Tag Archives: NASA

European Service Module

The European Space Agency (ESA) has signed a further contract with Airbus for the construction of three more European Service Modules (ESM) for Orion, the American crewed spacecraft for the Artemis programme.

European Service Module (ESM)
Airbus wins ESA contract for three more European Service Modules for NASA’s Orion spacecraft

With these additional Service Modules, ESA ensures continuity in NASA’s Artemis programme beyond the three modules which are already under contract with Airbus. The European Service Module will be used to fly astronauts to the Moon. As the powerhouse of the new Orion spacecraft for NASA’s Artemis missions, it will provide critical functions such as the propulsion system to get the astronauts to the Moon, and the consumables the astronauts need to stay alive.

«Europe has entered a new decade of exploration. Building six Orion European Service Modules is a venture like no other. Airbus has some of the world’s best minds in space exploration working on this phenomenal vehicle and this new agreement will facilitate many future Moon missions through international partnerships», said Andreas Hammer, Head of Space Exploration at Airbus. «Europe is a strong and reliable partner in NASA’s Artemis missions and the Orion European Service Module represents a crucial contribution to this».

David Parker, ESA Director of Human and Robotic Exploration, said: «This contract doubles Europe’s commitment to delivering the vital hardware to send humankind to the Moon on Orion. Together with the elements we are building for the lunar Gateway we are guaranteeing seats for ESA astronauts to explore our Solar System as well as securing employment and technological know-how for Europe».

The ESM is cylindrical in shape and about four metres in diameter and height. It has four solar arrays (19 metres across when unfurled) that generate enough energy to power two households. The service module’s 8.6 tonnes of fuel can power one main engine and 32 smaller thrusters. The ESM weighs a total of just over 13 tonnes. In addition to its function as the main propulsion system for the Orion spacecraft, the ESM will be responsible for orbital manoeuvring and position control. It also provides the crew with the central elements of life support such as water and oxygen, and regulates thermal control while attached to the crew module.

Artemis I, the first non-crewed Orion test flight with a European Service Module will fly in 2021. It is as part of the following mission, Artemis II that the first astronauts will then fly around the Moon and back to Earth. With Artemis III, NASA will land the first woman and next man on the Moon by 2024, using innovative technologies to explore more of the lunar surface than ever before. The ESMs announced today will be used for the Artemis IV to VI missions, the first two of which are part of the European contribution to the international Gateway planned to be assembled starting from 2024 in a lunar orbit.

During the development and construction of the ESM, Airbus has drawn on its experience as prime contractor for ESA’s Automated Transfer Vehicle (ATV), which provided the crew on board the International Space Station with regular deliveries of test equipment, spare parts, food, air, water and fuel.

Moon Cruiser

Airbus has been awarded a CLTV (Cis-Lunar Transfer Vehicle) study for a «Moon Cruiser» by the European Space Agency (ESA). According to the study concept (two parallel Phase A/B1), the CLTV is a versatile, autonomous logistics vehicle that could, for example, provide timely and efficient support to NASA and ESA in the implementation of the future Artemis Moon missions. The spacecraft will be based on existing and proven technologies and will complement the multipurpose European Large Logistic Lander (EL3).

CLTV (Cis-Lunar Transfer Vehicle)
Versatile, autonomous logistics vehicle to support future lunar missions based on heritage from Orion ESM and ATV

The execution of lunar missions, including landing on the Moon and setting up upcoming lunar space station, Gateway, is a complex and challenging task for the international community. It requires a precisely planned chain of supply and logistics missions. The Airbus Moon Cruiser concept supports these challenges in several ways:

  • Gateway logistics: the CLTV can transport cargo or fuel for refuelling in lunar orbit and to the Gateway, the international project led by the two main contributors NASA (United States) and ESA (Europe), supporting a sustainable presence on the Moon and exploration beyond and a pillar of NASA’s Artemis programme.
  • Transfer of a large Lunar Module into Low Lunar Orbit: The CLTV is required to fly a lander or an ascent stage between the Gateway and the low lunar orbit, to perform landing and ascent missions with larger and more extensive services.
  • CLTV’s versatility will also allow it to support missions to post-ISS orbital infrastructure in LEO as well as missions in the field of GEO satcom servicing.

