Tag Archives: NASA

Module for Orion

The second Airbus-built European Service Module (ESM) for NASA’s Orion spacecraft is ready for delivery from the Airbus site in Bremen, Germany. An Antonov cargo aircraft will fly the ESM-2 to NASA’s Kennedy Space Center in Florida, USA. The European Space Agency (ESA) has selected Airbus as the prime contractor for the development and manufacture of six ESMs with the first ESM soon to fly on NASA’s Artemis I mission.

European Service Module (ESM)
Airbus delivers second European Service Module for NASA’s Orion spacecraft

The ESM is a key element of Orion, the next-generation spacecraft that will transport astronauts beyond low Earth orbit for the first time since the end of the Apollo programme in the 1970s. The module provides propulsion, power and thermal control and will supply astronauts with water and oxygen on future missions. The ESM is installed underneath the crew module and together they form the Orion spacecraft.

«Delivery of the second European Service Module for NASA’s Orion spacecraft marks another huge step forward on the journey to return astronauts to the Moon. Working hand in hand with our customers ESA and NASA, and our industrial partner, Lockheed Martin Space, the programme is moving apace and we are ready to meet the challenges of returning to the lunar surface in 2024», said Andreas Hammer, Head of Space Exploration at Airbus.

ESM-2 underwent a comprehensive validation process prior to being readied for shipment including gimbal testing of the module’s main engine (which swivels from side to side for manoeuvring and directional control during spaceflight). This main engine is a refurbished engine from Space Shuttle Atlantis.

After completing its trans-Atlantic voyage, ESM-2 will be mated with the Orion Crew Module and undergo further extensive testing before integration with the launcher – a process that will take around two years.

The launch of the first Orion spacecraft on NASA’s new Space Launch System rocket will be uncrewed and take the spacecraft more than 64,000 kilometres beyond the Moon in order to demonstrate its capabilities. The first human spaceflight mission, Artemis II, will be powered by ESM-2.

The design of the Orion spacecraft enables astronauts to be transported further into space than ever before. The spacecraft will transport four astronauts, providing life support for the crew during the flight and enabling a safe return to Earth’s atmosphere, at extremely high re-entry speeds.

The ESM comprises more than 20,000 parts and components, from electrical equipment to engines, solar panels, fuel tanks and life support materials, as well as several kilometres of cables and tubing.

The ESM is a cylinder around four metres high and wide. Comparable to the European Automated Transfer Vehicle (ATV 2008 – 2015), also built by Airbus, it has a distinctive four-wing solar array (19 metres across when unfurled) that generates enough energy to power two households. The service module’s 8.6 tons of fuel can power the main engine, eight auxiliary thrusters and 24 smaller thrusters used for attitude control.

At launch, the ESM weighs a total of just over 13 tons. In addition to its function as the main propulsion system for the Orion spacecraft, the ESM will be responsible for orbital manoeuvring and position control. It also provides the crew with the central elements of life support such as water and oxygen, and regulates thermal control while it is docked to the crew module. Furthermore, the unpressurised service module can be used to carry additional payload.

In the longer term it is planned to dock Orion spacecraft with the International Lunar Gateway – a Moon orbiting platform that will enable a sustainable space exploration architecture extending humanity’s presence in space.

First Crew Module

Northrop Grumman Corporation has finalized a contract with NASA to provide the Habitation and Logistics Outpost (HALO) module for NASA’s Gateway. Under the $935 million contract, Northrop Grumman will complete the design and development activity currently underway and will also be responsible for integrating HALO with the Power and Propulsion Element provided by Maxar Technologies.

HALO
Artist illustration of Northrop Grumman’s HALO module and the Power Propulsion Element which form the first critical component of NASA’s Gateway

HALO will be deployed in lunar orbit as the first crew module of the NASA Gateway, a space station orbiting the moon providing vital support for long-term human exploration of the lunar surface and deep space. The HALO module represents a critical component of NASA’s Gateway serving as both a crew habitat and docking hub for cislunar spacecraft, or spacecraft that navigate between the Earth and the moon. HALO will feature three docking ports for visiting spacecraft and other lunar support vehicles.

