U.S. and international F-16 upgrades».

The radar upgrade extends the operational viability and reliability of the F-16 and provides pilots with 5th generation fighter radar capabilities to counter and defeat increasingly sophisticated threats.

The greater bandwidth, speed, and agility of Northrop Grumman’s APG-83 SABR enables the F-16 to detect, track and identify greater numbers of targets faster and at longer ranges. In addition, the radar can operate in hostile electronic environments and features all-weather, high-resolution synthetic aperture radar mapping, which presents the pilot with a large surface image enabling precision target identification and strike.

The APG-83 SABR has also been selected by a growing number of international customers and is the base radar for Lockheed Martin’s F-16 Block 70. Northrop Grumman began delivering production APG-83 radars for its first international customer on schedule at the end of 2016.

United States Air Force Selects the Northrop Grumman APG-83 SABR for F-16 AESA Radar Upgrade
United States Air Force Selects the Northrop Grumman APG-83 SABR for F-16 AESA Radar Upgrade

The APG-83 AESA provides the following capability enhancements over legacy mechanically scanned APG-66 & APG-68 radars to ensure F-16s remain operationally viable and sustainable for decades to come:

  • Autonomous, all-environment stand-off precision targeting;
  • BIG SAR wide area high-res maps;
  • High quality, coordinate generation;
  • Greater target detection and tracking range;
  • Faster search and target acquisition;
  • Smaller target detection;
  • Multi-target tracking;
  • Robust electronic protection (A/A and A/G);
  • SABR 5th Gen Capability;
  • Enhanced combat ID;
  • Interleaved mode operations for greater situational awareness;
  • Maritime modes;
  • 3-5× greater reliability and availability.

 

Spirit arrives in UK

Two B-2 Spirit stealth bombers joined B-1B Lancers and B-52H Stratofortresses June 9, 2017, to participate in theater bomber assurance and deterrence operations.

A B-2 Spirit deployed from Whiteman Air Force Base, Missouri, lands on the flightline at Royal Air Force Fairford, United Kingdom, June 9, 2017. The B-2 regularly conducts strategic bomber missions that demonstrate the credibility of the bomber forces to address a global security environment (U.S. Air Force photo/ Technical Sergeant Miguel Lara III)
A B-2 Spirit deployed from Whiteman Air Force Base, Missouri, lands on the flightline at Royal Air Force Fairford, United Kingdom, June 9, 2017. The B-2 regularly conducts strategic bomber missions that demonstrate the credibility of the bomber forces to address a global security environment (U.S. Air Force photo/ Technical Sergeant Miguel Lara III)

Three B-52Hs Stratofortresses from Barksdale Air Force Base (AFB), Louisiana, and three B-1Bs Lancers from Ellsworth AFB, South Dakota, along with approximately 800 Airmen, are currently supporting exercises Saber Strike and Baltic Operations in the U.S. European Theater.

While not actively participating in ongoing regional exercises, the B-2s Spirit join the other Air Force Global Strike Command assets in support of recurring bomber assurance and deterrence operations. Bomber deployments enhance the readiness and training necessary to respond to any contingency or challenge across the globe.

«The bomber assurance and deterrence missions these three aircraft are supporting are key to reinforcing our commitment to our allies in NATO – in a very visible, very tangible way – that we stand shoulder to shoulder with them, no matter what», said Colonel Jared Kennish, the 322nd Air Expeditionary Group commander.

U.S. Strategic Command routinely conducts bomber operations across the globe as a demonstration of commitment to collective defense and to integrate with geographic combatant commands operations and activities. This is the first time that all three bomber platforms have been located together in the European theater, and only the second time total in Air Force Global Strike Command (AFGSC) history; the first was in Guam in August 2016.

«This short-term deployment demonstrates the flexible global strike capabilities of the U.S. bomber force, and ensures bomber crews maintain a high state of readiness», said Kennish. «The training will provide opportunities to integrate capabilities with regional partners, and is part of the United States’ commitment to supporting global security».