The CLTV’s design allows multiple mission types to be carried out with a single vehicle and is compatible with various launchers. Airbus’ solution is a mature, versatile and modular concept based on a large portfolio of mission and vehicle designs for Human Space-flight and Exploration built by Airbus for ESA including the Orion European Service Module (ESM), as well as five successful Automated Transfer Vehicle (ATV) space transporter missions, carrying a total of around 30 tonnes of cargo into space.

«With the Airbus Moon Cruiser concept for CLTV, we are establishing the first building blocks for humans and machines to work together all the way between the Earth and the Moon. CLTV can serve Gateway logistics and add value to the EL3 Large Lunar Lander by enabling additional missions, whether standalone for Europe or as part of wider international co-operation», said Andreas Hammer, Head of Space Exploration at Airbus.

The CLTV can be launched on Ariane 6, and it could transport a module of over 4.5 tonnes to the Gateway. The European Space Agency ESA could deploy the CLTV in the second half of the decade and it is planned that the CLTV will literally «cruise» on a direct flight path to the Moon.

The target is to validate the following, implementation phase (B2/C/D) of CLTV at the next Ministerial Council in 2022, with the aim of launching in 2027.

Airbus is building the European Service Module for ESA for the new NASA spacecraft Orion, the central spacecraft of future NASA space exploration. The first service module has already been delivered to NASA by Airbus. A second service module is currently being built at Airbus in Bremen. The first launch for Orion – a test flight without astronauts – will take Orion into a lunar orbit and back to Earth under the Artemis I mission and is scheduled for 2021.

Ready For Its Mission

NASA’s Orion spacecraft is ready for its mission to the Moon. Lockheed Martin has completed assembly and testing of the Orion Artemis I spacecraft and has transferred possession to NASA’s Exploration Ground Systems (EGS) team on January 14, 2021. Assembled at Kennedy Space Center, the EGS team will then perform final preparations on the spacecraft for its mission to the Moon later this year.

Orion
The finished Orion spacecraft for the Artemis I mission was handed over for launch processing for a mission to the Moon later this year

 

Ready for the Moon

Orion is NASA’s new human-rated exploration-class spaceship that will take astronauts into deep space including the Moon and Mars. Lockheed Martin is the prime contractor for NASA and built the crew module, crew module adaptor and launch abort system. The European Space Agency provides the European Service Module for Orion.

The Artemis I mission will be the first launch of the Orion spacecraft aboard NASA’s Space Launch System rocket. Over the course of three weeks, the uncrewed Orion capsule will fly out and orbit the Moon and return to Earth. This test mission will validate the spacecraft, rocket and ground systems for future crewed missions.

«Orion is a unique and impressive spacecraft and the team did an outstanding job to get us to this day», said Mike Hawes, Orion vice president and program manager for Lockheed Martin. «The launch and flight of Artemis I will be an impressive sight, but more importantly it will confirm Orion is ready to safely carry humans to the Moon and back home. This tremendous advancement opens the door to a new era of deep space exploration that will ultimately benefit us back here on Earth».

Orion is being transferred from the Neil Armstrong Operations and Checkout Building at Kennedy, where it was assembled, to multiple Kennedy facilities where EGS will load propellants and other consumables such as ammonia, helium and nitrogen, and integrate the launch abort system and protective ogive fairing. After this is completed, it will be taken to the Vertical Assembly Facility to be lifted onto the SLS rocket and prepared for roll to the launch pad.

 

Crewed Missions Underway

The launch later this year will be the beginning of many Artemis missions to the Moon. The next mission, Artemis II, will be the first with a crew onboard and will go out to orbit the Moon and return. That Orion crew module and service module adapter are well under assembly at Kennedy and will see its first power-on of its integrated computers this summer.

Artemis III will see the first woman and the next man to walk on the Moon. Orion will carry them out to orbit the Moon where they will ultimately land on the surface using a lunar landing system. That spacecraft is already under construction as major structural elements of the crew module pressure vessel are arriving at NASA’s Michoud Assembly Facility.

As part of an Orion production and operations contract, NASA ordered three Orion spacecraft from Lockheed Martin for Artemis missions III-V with plans to order three additional Orion spacecraft for Artemis missions VI-VIII and options for up to 12 missions.