«By leveraging our active Cygnus production line, Northrop Grumman can uniquely provide an affordable and reliable HALO module, in the timeframe needed to support NASA’s Artemis program», said Steve Krein, vice president, civil and commercial satellites, Northrop Grumman. «Our team looks forward to continuing our collaboration with NASA in order to overcome the technical challenges associated with the harsh radiation and thermal environment of lunar space, as well as the unique challenge of hosting visiting crews for extended durations in this environment».

Previously, Northrop Grumman was awarded a contract to fund work through the Preliminary Design Review of HALO. This review, completed in May, confirmed the vehicle’s design and satisfied NASA’s overall Gateway requirements for the mission, including safety and reliability.

Under the new contract, Northrop Grumman, along with its industry partners and suppliers, will be working towards a Critical Design Review in the spring of 2022 and delivery of the HALO module to the launch site in 2024.

From the first lunar lander to the space shuttle boosters, to supplying the International Space Station with vital cargo, Northrop Grumman has pioneered new products and ideas that have been put into orbit, on the moon, and in deep space for more than 50 years. As a part of NASA’s Artemis program, we are building on our mission heritage with new innovations to enable NASA to return humans to the moon, with the ultimate goal of human exploration of Mars.

Northrop Grumman solves the toughest problems in space, aeronautics, defense and cyberspace to meet the ever evolving needs of our customers worldwide. Our 90,000 employees define possible every day using science, technology and engineering to create and deliver advanced systems, products and services.

Earth Return Orbiter

Airbus has passed an important milestone for the Earth Return Orbiter (ERO) mission, which will bring the first Mars samples back to Earth: it has passed the Preliminary Design Review (PDR) with the European Space Agency (ESA) and with the participation of NASA.

Earth Return Orbiter (ERO)
ESA/NASA validate Airbus design

With technical specifications and designs validated, suppliers from eight European countries are on board for nearly all components and sub-assemblies. Development and testing of equipments and sub-systems can now start to ensure the mission moves ahead on schedule.

«This PDR has been managed and closed in a record time of less than a year, an amazing achievement considering the complexity of the mission. The entire ERO team, including suppliers and agencies, has really pulled together and we are on target to achieve delivery in 2025 – only five and a half years after being selected as prime contractor», said Andreas Hammer, Head of Space Exploration at Airbus.

The next milestone will be the Critical Design Review in two years after which production and assembly will start, to secure delivery of the full spacecraft in 2025.

After launch in 2026, on an Ariane 64 launcher, the satellite will begin a five year mission to Mars, acting as a communication relay with the surface missions (including Perseverance and Sample Fetch Rovers), performing a rendezvous with the orbiting samples and bringing them safely back to Earth.

Dave Parker, Director of human and robotic exploration at ESA, said: «On behalf of all European citizens, I am proud to see ESA leading the first ever mission to return from Mars. As part of our strong cooperation with NASA, we are working to return pristine material from Mars – scientific treasure that the world’s scientists will study for generations to come and help reveal the history of the Red Planet».

Airbus has overall responsibility for the ERO mission, developing the spacecraft in Toulouse, and conducting mission analysis in Stevenage. Thales Alenia Space will also have an important role, assembling the spacecraft, developing the communication system and providing the Orbit Insertion Module from its plant in Turin. Other suppliers come from Germany, France, UK, Italy, Spain, Norway, Denmark and The Netherlands.

The record development and design for ERO was only possible thanks to Airbus building on already mature and proven technologies, instead of developing brand new technologies with risk associated delays.

Proven Airbus technologies include the decades of experience in plasma (electric) propulsion, acquired through station keeping and in orbit operations of full electric telecom satellites, as well as its expertise on large solar arrays (telecoms and exploration missions, including JUICE, the biggest solar panels for an interplanetary mission until ERO) and complex planetary missions like BepiColombo, launched in 2018.