A number of total force Airmen from Whiteman AFB, Missouri, are supporting the B-2 Spirit operation. Many, including Kennish, are members of the Missouri Air National Guard’s 131st Bomb Wing. The Guard wing has cleared a number of operational performance evaluations and readiness assessments to obtain full operational capability to perform the strategic bomber mission of the B-2 Spirit alongside the active duty 509th Bomb Wing, at home and at Royal Air Force Fairford.

Members of the 131st BW have been a part of every previous bomber assurance and deterrence operation; however, this is the first time that the operations of all three strategic bombers has been led by a guardsman, further signaling the full arrival of the total force construct in AFGSC.

«There may have been a time early in our transition when people wondered if our two wings could make (total force integration) work in the B-2 Spirit operations, maintenance and support missions, but we’ve long since proved the concept at Whiteman (AFB)», said Kennish. «Operations like the ones we’re supporting this month just put an exclamation point on our record of total force team success».

 

General Characteristics

Primary function Multi-role heavy bomber
Contractor Northrop Grumman Corp.
Power Plant 4 General Electric F118-GE-100 engines
Thrust 19,000 lbs/8,618 kg/84,5 kN each engine
Wingspan 172 feet/52.12 m
Length 69 feet/20.9 m
Height 17 feet/5.1 m
Weight 160,000 lbs/72,575 kg
Maximum Take-Off Weight (MTOW) 336,500 lbs/152,634 kg
Fuel Capacity 167,000 lbs/75,750 kg
Payload 40,000 lbs/18,144 kg
Speed High subsonic
Range 6,000 NM/11,112 km unrefueled; 10,000 NM/18,520 km with one refueling
Ceiling 50,000 feet/15,240 m
Armament Can deliver a variety of conventional and nuclear weapons, including precision-guided munitions, and gravity bombs
Crew Two pilots, with provisions for a third crew member if future missions require it
Unit cost Approximately $1.157 billion
Initial operating capability April 1997
Inventory Active force: 20 (1 test)

 

C-RAM Test

The U.S. Army selected Northrop Grumman Corporation’s Highly Adaptable Multi-Mission Radar (HAMMR) to demonstrate its multi-mission capability at the 2017 counter-rocket, artillery and mortar (C-RAM) test at Yuma Proving Ground earlier this year.

HAMMR incorporates an Active Electronically Scanned Array fighter radar mounted on a ground vehicle or towable trailer to provide continuous 360-degree protection against multiple ground and airborne targets – all while operating on-the-move so soldiers on the ground can maintain their operational pace without sacrificing protection
HAMMR incorporates an Active Electronically Scanned Array fighter radar mounted on a ground vehicle or towable trailer to provide continuous 360-degree protection against multiple ground and airborne targets – all while operating on-the-move so soldiers on the ground can maintain their operational pace without sacrificing protection

HAMMR is a multi-mission sensor that provides the warfighter with situational awareness, counter-fire operations, air defense, early warning and airspace management capabilities. During this test, the system successfully detected and identified Groups I and II unmanned aerial systems, providing real-time situational awareness to the operator. HAMMR also validated its ability to connect to the Army’s Forward Area Air Defense command and control system, which enables the communication of information from the system back to the force.

HAMMR incorporates an Active Electronically Scanned Array (AESA) fighter radar mounted on a ground vehicle or towable trailer to provide continuous 360-degree protection against multiple ground and airborne targets – all while operating on-the-move so soldiers on the ground can maintain their operational pace without sacrificing protection. The modular self-contained system includes on-board prime power and cooling, AESA and radar electronics, and operator/maintainer display modules. These modules support multiple packaging concepts, making HAMMR easily adaptable to multiple vehicle types, fixed installations and C2 interfaces.

«HAMMR is the only AESA radar out there today that can support our maneuver forces’ on-the-move multi-mission operation», said Roshan Roeder, vice president, mission solutions, Northrop Grumman. «Since HAMMR shares common hardware with our fighter aircraft radars, our customers realize the cost advantages of high-volume AESA production and benefit from the inherent reliability of this mature, proven technology».

