Tag Archives: NASA

Mars 2020 Rover

Protecting against the extremes of space travel is critical to the success of any mission. Lockheed Martin has successfully completed the flight hardware structure of the heat shield, validating the physical integrity with a final static test after exposing it to flight-like thermal conditions. The heat shield is half of the large and sophisticated two-part aeroshell that Lockheed Martin is designing and building to encapsulate NASA Jet Propulsion Laboratory’s Mars 2020 rover from the punishing heat and friction of entry through the Martian atmosphere.

The Lockheed Martin-built heat shield, shown here in the testing phase, is just one component in the final aeroshell that will protect the Mars 2020 rover on its long journey to Mars
The Lockheed Martin-built heat shield, shown here in the testing phase, is just one component in the final aeroshell that will protect the Mars 2020 rover on its long journey to Mars

The Mars 2020 mission will be one of the most challenging entry, descent and landings ever attempted on the Red Planet. The heat shield aerodynamics serve as a «brake» to slow the spacecraft from about 12,000 mph (19,300 kph) so the structure needs to be flawless. As the tenth aeroshell system that Lockheed Martin has produced for NASA, this is one of the largest at 15 feet (4.5 meters) in diameter.

«Our experience building aeroshells for NASA Mars missions does not mean that it is ‘easy’», said Neil Tice, Lockheed Martin Mars 2020 Aeroshell program manager. «Tests like this structural test are absolutely essential to ensuring mission success in the long-run».

The static test was conducted on April 25 and was designed to mimic the load that the heat shield will experience during the most extreme part of its journey; the entry phase. To do that, engineers used vacuum pumps to simulate the pressure of approximately 140,000 pounds on the structure. The structure was tested to 120% of the expected flight load to push it to the limit.

For this particular test, the team also integrated a new form of instrumentation. Historically, this test utilizes conventional strain gauges and extensometers to monitor structural response at distinct points during loading. Partnering with NASA Langley Research Center, the team also applied a new tool called Photogrammetry or Digital Image Correlation. This allowed the team to monitor full-field strains and displacements over the entire visible area of the structure in real time. To use this technique, a vinyl wrap, similar to a decal, that has different visual cues (dark random speckles over a white background) was applied to the heat shield. During the test, a set of digital cameras optically monitor any changes in the pattern and generate a three-dimensional map of displacements and surface strains as the applied load increases.

«While we have used this full-field photogrammetry technique on test articles in the past, this is the first successful implementation on official flight hardware», said Doctor Sotiris Kellas, NASA Langley aerospace engineer and lead for the technical demonstration. «This technology will allow us to safeguard hardware during testing but more importantly provide data for test analysis correlation and improvement of our design and analysis tools».

Following this test, the Lockheed Martin team will apply Phenolic Impregnated Carbon Ablator (PICA) thermal protection system tiles to the structure. Once complete and through all environmental testing, the full heat shield will be mated to the backshell in early fall.

The Mars 2020 Project at NASA JPL manages rover development for the Science Mission Directorate at NASA Headquarters in Washington. The NASA Engineering and Safety Center at NASA Langley Research Center provided the photogrammetry support for this test.

NextSTEP Phase II

For long-duration, deep space missions, astronauts will need a highly efficient and reconfigurable space, and Lockheed Martin is researching and designing ways to support those missions. Under a public-private partnership as a part of NASA’s Next Space Technologies for Exploration Partnerships (NextSTEP) Phase II study contract, Lockheed Martin has completed the initial ground prototype for a cislunar habitat that would be compatible with NASA’s Gateway architecture. This habitat will help NASA study and assess the critical capabilities needed to build a sustainable presence around the Moon and support pioneering human exploration in deep space.