Upper Stage

Boeing and NASA have successfully completed a critical design review for NASA’s Space Launch System (SLS) Exploration Upper Stage (EUS), confirming the EUS design for continued development and transition to hardware build. Boeing has already started fabrication activities that will support building the first EUS at NASA’s Michoud Assembly Facility in New Orleans.

Exploration Upper Stage (EUS)
This artist’s rendering shows the Boeing-built Exploration Upper Stage (EUS) powering the Orion crew vehicle in space after separation from the NASA Space Launch System (SLS) rocket’s core stage. Boeing has already begun fabrication activities for the first EUS at NASA’s Michoud Assembly Facility in New Orleans, where the company also builds SLS core stages (Boeing illustration)

The SLS rocket uses staged propulsion to send NASA’s Orion spacecraft and astronauts, plus supplies, to the moon and beyond. The Boeing-built core stage powers the SLS in early flight, eventually separating when the upper stage takes over and provides the power to send crewed vehicles, space habitats and other payloads on to the moon or other deep space destinations.

To accomplish NASA’s Artemis I lunar mission, the Block 1 variant of SLS will use a Boeing/United Launch Alliance Interim Cryogenic Propulsion Stage with one RL-10 engine to take an uncrewed Orion spacecraft on a test flight to the moon. SLS Block 1 rockets will be used for two subsequent crewed flights, including the first human mission to lunar orbit since the Apollo program.

The next version of SLS, Block 1B, will use EUS, which has larger fuel tanks and four RL-10 engines to give it a performance boost. That will allow SLS Block 1B to carry an Orion with a crew of four, as well as more than 10 metric tons of co-manifested payload.

«NASA’s SLS Block 1B with the EUS is capable of sending astronauts and essential supporting cargo to the moon and beyond», said Steve Snell, EUS program manager for Boeing. «EUS was designed for crewed flights from the beginning, and the additional lift capability that comes with the EUS requires fewer flights to enable a sustained human presence in deep space sooner and more safely».

«The moon is 238,000 miles/383,024 km from Earth, and Mars at its closest has been 35 million miles/56,327,040 km away», Snell added. «Transporting crews in the fewest flights, for shorter durations, is the safest approach to human deep-space travel. Only the EUS-powered SLS can carry the Orion, along with the necessary mission cargo, in one launch to the moon – or beyond».

Habitation Outpost

Northrop Grumman Corporation has successfully completed its initial Preliminary Design Review (PDR) event for the Habitation and Logistics Outpost (HALO). The module will serve as living quarters for astronauts at the Gateway during lunar exploration missions.

HALO module
Artist illustration of Northrop Grumman’s HALO module and the Power Propulsion Element which form the first critical component of NASA’s Gateway

The design for HALO is based on Northrop Grumman’s flight-proven Cygnus spacecraft, a human-capable vehicle that delivers supplies, equipment and experiments to the International Space Station. Design upgrades for HALO include command and control systems, as well as environmental control and life support systems.

«By basing the HALO module on Cygnus, we are able to deliver an affordable and reliable flight-proven product on an accelerated timeline», said Steve Krein, vice president, civil and commercial satellites, Northrop Grumman. «Maturing HALO through its preliminary design marks a major milestone in the module’s production».

The HALO module is key to NASA’s Lunar Gateway, serving both as a crew habitat and docking hub for vehicles navigating between Earth and the moon. With NASA’s Orion spacecraft docked, HALO will be able to sustain up to four astronauts for up to 30 days as they travel to and from the lunar surface.

Northrop Grumman’s work on HALO is a follow-on to the Next Space Technologies for Exploration Partnerships 2 (NextSTEP-2) program, where the company used virtual reality and 3-D printed models to support rapid prototyping of the NextSTEP-2 habitat modules.

In addition to HALO, Northrop Grumman is partnering on the Blue Origin-led human landing system team to develop the Human Landing System (HLS) for the Artemis program. Northrop Grumman will provide the Transfer Element vehicle that lowers the landing system into low lunar orbit. The company is also responsible for delivering boosters for the Space Launch System rocket and the Orion Ascent Abort System.