First Flight from LCS

Northrop Grumman Corporation’s autonomous helicopter, MQ-8C Fire Scout, took to the air for the first time from a U.S. Navy independence-class Littoral Combat ship, USS Montgomery (LCS-8). The flight took place off the coast of California during the second phase of Dynamic Interface testing, once again demonstrating Fire Scout’s stability and safety while operating around the ship.

MQ-8C Fire Scout Completes Successful First Flight from Littoral Combat Ship
MQ-8C Fire Scout Completes Successful First Flight from Littoral Combat Ship

The two week at-sea event allowed the U.S. Navy to test the MQ-8C Fire Scout’s airworthiness and ability to land and take off from a littoral combat ship throughout a broad operational envelope. The MQ-8C Fire Scout conducted its initial at-sea flight test aboard the guided missile destroyer, USS Jason Dunham (DDG-108) in December 2015.

«Fire Scout’s successful testing aboard USS Montgomery (LCS-8) and USS Dunham (DDG-108) proves its capability to fly from multiple air capable ships», said Captain Jeff Dodge, program manager, Fire Scout, Naval Air Systems Command. «We plan to have the MQ-8C Fire Scout deployed aboard multiple ships in the near future giving the fleet the persistent intelligence, surveillance, reconnaissance and targeting asset they need».

With the completion of Dynamic Interface testing, the MQ-8C Fire Scout is one step closer to Initial Operational Test and Evaluation (IOT&E) and full operational deployment.

«Fire Scout’s autonomous technology coupled with the range and endurance of the MQ-8C airframe is truly a game-changer», said Leslie Smith, vice president, tactical autonomous systems, Northrop Grumman Aerospace Systems. «When the MQ-8C deploys with its advanced AESA maritime radar, the U.S. Navy will have unmatched situational awareness and the ability to provide sea control in any contested maritime environment».

The MQ-8C Fire Scout builds on the ongoing accomplishments of the MQ-8B Fire Scout program. Helicopter Squadron 23 is currently operating onboard the deployed littoral combat ship, USS Coronado (LCS-4), with two MQ-8B Fire Scouts in the South China Sea.

 

Specifications

Length 41.4 feet/12.6 m
Width 7.8 feet/2.4 m
Blades Folded Hangar 7.8×34.7×10.9 feet/2.4×10.6×3.3 m
Height 10.9 feet/3.3 m
Rotor Diameter 35 feet/10.7 m
Gross Takeoff Weight 6,000 lbs/2,721.5 kg
Engine Rolls-Royce M250-C47B with FADEC (Full Authority Digital Electronic Control)

 

Performance

Speed 140 knots/161 mph/259 km/h (maximum)
Operational Ceiling 17,000 feet/5,182 m
Maximum Endurance 14 hrs
Maximum Payload (Internal) 1,000 lbs/453.6 kg
Typical Payload 600 lbs/272 kg (11 hrs endurance)
Maximum Sling Load 2,650 lbs/1,202 kg

 

Engine Specifications

Power 651 shp/485.45 kW
Pressure ratio 9.2
Length 42.95 inch/1.09 m
Diameter 24.81 inch/0.63 m
Basic weight 274 lbs/124.3 kg
Compressor 1CF (centrifugal high-pressure)
Turbine 2HP (two-stage high-pressure turbine), 2PT (two-stage power turbine)

 

LITENING pod for RDAF

Northrop Grumman Corporation has been awarded a contract by the Royal Danish Air Force (RDAF) to provide LITENING advanced targeting pods for its F-16 Fighting Falcon aircraft. LITENING gives pilots powerful capabilities for detecting, identifying and tracking targets at extremely long ranges.

Northrop Grumman to Provide LITENING Advanced Targeting Pods to Royal Danish Air Force
Northrop Grumman to Provide LITENING Advanced Targeting Pods to Royal Danish Air Force

Denmark was the first international partner to take delivery of the fourth generation of the LITENING pod. With this award, the RDAF will expand the use of LITENING to additional aircraft in its fleet.