The Lockheed Martin Habitat Ground Test Article (HGTA) Lunar habitat prototype is designed to accommodate a variety of missions around the Moon (Photo courtesy: Lockheed Martin)
The Lockheed Martin Habitat Ground Test Article (HGTA) Lunar habitat prototype is designed to accommodate a variety of missions around the Moon (Photo courtesy: Lockheed Martin)

The full-scale prototype, or Habitat Ground Test Article (HGTA), is built inside of a repurposed shuttle-era cargo container, called a Multi-Purpose Logistics Module (MPLM), at Kennedy Space Center. Using rapid prototyping and modern design tools like virtual and augmented reality, the team customized the interior making full use of the entire volume of the module to accommodate a variety of tasks like science missions and personal needs of future astronauts. The team also studied how to apply the advanced, deep space capabilities that are already built in to NASA’s Orion spacecraft. Through additional research and development funding, the NextSTEP team also applied mixed-reality technology to further refine the concept.

«Throughout the design and engineering process of this high-fidelity prototype, we have kept the diversity of missions top-of-mind», said Bill Pratt, Lockheed Martin Space NextSTEP program manager. «By building modularity in from the beginning, our design can support Lunar orbit and surface science missions along with commercial operations, all while accelerating the path to the Moon».

Over the past five months, the team used tools like virtual and augmented reality to simplify and streamline the build-up process. They also applied expertise from Lockheed Martin’s heritage of operating autonomous interplanetary robotic missions, like OSIRIS-REx and InSight, to integrate reliable robotic capabilities in to the design.

«Getting back to the Moon, and eventually Mars, is no small feat, but our team are mission visionaries», said Pratt. «They have worked to apply lessons learned from our experience with deep space robotic missions to this first-of-its-kind spacecraft around the Moon».

The Lockheed Martin team will soon transition the prototype to the NASA NextSTEP team for assessment. During the week of March 25, a team of NASA astronauts will live and work inside the prototype, evaluating the layout and providing feedback.  The NASA test team will also validate the overall design and will be able to evaluate the standards and common interfaces, like the International Docking System Standard (IDSS), and how to apply those systems for long-term missions based at the Lunar Gateway. Once NASA testing has completed, Lockheed Martin will continue to optimize and study the prototype to prepare for other Lunar efforts.

Orion Spaceship

Technicians have completed construction on the spacecraft capsule structure that will return astronauts to the Moon, and have successfully shipped the capsule to Florida for final assembly into a full spacecraft. The capsule structure, or pressure vessel, for NASA’s Orion Exploration Mission-2 (EM-2) spacecraft was welded together over the last seven months by Lockheed Martin technicians and engineers at the NASA Michoud Assembly Facility near New Orleans.

Lockheed Martin Begins Final Assembly on NASA's Orion Spaceship That Will Take Astronauts Further Than Ever Before
Lockheed Martin Begins Final Assembly on NASA’s Orion Spaceship That Will Take Astronauts Further Than Ever Before

Orion is the world’s only exploration-class spaceship, and the EM-2 mission will be its first flight with astronauts on board, taking them farther into the solar system than ever before.

«It’s great to see the EM-2 capsule arrive just as we are completing the final assembly of the EM-1 crew module», said Mike Hawes, Lockheed Martin vice president and program manager for Orion. «We’ve learned a lot building the previous pressure vessels and spacecraft and the EM-2 spacecraft will be the most capable, cost-effective and efficient one we’ve built».

Orion’s pressure vessel is made from seven large, machined aluminum alloy pieces that are welded together to produce a strong, light-weight, air-tight capsule. It was designed specifically to withstand the harsh and demanding environment of deep space travel while keeping the crew safe and productive.

«We’re all taking extra care with this build and assembly, knowing that this spaceship is going to take astronauts back to the Moon for the first time in four decades», said Matt Wallo, senior manager of Lockheed Martin Orion Production at Michoud. «It’s amazing to think that, one day soon, the crew will watch the sun rise over the lunar horizon through the windows of this pressure vessel. We’re all humbled and proud to be doing our part for the future of exploration».

The capsule was shipped over the road from New Orleans to the Kennedy Space Center, arriving on Friday, August 24. Now in the Neil Armstrong Operations and Checkout Building, Lockheed Martin technicians will immediately start assembly and integration on the EM-2 crew module.

Parker Solar Probe

A United Launch Alliance (ULA) Delta IV Heavy rocket carrying NASA’s Parker Solar Probe spacecraft lifted off from Space Launch Complex-37 on August 12 at 3:31 a.m. EDT. NASA selected ULA’s Delta IV Heavy for its unique ability to deliver the necessary energy to begin the Parker Solar Probe’s journey to the sun.