From the first lunar lander to the space shuttle boosters, to supplying the International Space Station with vital cargo, Northrop Grumman has pioneered new products and ideas that have been put into orbit, on the moon, and in deep space for more than 50 years. As a part of NASA’s Artemis program, we are building on our mission heritage with new innovations to enable NASA to return humans to the moon, with the ultimate goal of human exploration of Mars.

Northrop Grumman solves the toughest problems in space, aeronautics, defense and cyberspace to meet the ever evolving needs of our customers worldwide. Our 90,000 employees define possible every day using science, technology and engineering to create and deliver advanced systems, products and services.

Fully Assembled

Northrop Grumman Corporation and NASA have completed environmental testing on the James Webb Space Telescope.

James Webb Space Telescope
Northrop Grumman and NASA Complete Environmental Testing on the James Webb Space Telescope

The environmental testing demonstrated Webb’s ability to withstand harsh environmental characteristics during its upcoming rocket launch and journey to reach its orbit at the second Sun-Earth Lagrange point (L2), approximately one million miles away from Earth.

«The completion of environmental testing is a major step forward in our preparations for Webb’s historic launch and a testament to the remarkable dedication of the team», said Scott Willoughby, vice president and program manager, James Webb Space Telescope, Northrop Grumman.

Webb’s environmental testing consisted of a series of rigorous acoustic and sine-vibration tests spanning several weeks. Webb was first placed in Northrop Grumman’s acoustic testing chamber where it underwent high frequency oscillating sound pressure levels above 140 decibels to simulate the effects of being launched on a rocket. The completion of the acoustic tests and analysis validated that Webb’s hardware, science instruments, structure and electronics can successfully survive the planned rocket launch in a simulated environment.

Following the completion of acoustic testing, Webb transitioned to a separate chamber where it underwent a series of sine-vibration tests on a shaker table to simulate vertical and horizontal accelerations in lower frequencies. The observatory was rigorously exposed to vibration levels on the shaker that are well above the flight environment, exciting its resonances to demonstrate its capability to withstand the flight environment with significant margins.

The next series of major milestones for Webb will require NASA and Northrop Grumman engineers and technicians to deploy the observatory’s five-layered sunshield followed by wing deployments of its primary mirror in order to fully verify Webb’s flight worthiness. Lastly, Webb will undergo a full systems evaluation before it begins preparations for its historic journey to Kourou, French Guiana for its October 2021 launch.

Northrop Grumman leads the industry team for NASA’s James Webb Space Telescope, the largest, most complex and powerful space telescope ever built. NASA leads an international partnership that includes the European Space Agency and the Canadian Space Agency. Goddard Space Flight Center manages the Webb Telescope project, and the Space Telescope Science Institute is responsible for science and mission operations, as well as ground station development.

Northrop Grumman solves the toughest problems in space, aeronautics, defense and cyberspace to meet the ever evolving needs of our customers worldwide. Our 90,000 employees define possible every day using science, technology and engineering to create and deliver advanced systems, products and services.

The James Webb Space Telescope Completes its Final Environmental Tests

Kalpana Chawla

Northrop Grumman Corporation’s Cygnus spacecraft was successfully captured by Commander Chris Cassidy of NASA using the International Space Station’s robotic Canadarm2 at 5:32 a.m. EDT after its launch on the company’s Antares rocket on October 2 from Wallops Island.

Cygnus CRS NG-14
Northrop Grumman’s Cygnus spacecraft was successfully captured by Commander Chris Cassidy of NASA using the International Space Station’s robotic Canadarm2 at 5:32 a.m. EDT after its launch on the company’s Antares rocket on October 2 from Wallops Island

The S.S. Kalpana Chawla executed a series of thruster burns during its three-day journey to the station. Once Cygnus was in close range, crew members grappled the spacecraft with the station’s robotic arm. Cygnus was then guided to its berthing port on the Earth facing side of the station’s Unity module and officially installed to the space station at 8:01 a.m. EDT.

«The S.S. Kalpana Chawla has successfully completed the first part of its mission with its arrival at the International Space Station», said Frank DeMauro, vice president and general manager, tactical space systems, Northrop Grumman. «Northrop Grumman is proud to support both NASA and our commercial partners as we continue to play a critical role in support of humans living and working in space».

