Lockheed Martin is on the team that has won a contract from NASA to develop and demonstrate a human landing system for the Artemis program under the agency’s Human Landing System program. The goal of the program is to rapidly develop a sustainable human lunar lander and perform a crewed demonstration flight to the lunar surface for Artemis V.
NASA’s Sustainable Human Landing System Will Land Crew on the Moon for Artemis V
Led by Blue Origin, the National Team that will develop and build the lander also includes Draper, Boeing, Astrobotic and Honeybee Robotics.
«Congratulations to Blue Origin on this achievement. Lockheed Martin is excited to be part of Blue Origin’s National Team and we are looking forward to building humanity’s first Cislunar Transporter», said Kirk Shireman, vice president of Lunar Exploration Campaigns at Lockheed Martin Space. «We value Blue Origin’s thoughtful approach to developing human-rated flight systems and are thrilled to be part of a diverse team that combines innovation, deep experience and a strong industrial base».
NASA’s Artemis program is redefining how we explore deep space, and a sustainable human landing system program is key to extending our human presence away from Earth in a long-term way, which will greatly add to our scientific knowledge of the solar system.
As a principal partner on Blue Origin’s National Team, Lockheed Martin brings to the lunar lander effort more than 50 years of experience in space exploration – from developing the Orion spacecraft, to supporting numerous planetary robotic missions, to developing the space shuttle’s external fuel tank. Additionally, Lockheed Martin and National Team partners are drawing on their extensive supplier base, engaging strategic small and mid-sized businesses across the country in the development of the landing system.
Rolls-Royce on March 01, 2023 announces it has launched F130 engine testing at the company’s outdoor test facility at the NASA Stennis Space Center in Mississippi, U.S. Rolls-Royce F130 engines were selected by the United States Air Force to replace the existing powerplants in the B-52 Stratofortress fleet, with over 600 new engine deliveries expected. This milestone test program is the first time F130 engines have been tested in the dual-pod engine configuration of the B-52 Stratofortress aircraft. Each B-52 Stratofortress aircraft has eight engines in four pods.
Rolls-Royce has begun testing two F130 engines for the B-52 Stratofortress aircraft at the NASA Stennis Space Center in Mississippi. F130 engines have been selected by the United States Air Force to re-engine the iconic B-52 Stratofortress aircraft fleet. The F130 engines for B-52 Stratofortress will be manufactured in the company’s facilities in Indianapolis in the U.S.
The engine testing will focus on crosswind aerodynamic flow as well as confirming the successful operation of the engine’s digital controls system. Early results from the testing have been very positive with additional test data to be analyzed over the next several months.
Rolls-Royce is collaborating very closely with the Air Force and Boeing, which is managing the overall engine integration and B-52 Stratofortress aircraft modernization program. The new engines will extend the life of the B-52 Stratofortress aircraft for 30 years. F130 engines are so durable they are expected to remain on wing for the remainder of the aircraft life.
Candice Bineyard, Director, Programs – Defence, said: «We are excited to begin this milestone testing program, the first step for what will be decades of successful engine operation for the United States Air Force B-52 Stratofortress fleet. Rolls-Royce continues to work very closely with the Air Force and Boeing to ensure the engine testing and integration process run smoothly. This will result in higher fuel efficiency, reduced air refueling requirements, and significantly lower maintenance costs for the B-52 Stratofortress fleet. We look forward to sharing test results with the Air Force and Boeing as the test plan progresses at the NASA Stennis Space Center».
F130 engines will be manufactured, assembled and tested at Rolls-Royce facilities in Indianapolis, the company’s largest production facility in the U.S. Rolls-Royce has invested $1 Billion in recent years to completely modernize manufacturing and testing facilities in Indiana, as well as for advanced technology.
F130 engines were selected for the B-52 Stratofortress by the Air Force in September 2021 following a competitive selection process. The F130 is derived from the Rolls-Royce BR family of commercial engines, with over 30 million hours of operation and a high reliability rate. It’s a proven, dependable engine with a fuel-efficient design.
Two Northrop Grumman Corporation five-segment solid rocket boosters helped successfully launch the first flight of NASA’s Space Launch System (SLS) rocket from Pad 39B in Kennedy Space Center, Florida as part of the Artemis I mission. This is the first in a series of Artemis missions focused on deep space exploration and establishing a sustainable human presence on and around the moon.
NASA’s Space Launch System rocket, with twin Northrop Grumman solid rocket boosters, lifts off for the first Artemis program launch (Photo Credit: Northrop Grumman)
«The SLS rocket was launched by a powerful 7.2 million pounds/3,265,865 kg of thrust from our solid rocket boosters which are largest, human-rated solid rocket boosters ever built», said Wendy Williams, vice president, propulsion systems, Northrop Grumman. «Northop Grumman has been pioneering in space for over 50 years and our contributions to NASA’s Artemis missions continue our incredible legacy of innovation».
Booster segments for Artemis II, the first crewed mission, and Artemis III, the mission that will land the first woman on the lunar surface, are complete. Artemis IV segments are currently being cast with propellant. Northrop Grumman supplied rocket propulsion for NASA’s Apollo and Space Shuttle programs and developed the five-segment SLS solid rocket booster based on the flight-proven design of the space shuttle boosters. The company will provide ongoing support for SLS and the Artemis missions through 2031.
The Boeing built X-37B Orbital Test Vehicle (OTV) set a new endurance record after spending 908 days on orbit before landing at NASA’s Kennedy Space Center in Florida at 5:22 a.m. ET, November 12, 2022. This surpasses its previous record of 780 days on-orbit.