United Launch Alliance Successfully Launches NASA’s Parker Solar Probe Spacecraft
United Launch Alliance Successfully Launches NASA’s Parker Solar Probe Spacecraft

The Delta IV Heavy is the nation’s proven heavy lift launch vehicle, delivering high-priority missions for NASA, the U.S. Air Force and the National Reconnaissance Office. With its advanced cryogenic upper stage, Delta IV Heavy can deliver more than 14,000 pounds/6,350 kg directly to geosynchronous orbit, as well as a wide variety of complex interplanetary trajectories.

«The unique requirements of this mission made the Delta IV Heavy the perfect launch vehicle to deliver Parker Solar Probe into orbit with the highest precision», said Gary Wentz, ULA vice president of Government and Commercial Programs. «Congratulations to our team and mission partners, we are proud to launch this exceptional spacecraft that will provide invaluable scientific information benefiting all of humankind».

This mission was launched aboard a Delta IV Heavy, which is comprised of three common core boosters each powered by an Aerojet Rocketdyne (AR) RS-68A liquid hydrogen/liquid oxygen engines producing a combined total of more than 2.1 million pounds/952,544 kg of thrust. The second stage was powered by an AR RL10B-2 liquid hydrogen/liquid oxygen engine. Due to the extremely high energy required for this mission, the Delta IV Heavy’s capability was enhanced by a powerful third stage provided by Northrop Grumman.

This was the 37th launch of the Delta IV rocket, and the 10th in the Heavy configuration. It also marks ULA’s sixth launch in 2018 and the 129th successful launch since the company was formed in December 2006.

ULA’s next launch is the ICESat-2 mission for NASA on what will be the final Delta II mission. The launch is scheduled for September 15 at Space Launch Complex-2 at Vandenberg Air Force Base, California.

With more than a century of combined heritage, United Launch Alliance is the nation’s most experienced and reliable launch service provider. ULA has successfully delivered more than 125 satellites to orbit that aid meteorologists in tracking severe weather, unlock the mysteries of our solar system, provide critical capabilities for troops in the field and enable personal device-based GPS navigation.

Desired stable orbit

Northrop Grumman Corporation announced that NASA’s Transiting Exoplanet Survey Satellite (TESS) has successfully reached its desired stable orbit and begun science operations. The spacecraft was built and operated by Northrop Grumman. The TESS spacecraft instrument is the set of four wide-field cameras designed and built by Massachusetts Institute of Technology (MIT) and MIT Lincoln Lab. The principal goal of the TESS mission is to use its four wide-field cameras to detect planets around bright host stars in the solar neighborhood so that detailed characterizations of the planets and their atmospheres can be performed through follow-up observations from telescopes on Earth and in space. As the first-ever satellite to perform an exoplanet survey of nearly the entire sky, TESS will identify planets ranging from Earth-sized to Jupiter-sized, orbiting a wide range of stellar types at various orbital distances.

NASA’s Transiting Exoplanet Survey Satellite (TESS) was designed, manufactured and tested by Northrop Grumman in the company’s Dulles, Virginia, satellite manufacturing facility. The company is also responsible for handling mission operations for the observatory
NASA’s Transiting Exoplanet Survey Satellite (TESS) was designed, manufactured and tested by Northrop Grumman in the company’s Dulles, Virginia, satellite manufacturing facility. The company is also responsible for handling mission operations for the observatory

The TESS spacecraft was designed, manufactured and tested by Northrop Grumman at the company’s satellite manufacturing facility in Dulles. The company is also responsible for handling mission operations for the observatory. TESS was launched April 18, 2018, from Cape Canaveral Air Force Station, Florida. After launch, the observatory went through a series of tests and began preparation for a series of in-space maneuvers, including a lunar gravity assist, to reach its targeted highly-elliptical orbit. This lunar flyby was executed May 17 and the final period-adjustment maneuver was performed May 29.