Cygnus will remain berthed to the International Space Station for approximately three months while more than 8,000 pounds/3,629 kg of cargo is unloaded and astronauts reload the vehicle with disposal cargo. Cygnus will then undock and complete its secondary mission of hosting both the Northrop Grumman-built SharkSat payload and the Saffire-V experiment. The SharkSat prototype payload is mounted to Cygnus and will collect performance data of new technologies in low Earth orbit. To learn more about these payloads, visit Northrop Grumman’s website.

Northrop Grumman solves the toughest problems in space, aeronautics, defense and cyberspace to meet the ever evolving needs of our customers worldwide. Our 90,000 employees define possible every day using science, technology and engineering to create and deliver advanced systems, products and services.

NASA Gateway

Northrop Grumman Corporation has been awarded a contract by NASA to execute the preliminary design and development of the Habitation and Logistics Outpost (HALO). It is to be deployed in lunar orbit as the first crew module of the NASA Gateway, a space station orbiting the moon providing vital support for long-term human exploration of the lunar surface and deep space. This award is a follow-on to the Next Space Technologies for Exploration Partnerships 2 (NextSTEP-2) Appendix A contract. A subsequent modification will be definitized for the fabrication, assembly, and delivery of the HALO module.

Northrop Grumman Awarded NASA Contract to Provide First Crew Module for Artemis Program Gateway

The HALO design is derived from Northrop Grumman’s highly successful Cygnus spacecraft, a human-capable vehicle that delivers supplies, spare equipment and scientific experiments to the International Space Station with 13 successful missions to date.

«The success of our Cygnus spacecraft and its active production line helps to enable Northrop Grumman to deliver the HALO module», said Steve Krein, vice president, civil and commercial satellites, Northrop Grumman. «HALO is an essential element in NASA’s long-term exploration of deep-space, and our HALO program team will continue its work in building and delivering this module in partnership with NASA».

Building off of Cygnus’ heritage pressurized cargo module, Northrop Grumman added command and control capabilities, including environmental control and life support systems, which, when coupled with NASA’s Orion spacecraft capabilities, can sustain up to four astronauts for up to 30 days as they embark on, and return from, expeditions to the lunar surface. By leveraging the active Cygnus production line, Northrop Grumman has the unique capability of providing an affordable and reliable HALO module in the timeframe needed to support NASA’s Artemis program.

The HALO module represents a critical component of NASA’s Gateway serving as both a crew habitat and docking hub for cislunar spacecraft, or spacecraft that navigate between the Earth and the moon. HALO will feature three docking ports for visiting spacecraft, including the Orion spacecraft and other lunar support vehicles.

From the first lunar lander to the space shuttle boosters, to supplying the International Space Station with vital cargo, Northrop Grumman has pioneered new products and ideas that have been put into orbit, on the moon, and in deep space for more than 50 years. As a part of NASA’s Artemis program, we are building on our mission heritage with new innovations to enable NASA to return humans to the moon, with the ultimate goal of human exploration of Mars.

Northrop Grumman solves the toughest problems in space, aeronautics, defense and cyberspace to meet the ever evolving needs of our customers worldwide. Our 90,000 employees define possible every day using science, technology and engineering to create and deliver advanced systems, products and services.

Service Module

The European Space Agency (ESA) has signed a contract with Airbus for the construction of the third European Service Module (ESM) for Orion, the American crewed spacecraft. The contract is worth around €250 million.

Airbus wins ESA contract to construct third European Service Module for NASA’s Orion spacecraft

By ordering this additional service module, ESA ensures the necessary continuity in NASA’s Artemis programme. The third European Service Module (Artemis III Mission) will be used to fly astronauts to Earth’s neighbour in space in 2024 – the first to land on the Moon since Apollo 17 following a hiatus of more than 50 years.

«Our know-how and expertise will enable us to continue to facilitate future Moon missions through international partnerships», said Andreas Hammer, Head of Space Exloration at Airbus. «By working together with our customers ESA and NASA as well as our industrial partner Lockheed Martin, we now have a reliable planning basis for the first three lunar missions. This contract is an endorsement of the joint approach combining the best of European and American space technologies».