Airbus will also leverage its vision based navigation technological lead (RemoveDEBRIS, Automatic Air to Air refueling), and autonomous navigation expertise (Rosalind Franklin and Sample Fetch Rovers) and rendezvous and docking expertise built up over decades, using technologies from the successful ATV (Automated Transfer Vehicle) and recent developments from JUICE, Europe’s first mission to Jupiter.

The seven ton, seven metre high spacecraft, equipped with 144 m² solar arrays with a span of over 40 m – the largest ever built – will take about a year to reach Mars. It will use a mass-efficient hybrid propulsion system combining electric propulsion for the cruise and spiral down phases and chemical propulsion for Mars orbit insertion. Upon arrival, it will provide communications coverage for the NASA Perseverance Rover and Sample Retrieval Lander (SRL) missions, two essential parts of the Mars Sample Return campaign.

For the second part of its mission, ERO will have to detect, rendezvous with, and capture a basketball-size object called the Orbiting Sample (OS), which houses the sample tubes collected by the Sample Fetch Rover (SFR, also to be designed and built by Airbus); all this over 50 million km away from ground control.

Once captured, the OS will be bio-sealed in a secondary containment system and placed inside the Earth Entry Vehicle (EEV), effectively a third containment system, to ensure that the precious samples reach the Earth’s surface intact for maximum scientific return.

It will then take another year for ERO to make its way back to Earth, where it will send the EEV on a precision trajectory towards a pre-defined landing site, before itself entering into a stable orbit around the Sun.

Lunar Terrain Vehicle

Lockheed Martin and General Motors Co. are teaming up to develop the next generation of lunar vehicles to transport astronauts on the surface of the Moon, fundamentally evolving and expanding humanity’s deep-space exploration footprint.

Lunar Terrain Vehicle (LTV)
Lockheed Martin, General Motors team-up to develop next-generation Lunar Rover for NASA Artemis astronauts to explore the Moon

NASA’s Artemis program is sending humans back to the Moon where they will explore and conduct scientific experiments using a variety of rovers. NASA sought industry approaches to develop a Lunar Terrain Vehicle (LTV) that will enable astronauts to explore the lunar surface farther than ever before. The LTV is the first of many types of surface mobility vehicles needed for NASA’s Artemis program.

To support NASA’s mission, the two industry leaders will develop a unique vehicle with innovative capabilities, drawing on their unparalleled engineering, performance, technology and reliability legacies. The result may allow astronauts to explore the lunar surface in unprecedented fashion and support discovery in places where humans have never gone before.

Lockheed Martin will lead the team by leveraging its more than 50-year-history of working with NASA on deep-space human and robotic spacecraft, such as NASA’s Orion exploration-class spaceship for Artemis and numerous Mars and planetary spacecraft.

«This alliance brings together powerhouse innovation from both companies to make a transformative class of vehicles», said Rick Ambrose, executive vice president, Lockheed Martin Space. «Surface mobility is critical to enable and sustain long-term exploration of the lunar surface. These next-generation rovers will dramatically extend the range of astronauts as they perform high-priority science investigation on the Moon that will ultimately impact humanity’s understanding of our place in the solar system».

GM is a leader in battery-electric technologies and propulsion systems that are central to its multi-brand, multi-segment electric vehicle strategy, positioning the company for an all-electric future. Additionally, GM will use autonomous technology to facilitate safer and more efficient operations on the Moon.

«General Motors made history by applying advanced technologies and engineering to support the Lunar Rover Vehicle that the Apollo 15 astronauts drove on the Moon», said Alan Wexler, senior vice president of Innovation and Growth at General Motors. «Working together with Lockheed Martin and their deep-space exploration expertise, we plan to support American astronauts on the Moon once again».

GM has a proven history of supporting NASA and working within the space industry. The company manufactured, tested and integrated the inertial guidance and navigation systems for the entire Apollo Moon program, including Apollo 11 and the first human landing in 1969. GM also helped develop the electric Apollo Lunar Roving Vehicle (LRV), including the chassis and wheels for the LRV that was used on Apollo’s 15-17 missions.