«As a key member of NATO, Denmark supports a wide range of missions. LITENING gives the RDAF powerful capabilities to carry out these missions, whether they call for targeting or Intelligence, Surveillance and Reconnaissance (ISR)», said Doctor Robert Fleming, vice president, programmes, Northrop Grumman.

The Northrop Grumman LITENING Advanced Targeting System, now in its fourth generation, gives aircrews superior situational awareness and targeting capabilities for strike and ISR missions. Technologies include digital, high definition video, 1K forward-looking infrared and charge-coupled device sensors, laser imaging sensors and advanced data links. These advances deliver more accurate target identification and location at longer ranges than previous targeting pod systems, while also reducing pilot workload.

LITENING pod has been integrated on the A-10 Thunderbolt II, AV-8B Harrier II, B-52 Stratofortress, C-130 Hercules, F-15 Eagle, F-16 Fighting Falcon and F/A-18 Hornet and has achieved more than two million operating hours.

Multi-Spectral Sensor

Northrop Grumman Corporation has begun flight testing of the MS-177 sensor payload with a successful inaugural flight on an RQ-4 Global Hawk high altitude long endurance autonomous aircraft system. The flight tests mark the first time the sensor has been flown on a high altitude long-range autonomous aircraft and extend the mission capabilities of the system. The MS-177 sensor is designed to provide capabilities to not only «find» targets using broad area search and different sensing technologies, but to also fix, track, and assess targets through its agility and multiple sensing modalities.

Northrop Grumman has begun flight testing of the MS-177 sensor payload with a successful inaugural flight on an RQ-4 Global Hawk high altitude long endurance autonomous aircraft system
Northrop Grumman has begun flight testing of the MS-177 sensor payload with a successful inaugural flight on an RQ-4 Global Hawk high altitude long endurance autonomous aircraft system

The MS-177 testing is expected to continue through the first half of 2017. The successful flight test at Northrop Grumman’s Palmdale, California facility follows the demonstrations of two sensors previously unavailable on the Global Hawk. Northrop Grumman successfully flew a Senior Year Electro-optical Reconnaissance System-2 (SYERS-2) intelligence gathering sensor in February 2016 and has recently completed flight tests of the Optical Bar Camera.

«The MS-177 is the new benchmark in imaging Intelligence, Surveillance and Reconnaissance (ISR) sensors and its integration into the Global Hawk platform expands the mission capability we can provide», said Mick Jaggers, vice president and program manager, Global Hawk program, Northrop Grumman. «This successful flight is another milestone in an aggressive effort to demonstrate Global Hawk’s versatility and effectiveness in carrying a variety of sensor payloads and support establishing Open Mission Systems (OMS) compliancy».

The Global Hawk system is the premier provider of persistent intelligence, surveillance and reconnaissance information. Able to fly at high altitudes for greater than 30 hours, Global Hawk is designed to gather near-real-time, high-resolution imagery of large areas of land in all types of weather – day or night. In active operation with the U.S. Air Force since 2001, Global Hawk has amassed more than 200,000 flight hours with missions flown in support of military and humanitarian operations.

 

Specifications

Wingspan 130.9 feet/39.9 m
Length 47.6 feet/14.5 m
Height 15.4 feet/4.7 m
Gross Take-Off Weight (GTOW) 32,250 lbs/14,628 kg
Power Plant Rolls-Royce AE3007H turbofan engine
Thrust 8,290 lbs/36.8 kN/3,752.5 kgf
Maximum Altitude 60,000 feet/18.3 km
Payload 3,000 lbs/1,360 kg
Loiter Velocity 310 knots TAS/357 mph/574 km/h
Ferry Range 12,300 NM/14,155 miles/22,780 km
On-Station Endurance Exceeds 24 hours
Maximum Endurance 30 hours

 

Initial Integration
Testing

Northrop Grumman Corporation and the U.S. Marine Corps successfully completed an Initial Integration Event (IIE) in November 2016 for the AN/TPS-80 Ground/Air Task-Oriented Radar (G/ATOR) system.