David Parker, ESA Director of Human and Robotic Exploration, said: «By entering into this agreement, we are again demonstrating that Europe is a strong and reliable partner in Artemis. The European Service Module represents a crucial contribution to this, allowing scientific research, development of key technologies and international cooperation – inspiring missions that expand humankind’s presence beyond Low Earth Orbit».

The first non-crewed Orion test flight with a European Service Module (Artemis I) will fly in 2021. It is as part of the following mission, Artemis II, that the first astronauts will then fly around the Moon and back to Earth.

The ESM will provide propulsion, power, air and water for the astronauts, as well as thermal control of NASA’s new spacecraft.

More than 20,000 parts and components are used in each ESM, from electrical equipment to engines, solar panels, fuel tanks and life support supplies for the astronauts, as well as approximately 12 kilometres/7.5 miles of cables. The first service module was delivered to NASA in November 2018 and has already been mated with the Crew Module. The fully integrated spacecraft already finished the thermal-vacuum testing at NASA’s facility in Ohio, USA, and returned to the Kennedy Space Center in Florida, USA, while the second service module is now being integrated and tested by Airbus in Bremen, with delivery set for the first half of 2021.

During the development and construction of the ESM, Airbus has drawn on its experience as prime contractor for ESA’s Automated Transfer Vehicle (ATV), which provided the crew on board the International Space Station with regular deliveries of test equipment, spare parts, food, air, water and fuel.

The ESM is cylindrical in shape and about four metres in diameter and height. It has four solar arrays (19 metres/62 feet across when unfurled) that generate enough energy to power two households. The service module’s 8.6 tonnes/18,960 lbs. of fuel can power one main engine and 32 smaller thrusters. The ESM weighs a total of just over 13 tonnes/28,660 lbs. In addition to its function as the main propulsion system for the Orion spacecraft, the ESM will be responsible for orbital manoeuvring and position control. It also provides the crew with the central elements of life support such as water and oxygen, and regulates thermal control while docked to the crew module.

The sixth flight

A United Launch Alliance (ULA) Atlas V 501 rocket carrying the United States Space Force-7 (USSF-7) mission for the U.S. Space Force lifted off on May 17, 9:14 a.m. EDT, from Space Launch Complex-41. This marks the 84th successful launch of an Atlas V rocket, 139th launch for ULA, the second launch for the U.S. Space Force and the sixth flight of the X-37B Orbital Test Vehicle (OTV-6).

United Launch Alliance Successfully Launches the Sixth Orbital Test Vehicle for the U.S. Space Force

«The success of this mission resulted from collaboration with our customer while working through challenging, and ever changing, health and safety conditions», said Gary Wentz, ULA vice president of Government and Commercial Programs. «We were honored to partner with the U.S. Space Force to dedicate this mission to first responders, front-line workers, and those affected by COVID-19. It is truly a unique time in our history and I want to thank the entire team for their continued dedication and focus on mission success».

Along with OTV-6, this mission deployed FalconSat-8, a small satellite developed by the U.S. Air Force Academy and sponsored by the Air Force Research Laboratory (AFRL) to conduct experiments on orbit. The mission also carried two NASA experiments, including a material sample plate to determine the results of radiation and other space effects on various materials, and an experiment which will assess space effects on seeds used to grow food. Another experiment sponsored by the Naval Research Laboratory will examine the ability to transform solar power into radio frequency microwave energy which could be transmitted to the ground.

This mission launched aboard an Atlas V 501 configuration rocket that included a 5-meter-diameter payload fairing. The Atlas booster was powered by the RD AMROSS RD-180 engine, and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.

ULA’s next launch is NASA’s Mars 2020 mission carrying the Perseverance rover on an Atlas V rocket. The launch is scheduled for July 17 from Space Launch Complex-41 at Cape Canaveral Air Force Station, Florida.

To date ULA has a track record of 100% mission success with 139 successful launches.

With more than a century of combined heritage, ULA is the world’s most experienced and reliable launch service provider. ULA has successfully launched more than 135 missions to orbit that provide Earth observation capabilities, enable global communications, unlock the mysteries of our solar system, and support life-saving technology.