Unlike the Apollo rovers that only traveled 4.7 miles (7.6 kilometers) from the landing site, the next-generation lunar vehicles are being designed to traverse significantly farther distances to support the first excursions of the Moon’s south pole, where it is cold and dark with more rugged terrain.

Autonomous, self-driving systems will allow the rovers to prepare for human landings, provide commercial payload services, and enhance the range and utility of scientific payloads and experiments.

Lockheed Martin brings unparalleled experience and capabilities in deep-space exploration. It has built spacecraft and systems that have gone to every planet, been on every NASA mission to Mars including building 11 of the agency’s Mars spacecraft, and played major roles on the space shuttle program and International Space Station power systems.

Space Launch System

Boeing begins delivery of the Space Launch System (SLS) rocket cryogenic core stage to NASA today in preparation for launch of the Artemis I mission, the first moon mission in nearly 50 years.

Space Launch System (SLS)
Stennis Space Center teams conducted what’s known as a «break in configuration» operation to prepare the first Boeing-built Core Stage of NASA’s Space Launch System (SLS) rocket for transport to Florida for launch. The SLS is purpose-built for human deep space exploration and is the only rocket that can deliver the safety and performance needed to launch Orion and other elements to deep space

Boeing refurbished the stage after it successfully completed hot fire testing last month at NASA’s Stennis Space Center, closing out the Green Run campaign on the B-2 test stand. The flight hardware will now go to Kennedy Space Center in Florida for integration with the Orion crew spacecraft, Interim Cryogenic Propulsion Stage upper stage and solid rocket boosters in preparation for launch.

SLS will launch NASA’s Artemis I mission that will send an uncrewed Orion crew vehicle around the moon and back. That test flight will be followed by Artemis II, the first crewed lunar fly-by for the Artemis program.

«We thank NASA for their partnership as we deliver the first of the Artemis core stages that will launch a new era of human deep space exploration», said John Shannon, SLS vice president and program manager for Boeing. «Boeing shares this achievement with the hundreds of companies and thousands of highly skilled workers who contribute to this program and form the backbone of this industry».

Boeing is the prime contractor to NASA for the SLS core and upper stages and avionics. The company is joining major elements for the Artemis II core stage now at NASA’s Michoud Assembly Facility in New Orleans.

«Data from Green Run testing validated the core stage’s successful operation and will be used to help certify the stage for flight, as well as to inform our production system for future stages», said Shannon.

Boeing also is working on evolvable capabilities for the rocket system such as the Exploration Upper Stage (EUS), which is entering production at Michoud. The more powerful SLS with EUS will be able to lift three times as much mass to deep space as any other rocket, enabling sustainable, crewed and uncrewed exploration, science and security missions. SLS’ evolved capability to transport massive payloads in a single launch reduces mission complexity and risk while increasing safety, reliability and probability of success.

Boeing is the world’s largest aerospace company and leading provider of commercial airplanes, defense, space and security systems, and global services. As a top U.S. exporter, the company supports commercial and government customers in more than 150 countries. Building on a legacy of aerospace leadership, Boeing continues to lead in technology and innovation, deliver for its customers and invest in its people and future growth.

European Service Module

The European Space Agency (ESA) has signed a further contract with Airbus for the construction of three more European Service Modules (ESM) for Orion, the American crewed spacecraft for the Artemis programme.

European Service Module (ESM)
Airbus wins ESA contract for three more European Service Modules for NASA’s Orion spacecraft

With these additional Service Modules, ESA ensures continuity in NASA’s Artemis programme beyond the three modules which are already under contract with Airbus. The European Service Module will be used to fly astronauts to the Moon. As the powerhouse of the new Orion spacecraft for NASA’s Artemis missions, it will provide critical functions such as the propulsion system to get the astronauts to the Moon, and the consumables the astronauts need to stay alive.

«Europe has entered a new decade of exploration. Building six Orion European Service Modules is a venture like no other. Airbus has some of the world’s best minds in space exploration working on this phenomenal vehicle and this new agreement will facilitate many future Moon missions through international partnerships», said Andreas Hammer, Head of Space Exploration at Airbus. «Europe is a strong and reliable partner in NASA’s Artemis missions and the Orion European Service Module represents a crucial contribution to this».