«The volley fire capability that G/ATOR demonstrated is critical on the modern battlefield, and all of the data collected during IIE indicates that GWLR can exceed the U.S. Marine Corps’ range capability»,” said Roshan Roeder, vice president, mission solutions, Northrop Grumman
«The volley fire capability that G/ATOR demonstrated is critical on the modern battlefield, and all of the data collected during IIE indicates that GWLR can exceed the U.S. Marine Corps’ range capability»,” said Roshan Roeder, vice president, mission solutions, Northrop Grumman

The three-week IIE demonstrated G/ATOR’s Ground Weapon Locating Radar (GWLR) mode’s ability to detect and track multiple types of Rocket, Artillery and Mortar (RAM) rounds simultaneously. Over 40 different weapon scenarios were evaluated through the live fire event, and more than 700 live shots were fired, including a variety of RAM rounds. GWLR successfully tracked projectiles including volley fire between 3.7 miles/6 km and 31 miles/50 km, demonstrating G/ATOR’s long range capability. Volley fire capability is the ability to detect and track multiple RAM projectiles intentionally fired in very rapid sequence in an attempt to overwhelm radar capabilities.

«GWLR mode detects and tracks time-critical incoming threats, calculates an approximate impact point, and then tracks the threat’s trajectory back in time to estimate a firing position, allowing counterfire forces to engage rapidly», said Roshan Roeder, vice president, mission solutions, Northrop Grumman. «The volley fire capability that G/ATOR demonstrated is critical on the modern battlefield, and all of the data collected during IIE indicates that GWLR can exceed the U.S. Marine Corps’ range capability».

The AN/TPS-80 G/ATOR system is multi-mission, performing four principal missions using the same hardware: short-range air defense, tactical air operations control, counterfire target acquisition (GWLR mode) and future air traffic control. GWLR mode adds software to the G/ATOR system to detect, track and identify RAM projectiles, both 360-degree and sector-only. The GWLR mode addresses multiple types of simultaneous threats. Adding this capability will allow G/ATOR to replace five legacy United States Marine Corps (USMC) radars.

Northrop Grumman is a leading global security company providing innovative systems, products and solutions in autonomous systems, cyber, Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR), strike, and logistics and modernization to customers worldwide.

First Flight

Northrop Grumman Corporation, in partnership with the U.S. Army Prototype Integration Facility and prime contractor Redstone Defense Systems, has successfully completed the first flight of the UH-60V Black Hawk helicopter.

The UH-60V Black Hawk flew for the first time on January 19 in Huntsville, Alabama
The UH-60V Black Hawk flew for the first time on January 19 in Huntsville, Alabama

Northrop Grumman provided the Integrated Avionics Suite for the UH-60V, which upgrades the U.S. Army’s UH-60L Black Hawk helicopters with a digital cockpit, under a contract awarded in 2014. The scalable, fully integrated and open architecture-based cockpit design replaces older analog gauges with digital electronic instrument displays in the upgraded aircraft. The UH-60V features one of the Army’s most advanced avionics solutions, enabling the complex missions of the army aviation warfighter.

On January 19, the UH-60V Black Hawk successfully flew for the first time with this digitized cockpit in Huntsville. This important milestone was the culmination of a cockpit design and development effort that was completed on schedule within 29 months of the original contract award. The team’s accomplishment achieves the specific timeline set by Army leadership over two years prior to the first flight.

«This UH-60V first flight accomplishment reaffirms our open, safe and secure cockpit solutions that will enable the most advanced capabilities for warfighters», said Ike Song, vice president, mission solutions, Northrop Grumman. «We remain committed to delivering an affordable, low-risk solution that provides long-term value and flexibility to customers».

The UH-60V digital cockpit solution is aligned with the Future Airborne Capability Environment (FACE) standard and supports integration of off-the-shelf hardware and software, enabling rapid insertion of capabilities in multiple avionics platforms while reducing cost and risk for system integration and upgrades. The open architecture approach provides greater flexibility and enables upgrades to be done with or without the original equipment manufacturer’s involvement.