«The TESS observatory is in excellent condition after completing the journey to its final orbit», said Steve Krein, vice president, science and environmental satellite programs, Northrop Grumman. «TESS is another example of our ability to deliver successful scientific space missions that shape our knowledge of the known universe. We are proud to provide critical mission operations for TESS as it continues a historic journey to identify new planets outside our solar system».

The four TESS cameras developed by MIT project partners are integrated with Northrop Grumman’s LEOStar-2 bus, a flight-proven and flexible satellite platform that accommodates a wide variety of missions. The company has several other satellites in production for upcoming NASA missions including the Earth science ICESat-2 and Landsat-9 satellites and the JPSS-2, -3 and -4 weather spacecraft which use the larger LEOStar-3 bus, as well as the Ionospheric Connection Explorer (ICON) LEOStar-2 satellite to be launched later this year.

TESS is a NASA astrophysics explorer mission led by the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners besides Northrop Grumman include NASA’s Ames Research Center in California’s Silicon Valley; the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts; MIT’s Lincoln Laboratory in Lexington, Massachusetts; and the Space Telescope Science Institute in Baltimore, Maryland. More than a dozen universities, research institutes and observatories worldwide are participants in the mission.

X-plane

Supersonic commercial travel is on the horizon. On April 3, 2018, NASA awarded Lockheed Martin Skunk Works a contract to design, build and flight test the Low-Boom Flight Demonstrator, an X-plane designed to make supersonic passenger air travel a reality.

The Lockheed Martin Skunk Works’ X-plane design will cruise at 55,000 feet/16,764 m, Mach 1.4, and will generate a gentle, supersonic heartbeat instead of a sonic boom
The Lockheed Martin Skunk Works’ X-plane design will cruise at 55,000 feet/16,764 m, Mach 1.4, and will generate a gentle, supersonic heartbeat instead of a sonic boom

«It is super exciting to be back designing and flying X-planes at this scale», said Jaiwon Shin, NASA’s associate administrator for aeronautics. «Our long tradition of solving the technical barriers of supersonic flight to benefit everyone continues».

Lockheed Martin Skunk Works will build a full-scale experimental aircraft, known as an X-plane, of its preliminary design developed under NASA’s Quiet Supersonic Technology (QueSST) effort. The X-plane will help NASA establish an acceptable commercial supersonic noise standard to overturn current regulations banning commercial supersonic travel over land.

«We’re honored to continue our partnership with NASA to enable a new generation of supersonic travel», said Peter Iosifidis, Low-Boom Flight Demonstrator program manager, Lockheed Martin Skunk Works. «We look forward to applying the extensive work completed under QueSST to the design, build and flight test of the X-plane, providing NASA with a demonstrator to make supersonic commercial travel possible for passengers around the globe».

Lockheed Martin Skunk Works and NASA have partnered for more than a decade to enable the next generation of commercial supersonic aircraft. NASA awarded Lockheed Martin Skunk Works a contract in February 2016 for the preliminary design of the supersonic X-plane flight demonstrator.

The aircraft will be built at the Lockheed Martin Skunk Works facility in Palmdale, California, and will conduct its first flight in 2021.

Clean Room

All the major elements of NASA’s James Webb Space Telescope now reside in a giant clean room at Northrop Grumman Corporation’s Redondo Beach facility, setting the stage for final assembly and testing of the giant space telescope that will explore the origins of the universe and search for life beyond our solar system.

NASAs James Webb Space Telescope Optics and Science Instruments in Northrop Grumman’s Clean Room
NASAs James Webb Space Telescope Optics and Science Instruments in Northrop Grumman’s Clean Room

The Optical Telescope and Integrated Science instrument module (OTIS) arrived at Northrop Grumman in February. It was previously at NASA’s Johnson Space Center in Houston, where it successfully completed cryogenic testing.

OTIS and the spacecraft element, which is Webb’s combined sunshield and spacecraft bus, now both call Northrop Grumman home. Webb is scheduled to launch from Kourou, French Guiana in 2019.

The James Webb Space Telescope is the world’s premier space observatory of the next decade. Webb will solve mysteries of our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, the European Space Agency and the Canadian Space Agency.