David Parker, ESA Director of Human and Robotic Exploration, said: «This contract doubles Europe’s commitment to delivering the vital hardware to send humankind to the Moon on Orion. Together with the elements we are building for the lunar Gateway we are guaranteeing seats for ESA astronauts to explore our Solar System as well as securing employment and technological know-how for Europe».

The ESM is cylindrical in shape and about four metres in diameter and height. It has four solar arrays (19 metres across when unfurled) that generate enough energy to power two households. The service module’s 8.6 tonnes of fuel can power one main engine and 32 smaller thrusters. The ESM weighs a total of just over 13 tonnes. In addition to its function as the main propulsion system for the Orion spacecraft, the ESM will be responsible for orbital manoeuvring and position control. It also provides the crew with the central elements of life support such as water and oxygen, and regulates thermal control while attached to the crew module.

Artemis I, the first non-crewed Orion test flight with a European Service Module will fly in 2021. It is as part of the following mission, Artemis II that the first astronauts will then fly around the Moon and back to Earth. With Artemis III, NASA will land the first woman and next man on the Moon by 2024, using innovative technologies to explore more of the lunar surface than ever before. The ESMs announced today will be used for the Artemis IV to VI missions, the first two of which are part of the European contribution to the international Gateway planned to be assembled starting from 2024 in a lunar orbit.

During the development and construction of the ESM, Airbus has drawn on its experience as prime contractor for ESA’s Automated Transfer Vehicle (ATV), which provided the crew on board the International Space Station with regular deliveries of test equipment, spare parts, food, air, water and fuel.

Moon Cruiser

Airbus has been awarded a CLTV (Cis-Lunar Transfer Vehicle) study for a «Moon Cruiser» by the European Space Agency (ESA). According to the study concept (two parallel Phase A/B1), the CLTV is a versatile, autonomous logistics vehicle that could, for example, provide timely and efficient support to NASA and ESA in the implementation of the future Artemis Moon missions. The spacecraft will be based on existing and proven technologies and will complement the multipurpose European Large Logistic Lander (EL3).

CLTV (Cis-Lunar Transfer Vehicle)
Versatile, autonomous logistics vehicle to support future lunar missions based on heritage from Orion ESM and ATV

The execution of lunar missions, including landing on the Moon and setting up upcoming lunar space station, Gateway, is a complex and challenging task for the international community. It requires a precisely planned chain of supply and logistics missions. The Airbus Moon Cruiser concept supports these challenges in several ways:

  • Gateway logistics: the CLTV can transport cargo or fuel for refuelling in lunar orbit and to the Gateway, the international project led by the two main contributors NASA (United States) and ESA (Europe), supporting a sustainable presence on the Moon and exploration beyond and a pillar of NASA’s Artemis programme.
  • Transfer of a large Lunar Module into Low Lunar Orbit: The CLTV is required to fly a lander or an ascent stage between the Gateway and the low lunar orbit, to perform landing and ascent missions with larger and more extensive services.
  • CLTV’s versatility will also allow it to support missions to post-ISS orbital infrastructure in LEO as well as missions in the field of GEO satcom servicing.

The CLTV’s design allows multiple mission types to be carried out with a single vehicle and is compatible with various launchers. Airbus’ solution is a mature, versatile and modular concept based on a large portfolio of mission and vehicle designs for Human Space-flight and Exploration built by Airbus for ESA including the Orion European Service Module (ESM), as well as five successful Automated Transfer Vehicle (ATV) space transporter missions, carrying a total of around 30 tonnes of cargo into space.

«With the Airbus Moon Cruiser concept for CLTV, we are establishing the first building blocks for humans and machines to work together all the way between the Earth and the Moon. CLTV can serve Gateway logistics and add value to the EL3 Large Lunar Lander by enabling additional missions, whether standalone for Europe or as part of wider international co-operation», said Andreas Hammer, Head of Space Exploration at Airbus.