The UH-60V meets the standards for safety-critical software development and is designed to comply with the Federal Aviation Administration and European Aviation Safety Agency’s Global Air Traffic Management requirements, enabling the system to traverse military and civilian airspace worldwide. It is also certifiable and compliant with safety-critical avionics standards such as DO-178C.

The UH-60V Black Hawk program will modernize the Army’s fleet of UH‑60L helicopters through cost-effective cockpit upgrades. The new system is nearly identical to the UH‑60M pilot-vehicle interface, providing common training and operational employment.

The pilot and crew prepare for an initial test flight of the UH-60V Black Hawk, which successfully flew for the first time on January 19 in Huntsville, Alabama. Northrop Grumman delivered the Integrated Avionics Suite for the UH-60V, which is designed to update existing UH-60L analog gauges with digital electronic instrument displays
The pilot and crew prepare for an initial test flight of the UH-60V Black Hawk, which successfully flew for the first time on January 19 in Huntsville, Alabama. Northrop Grumman delivered the Integrated Avionics Suite for the UH-60V, which is designed to update existing UH-60L analog gauges with digital electronic instrument displays

Laser Mine Detection

The U.S. Navy’s AN/AES-1 Airborne Laser Mine Detection System (ALMDS), designed and manufactured by Northrop Grumman Corporation, has achieved Initial Operational Capability. ALMDS provides rapid wide-area reconnaissance and assessment of mine threats in sea lanes, littoral zones, confined straits, choke points and amphibious areas of operations.

ALMDS provides rapid wide-area reconnaissance and assessment of mine threats in sea lanes, littoral zones, confined straits, choke points and amphibious areas of operations
ALMDS provides rapid wide-area reconnaissance and assessment of mine threats in sea lanes, littoral zones, confined straits, choke points and amphibious areas of operations

«With Initial Operational Capability (IOC), the ALMDS program has delivered a new and important capability to the U.S. Navy and to our nation – the first of its kind for mine warfare», said Erik Maskelony, assistant program manager, Airborne Laser Mine Detection System, Program Executive Office Littoral Combat Ships (PEO LCS), Mine Warfare Program Office (PMS 495).

The ALMDS system features several capabilities that make it the first of its kind. It leverages a sensor pod to rapidly sweep the water using laser technology. The sensor pod can also be rapidly installed on a medium-lift helicopter and quickly removed after mission completion. This agile system’s detection speed and accuracy will significantly improve the U.S. Navy’s mine detection capabilities and help ensure the safety of service members around the world.

«Using forward motion of the aircraft, ALMDS’ pulsed laser light generates 3-D images of the near-surface volume to detect, classify and localize near-surface moored sea mines», said Mark Skinner, vice president, directed energy, Northrop Grumman. «Highly accurate in day or night operations, the untethered ALMDS sensor conducts rapid wide-area searches with high accuracy».

The target data generated by ALMDS is displayed on a console and stored for post-mission analysis. The Navy’s ALMDS installation aboard the MH-60S Seahawk helicopter is mounted on a Bomb Rack Unit 14, which is installed on the Carriage, Stream, Tow, and Recovery System. Northrop Grumman’s self-contained design allows the system to be installed on other aircraft types.

Earlier this year, Northrop Grumman successfully integrated and demonstrated ALMDS on a UH-60M Blackhawk helicopter. The first international sale of ALMDS occurred in 2012 to the Japan Maritime Self Defense Force (JMSDF), and the JMSDF has completed flight qualification testing of ALMDS on an MCH-101 helicopter.

New Aerial Refueling

Northrop Grumman has successfully completed the first flight of an E-2D Advanced Hawkeye equipped with Aerial Refueling (AR). Under a 2013 Engineering, Manufacturing, and Development (EMD) contract award, Northrop Grumman designed, developed, manufactured, and tested several sub-system upgrades necessary to accommodate an aerial refueling capability.