InSight Spacecraft

NASA’s latest mission to Mars took its first trip on its long journey to the Red Planet. On February 28, Lockheed Martin delivered NASA’s InSight Mars lander to Vandenberg Air Force Base, California. The lander will now undergo final processing in preparation for a May 5 launch aboard a United Launch Alliance Atlas V 401 rocket.

Lockheed Martin delivered NASA’s InSight spacecraft to its California launch site on February 28, 2018. The Mars lander was shipped aboard a U.S. Air Force transport plane from Buckley Air Force Base, Colorado to Vandenberg Air Force Base where it will undergo final processing in preparation for a May launch
Lockheed Martin delivered NASA’s InSight spacecraft to its California launch site on February 28, 2018. The Mars lander was shipped aboard a U.S. Air Force transport plane from Buckley Air Force Base, Colorado to Vandenberg Air Force Base where it will undergo final processing in preparation for a May launch

The InSight lander will study the deep interior of Mars and will address one of the most fundamental questions of planetary and solar system science: how do terrestrial planets form? By mapping the basic structure of the planet, the mission will help scientists understand the processes that shaped the rocky planets of the inner solar system more than four billion years ago. Lockheed Martin designed and built the spacecraft and is responsible for testing, launch processing and spacecraft flight operations.

«InSight is an amazing spacecraft and we can’t wait to see it on the surface of Mars later this year», said Stu Spath, InSight program manager and director of Deep Space Exploration Systems at Lockheed Martin Space. «We’ve worked closely with NASA’s Jet Propulsion Laboratory (JPL) to design and build this spacecraft. Its environmental testing is complete, and now the launch team is moving to California to perform final preparations for a May launch».

The 1,380-pound/626-kg spacecraft, consisting of the lander, aeroshell and cruise stage, was shipped aboard a U.S. Air Force transport plane, courtesy of the Air Force Air Mobility Command, in an environmentally controlled container. The plane, spacecraft and support personnel took off from Buckley Air Force Base in Aurora, Colorado and touched down at Vandenberg Air Force Base. While at Vandenberg at the Astrotech Space Operations facility, the spacecraft will undergo final processing including system-level checkout, propellant loading and a final spin balance test.

The InSight mission’s principal investigator is JPL’s Bruce Banerdt. The Centre National d’Etudes Spatiales (CNES), France’s space agency, and the German Aerospace Center (DLR) are each contributing a science instrument to the two-year scientific mission. JPL, a division of the California Institute of Technology in Pasadena, manages InSight for NASA’s Science Mission Directorate in Washington. InSight is part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama.

James Webb

The two halves of NASA’s James Webb Space Telescope now reside at Northrop Grumman in Redondo Beach, California, where they will come together to form the complete observatory.

The Space Telescope Transporter for Air, Road and Sea (STTARS) container enclosed with NASA’s James Webb Space Telescope’s Optical Telescope and Integrated Science instrument module (OTIS) arriving at Northrop Grumman Redondo Beach, California facilities on Friday, February 2
The Space Telescope Transporter for Air, Road and Sea (STTARS) container enclosed with NASA’s James Webb Space Telescope’s Optical Telescope and Integrated Science instrument module (OTIS) arriving at Northrop Grumman Redondo Beach, California facilities on Friday, February 2

«This is a major milestone», said Eric Smith, program director for Webb at NASA. «With the arrival of the science payload at Northrop Grumman’s Space Park facility, we will now carefully test the observatory to ensure the work of thousands of scientists and engineers across the globe is ready for launch and will enable people to seek the first luminous objects in the universe and search for signs of habitable planets».

The Optical Telescope and Integrated Science instrument module (OTIS) of Webb arrived at Northrop Grumman on Friday, February 2. It was previously at NASA’s Johnson Space Center in Houston, where it successfully completed cryogenic testing.

In preparation for leaving Johnson, OTIS was placed inside a specially designed shipping container called the Space Telescope Transporter for Air, Road and Sea. The container was then loaded onto a U.S. military C-5 Charlie aircraft at Ellington Field Joint Reserve Base, just outside of Johnson. From there, OTIS took an overnight flight to Los Angeles International Airport (LAX).

Upon its arrival, OTIS was driven from LAX to Northrop Grumman. OTIS and the spacecraft element, which is Webb’s combined sunshield and spacecraft bus, now both call Northrop Grumman home.