The CLTV can be launched on Ariane 6, and it could transport a module of over 4.5 tonnes to the Gateway. The European Space Agency ESA could deploy the CLTV in the second half of the decade and it is planned that the CLTV will literally «cruise» on a direct flight path to the Moon.

The target is to validate the following, implementation phase (B2/C/D) of CLTV at the next Ministerial Council in 2022, with the aim of launching in 2027.

Airbus is building the European Service Module for ESA for the new NASA spacecraft Orion, the central spacecraft of future NASA space exploration. The first service module has already been delivered to NASA by Airbus. A second service module is currently being built at Airbus in Bremen. The first launch for Orion – a test flight without astronauts – will take Orion into a lunar orbit and back to Earth under the Artemis I mission and is scheduled for 2021.

Ready For Its Mission

NASA’s Orion spacecraft is ready for its mission to the Moon. Lockheed Martin has completed assembly and testing of the Orion Artemis I spacecraft and has transferred possession to NASA’s Exploration Ground Systems (EGS) team on January 14, 2021. Assembled at Kennedy Space Center, the EGS team will then perform final preparations on the spacecraft for its mission to the Moon later this year.

Orion
The finished Orion spacecraft for the Artemis I mission was handed over for launch processing for a mission to the Moon later this year

 

Ready for the Moon

Orion is NASA’s new human-rated exploration-class spaceship that will take astronauts into deep space including the Moon and Mars. Lockheed Martin is the prime contractor for NASA and built the crew module, crew module adaptor and launch abort system. The European Space Agency provides the European Service Module for Orion.

The Artemis I mission will be the first launch of the Orion spacecraft aboard NASA’s Space Launch System rocket. Over the course of three weeks, the uncrewed Orion capsule will fly out and orbit the Moon and return to Earth. This test mission will validate the spacecraft, rocket and ground systems for future crewed missions.

«Orion is a unique and impressive spacecraft and the team did an outstanding job to get us to this day», said Mike Hawes, Orion vice president and program manager for Lockheed Martin. «The launch and flight of Artemis I will be an impressive sight, but more importantly it will confirm Orion is ready to safely carry humans to the Moon and back home. This tremendous advancement opens the door to a new era of deep space exploration that will ultimately benefit us back here on Earth».

Orion is being transferred from the Neil Armstrong Operations and Checkout Building at Kennedy, where it was assembled, to multiple Kennedy facilities where EGS will load propellants and other consumables such as ammonia, helium and nitrogen, and integrate the launch abort system and protective ogive fairing. After this is completed, it will be taken to the Vertical Assembly Facility to be lifted onto the SLS rocket and prepared for roll to the launch pad.

 

Crewed Missions Underway

The launch later this year will be the beginning of many Artemis missions to the Moon. The next mission, Artemis II, will be the first with a crew onboard and will go out to orbit the Moon and return. That Orion crew module and service module adapter are well under assembly at Kennedy and will see its first power-on of its integrated computers this summer.

Artemis III will see the first woman and the next man to walk on the Moon. Orion will carry them out to orbit the Moon where they will ultimately land on the surface using a lunar landing system. That spacecraft is already under construction as major structural elements of the crew module pressure vessel are arriving at NASA’s Michoud Assembly Facility.

As part of an Orion production and operations contract, NASA ordered three Orion spacecraft from Lockheed Martin for Artemis missions III-V with plans to order three additional Orion spacecraft for Artemis missions VI-VIII and options for up to 12 missions.

Upper Stage

Boeing and NASA have successfully completed a critical design review for NASA’s Space Launch System (SLS) Exploration Upper Stage (EUS), confirming the EUS design for continued development and transition to hardware build. Boeing has already started fabrication activities that will support building the first EUS at NASA’s Michoud Assembly Facility in New Orleans.