The first U.S. Navy E-2D Advanced Hawkeye equipped with aerial refueling (Photo credit: John Germana, Northrop Grumman)
The first U.S. Navy E-2D Advanced Hawkeye equipped with aerial refueling (Photo credit: John Germana, Northrop Grumman)

«The Northrop Grumman aerial refueling team continues to put outstanding effort into bringing this much-needed capability to the E-2D Advanced Hawkeye and our warfighters who rely on it», said Captain Keith Hash, program manager, E-2/C-2 Airborne Tactical Data System Program Office (PMA-231).

The aerial refueling capability will allow the E-2D Advanced Hawkeye to provide longer on-station times at greater ranges, extending its mission time to better support the warfighter.

The upgrades installed to support aerial refueling include probe and associated piping, electrical and lighting upgrades, and long endurance seats that will enhance field of view in the cockpit and reduce fatigue over longer missions.

«First flight is an exciting day in the journey from concept to an aerial refueling equipped E-2D», said Jane Bishop, vice president, E-2/C-2 programs, Northrop Grumman. «This takes the E-2D to another level, which will bring more combat persistence to the U.S. and our allies».

The aerial refueling program will modify three aircraft for testing planned through 2018. Production cut-in and retrofit plans are scheduled to begin in 2018.

The first U.S. Navy E-2D Advanced Hawkeye equipped with aerial refueling (Photo credit: John Germana, Northrop Grumman)
The first U.S. Navy E-2D Advanced Hawkeye equipped with aerial refueling (Photo credit: John Germana, Northrop Grumman)

 

E-2D Advanced Hawkeye

The E-2D Advanced Hawkeye is a game changer in how the Navy will conduct battle management command and control. By serving as the «digital quarterback» to sweep ahead of strike, manage the mission, and keep our net-centric carrier battle groups out of harms way, the E-2D Advanced Hawkeye is the key to advancing the mission, no matter what it may be. The E-2D gives the warfighter expanded battlespace awareness, especially in the area of information operations delivering battle management, theater air and missile defense, and multiple sensor fusion capabilities in an airborne system.

 

Hardware with system characteristics that provides:

  • Substantial target processing capacity (>3,000 reports per second)
  • Three highly automated and common operator stations
  • High-capacity, flat-panel color high-resolution displays
  • Extensive video type selection (radar and identification friend/foe)
  • HF/VHF/UHF and satellite communications systems
  • Extensive data link capabilities
  • Inertial navigational system and global positioning system navigation and in-flight alignment
  • Integrated and centralized diagnostic system
  • Glass Cockpit allows software reconfigurable flight/mission displays
  • Cockpit – 4th tactical operator
  • Open architecture ensures rapid technology upgrades and customized configuration options
The Hawkeye provides all-weather airborne early warning, airborne battle management and command and control functions for the Carrier Strike Group and Joint Force Commander
The Hawkeye provides all-weather airborne early warning, airborne battle management and command and control functions for the Carrier Strike Group and Joint Force Commander

 

General Characteristics

Wingspan 80 feet 7 inch/24.56 m
Width, wings folded 29 feet 4 inch/8.94 m
Length overall 57 feet 8.75 inch/17.60 m
Height overall 18 feet 3.75 inch/5.58 m
Diameter of rotodome 24 feet/7.32 m
Weight empty 43,068 lbs/19,536 kg
Internal fuel 12,400 lbs/5,624 kg
Takeoff gross weight 57,500 lbs/26,083 kg
Maximum level speed 350 knots/403 mph/648 km/h
Maximum cruise speed 325 knots/374 mph/602 km/h
Cruise speed 256 knots/295 mph/474 km/h
Approach speed 108 knots/124 mph/200 km/h
Service ceiling 34,700 feet/10,576 m
Minimum takeoff distance 1,346 feet/410 m ground roll
Minimum landing distance 1,764 feet/537 m ground roll
Ferry range 1,462 NM/1,683 miles/2,708 km
Crew Members 5
Power Plant 2 × Rolls-Royce T56-A-427A, rated at 5,100 eshp each
Unrefueled >6 hours
In-flight refueling 12 hours