«It’s exciting to have all three Webb elements – OTIS, sunshield and spacecraft bus, here at our campus», said Scott Willoughby, vice president and program manager for Webb at Northrop Grumman. «The team is excited to begin the final stages of integration of the world’s largest space telescope».

During the summer, OTIS will receive additional testing before being combined with the spacecraft element to form the complete James Webb Space Telescope observatory. Once the telescope is fully integrated, the entire observatory will undergo more tests during what is called observatory-level testing.

Webb is scheduled to launch from Kourou, French Guiana, in 2019.

The James Webb Space Telescope is the world’s premier space observatory of the next decade. Webb will solve mysteries of our solar system, look beyond to distant worlds around other stars, and probe the mysterious structures and origins of our universe and our place in it. Webb is an international program led by NASA with its partners, the European Space Agency and the Canadian Space Agency.

Major milestone

Sierra Nevada Corporation’s (SNC) Dream Chaser program passed a major NASA milestone for its Commercial Crew Integrated Capability (CCiCAP) contract with the completion of a successful Free-Flight test, which produced subsonic flight and landing performance data.

Sierra Nevada Corporation’s Dream Chaser Spacecraft Passes Major NASA Milestone after Free-Flight Test
Sierra Nevada Corporation’s Dream Chaser Spacecraft Passes Major NASA Milestone after Free-Flight Test

Milestone 4B validated the spacecraft’s design for a safe and reliable return of cargo services to Earth through a gentle runway landing, signaling the program is one step closer to orbital operations.

The Dream Chaser will go to the space station for at least six cargo resupply missions starting in 2020 under a separate contract, NASA’s Commercial Resupply Services 2 (CRS2).

The NASA Commercial Crew Program reviewed the data, confirming it fully met or exceeded all requirements and authorized full payment of the milestone.  Additionally, SNC collected a significant amount of additional information that will be used for the final vehicle design.

«The test was a huge success and when we looked at the data, we were thrilled to see how closely our flight performance projections matched the actual flight data», said Steve Lindsey, vice president of SNC’s Space Exploration Systems business unit. «This gives us high confidence in our atmospheric flight performance as we move towards orbital operations».

The approach and landing test included intentional maneuvers both to assess the responsiveness of the Dream Chaser to control inputs and to measure the resulting stability of the vehicle under very dynamic, stressful conditions. This showcased the aerodynamic capability of the Dream Chaser as well as performance of the integrated computer system that autonomously returned the vehicle to a safe runway landing. These are critical components for orbital missions to and from the International Space Station.

Mark Sirangelo, executive vice president for SNC’s Space Systems business area, commented, «Achievements of this magnitude require the involvement and collaboration of many people. The Free-Flight test took place at the same historic location where the sound barrier was broken 70 years ago and where the Space Shuttle program began 40 years ago. With that historic legacy, I would like to extend our sincere appreciation to our whole flight team».

«I want to especially thank NASA’s Armstrong Flight Research Center Director, David McBride, the entire Armstrong team, the U.S. Air Force, NASA’s Commercial Crew and CRS2 programs, and our industry partners, including Draper Laboratories, who helped design our flight software. Most importantly, I want to say how proud I am of the SNC Dream Chaser flight and program teams who have performed above and beyond to make the flight and milestone a success», Sirangelo added.

The Free-Flight test of the Dream Chaser was performed at Edwards Air Force Base, California on November 11. The vehicle’s next milestone will be the CRS2 Dream Chaser Critical Design Review, scheduled for 2018.

 

About Dream Chaser Spacecraft

Owned and operated by SNC, the Dream Chaser spacecraft is a reusable, multi-mission space utility vehicle. It is capable of transportation services to and from low-Earth orbit, where the International Space Station resides, and is the only commercial, lifting-body vehicle capable of a runway landing. The Dream Chaser Cargo System was selected by NASA to provide cargo delivery and disposal services to the space station under the Commercial Resupply Services 2 (CRS2) contract. All Dream Chaser CRS2 cargo missions are planned to land at Kennedy Space Center’s Shuttle Landing Facility.