Exploration Upper Stage (EUS)
This artist’s rendering shows the Boeing-built Exploration Upper Stage (EUS) powering the Orion crew vehicle in space after separation from the NASA Space Launch System (SLS) rocket’s core stage. Boeing has already begun fabrication activities for the first EUS at NASA’s Michoud Assembly Facility in New Orleans, where the company also builds SLS core stages (Boeing illustration)

The SLS rocket uses staged propulsion to send NASA’s Orion spacecraft and astronauts, plus supplies, to the moon and beyond. The Boeing-built core stage powers the SLS in early flight, eventually separating when the upper stage takes over and provides the power to send crewed vehicles, space habitats and other payloads on to the moon or other deep space destinations.

To accomplish NASA’s Artemis I lunar mission, the Block 1 variant of SLS will use a Boeing/United Launch Alliance Interim Cryogenic Propulsion Stage with one RL-10 engine to take an uncrewed Orion spacecraft on a test flight to the moon. SLS Block 1 rockets will be used for two subsequent crewed flights, including the first human mission to lunar orbit since the Apollo program.

The next version of SLS, Block 1B, will use EUS, which has larger fuel tanks and four RL-10 engines to give it a performance boost. That will allow SLS Block 1B to carry an Orion with a crew of four, as well as more than 10 metric tons of co-manifested payload.

«NASA’s SLS Block 1B with the EUS is capable of sending astronauts and essential supporting cargo to the moon and beyond», said Steve Snell, EUS program manager for Boeing. «EUS was designed for crewed flights from the beginning, and the additional lift capability that comes with the EUS requires fewer flights to enable a sustained human presence in deep space sooner and more safely».

«The moon is 238,000 miles/383,024 km from Earth, and Mars at its closest has been 35 million miles/56,327,040 km away», Snell added. «Transporting crews in the fewest flights, for shorter durations, is the safest approach to human deep-space travel. Only the EUS-powered SLS can carry the Orion, along with the necessary mission cargo, in one launch to the moon – or beyond».

Habitation Outpost

Northrop Grumman Corporation has successfully completed its initial Preliminary Design Review (PDR) event for the Habitation and Logistics Outpost (HALO). The module will serve as living quarters for astronauts at the Gateway during lunar exploration missions.

HALO module
Artist illustration of Northrop Grumman’s HALO module and the Power Propulsion Element which form the first critical component of NASA’s Gateway

The design for HALO is based on Northrop Grumman’s flight-proven Cygnus spacecraft, a human-capable vehicle that delivers supplies, equipment and experiments to the International Space Station. Design upgrades for HALO include command and control systems, as well as environmental control and life support systems.

«By basing the HALO module on Cygnus, we are able to deliver an affordable and reliable flight-proven product on an accelerated timeline», said Steve Krein, vice president, civil and commercial satellites, Northrop Grumman. «Maturing HALO through its preliminary design marks a major milestone in the module’s production».

The HALO module is key to NASA’s Lunar Gateway, serving both as a crew habitat and docking hub for vehicles navigating between Earth and the moon. With NASA’s Orion spacecraft docked, HALO will be able to sustain up to four astronauts for up to 30 days as they travel to and from the lunar surface.

Northrop Grumman’s work on HALO is a follow-on to the Next Space Technologies for Exploration Partnerships 2 (NextSTEP-2) program, where the company used virtual reality and 3-D printed models to support rapid prototyping of the NextSTEP-2 habitat modules.

In addition to HALO, Northrop Grumman is partnering on the Blue Origin-led human landing system team to develop the Human Landing System (HLS) for the Artemis program. Northrop Grumman will provide the Transfer Element vehicle that lowers the landing system into low lunar orbit. The company is also responsible for delivering boosters for the Space Launch System rocket and the Orion Ascent Abort System.

From the first lunar lander to the space shuttle boosters, to supplying the International Space Station with vital cargo, Northrop Grumman has pioneered new products and ideas that have been put into orbit, on the moon, and in deep space for more than 50 years. As a part of NASA’s Artemis program, we are building on our mission heritage with new innovations to enable NASA to return humans to the moon, with the ultimate goal of human exploration of Mars.

Northrop Grumman solves the toughest problems in space, aeronautics, defense and cyberspace to meet the ever evolving needs of our customers worldwide. Our 90,000 employees define possible every day using science, technology and engineering to create and deliver advanced systems, products and services.