The Boeing-built X-37B Orbital Test Vehicle (OTV) landed at NASA’s Kennedy Space Center in Florida at 5:22 a.m. ET, November 12, 2022 (Photo credit: Boeing/U.S. Space Force)
With the successful completion of its sixth mission the reusable spaceplane has now flown over 1.3 billion miles/2,092,147,200 km and spent a total of 3,774 days in space where it conducts experiments for government and industry partners with the ability to return them to Earth for evaluation.
For the first time, the vehicle carried a service module to augment the number of payloads it can haul. The module separated from the OTV prior to de-orbiting ensuring a safe and successful landing.
«This mission highlights the Space Force’s focus on collaboration in space exploration and expanding low-cost access to space for our partners, within and outside of the Department of the Air Force (DAF)», said General Chance Saltzman, Chief of Space Operations.
The sixth mission was launched atop a United Launch Alliance (ULA) Atlas V rocket from Cape Canaveral Space Force Station in May 2020. Hosted experiments included a solar energy experiment designed by the Naval Research Lab, as well as a satellite designed and built by cadets at the U.S. Air Force Academy in partnership with the Air Force Research Laboratory. The satellite, dubbed FalconSat-8, was successfully deployed in October 2021 and remains on orbit today.
This mission also hosted multiple NASA experiments including the Materials Exposure and Technology Innovation in Space (METIS-2), which evaluated the effects of space exposure on various materials to validate and improve the precision of space environment models. This was the second flight for this type of experiment. Mission 6 also hosted a NASA experiment to evaluate the effects of long-duration space exposure on seeds. This experiment informs research aimed at future interplanetary missions and the establishment of permanent bases in space.
«Since the X-37B’s first launch in 2010, it has shattered records and provided our nation with an unrivaled capability to rapidly test and integrate new space technologies», said Jim Chilton, senior vice president, Boeing Space and Launch. «With the service module added, this was the most we’ve ever carried to orbit on the X-37B and we’re proud to have been able to prove out this new and flexible capability for the government and its industry partners».
The X-37B program is a partnership between the U.S Department of the Air Force Rapid Capabilities Office and the U.S. Space Force. Boeing designed and manufactured the spaceplane and continues to provide program management, engineering, test and mission support from sites in Southern California, Florida and Virginia.
In 2020, the X-37B received the Robert J. Collier Trophy for advancing the performance, efficiency and safety of air and space vehicles.
Lockheed Martin is now under contract to deliver three Orion spacecraft to NASA for its Artemis VI-VIII missions, continuing the delivery of exploration vehicles to the agency to carry astronauts into deep space and around the Moon supporting the Artemis program.
NASA Orders Three More Orion Spacecraft From Lockheed Martin
Lockheed Martin is the prime contractor to NASA for the Orion program and has completed two Orion vehicles – EFT-1 which flew in 2014, and Artemis I, which is weeks away from its launch to the Moon – and is actively building vehicles for the Artemis II-V missions.
«Lockheed Martin is honored to partner with NASA to deliver Orion spacecraft for NASA’s Artemis missions. This order includes spacecraft, mission planning and support, and takes us into the 2030s», said Lisa Callahan, vice president and general manager for Commercial Civil Space, Lockheed Martin. «We’re on the eve of a historic launch kicking off the Artemis era and this contract shows NASA is making long-term plans toward living and working on the Moon, while also having a forward focus on getting humans to Mars».
This order marks the second three missions under the agency’s Orion Production and Operations Contract (OPOC), an Indefinite-Delivery, Indefinite-Quantity (IDIQ) contract for up to 12 vehicles. A breakout of these orders includes:
2019: NASA initiates OPOC IDIQ and orders three Orion spacecraft for Artemis
missions III-V.
2022: NASA orders three additional Orion spacecraft missions for Artemis VI-VIII for $1.99 billion.
In the future: NASA can order an additional six Orion missions.
Under OPOC, Lockheed Martin and NASA have reduced the costs on Orion by 50% per vehicle on Artemis III through Artemis V, compared to vehicles built during the design and development phase. The vehicles built for Artemis VI, VII and VIII will see an additional 30% cost reduction.
«We’re achieving substantial cost savings from Artemis III through Artemis VIII by extensive structure and system reuse and incorporating advanced digital design and manufacturing processes», said Tonya Ladwig, Orion vice president and program manager at Lockheed Martin Space. «The Artemis II vehicle will reuse select avionics from the Artemis I crew module, and that reuse will continue to dramatically increase to where the Artemis III pressure vessel capsule will be entirely refurbished for the Artemis VI mission».
Additionally, the company will drive out cost from these production vehicles through material and component bulk buys from suppliers and an accelerated mission cadence.
With the Artemis I Orion spacecraft currently on top of the Space Launch System rocket, there are two other Orion vehicles undergoing assembly at NASA’s Kennedy Space Center in Florida, Artemis II and III. Work is well under way on the Artemis IV craft including welding the pressure vessel together at NASA’s Michoud Assembly Facility near New Orleans and the heat shield at Lockheed Martin’s facility near Denver, and work has already begun on the Artemis V vehicle.
NASA and the U.S. Geological Survey (USGS) officially marked the handover and commencement of operations of the Landsat 9 Earth observation satellite. Landsat 9 was designed, built and tested by Northrop Grumman Corporation at its Gilbert, Arizona satellite facility and was launched into orbit aboard an Atlas V rocket in September 2021. The satellite completed its systems verification and commissioning in late July 2022.
The Landsat 9 (background) and the Joint Polar Satellite System-2 (JPSS-2) satellites in Northrop Grumman’s Gilbert, Arizona satellite manufacturing facility
«Northrop Grumman-built satellites like Landsat 9 are vital to tracking the state of our planet», said Mike Witt, chief sustainability officer, Northrop Grumman. «The data they collect is vital to analyzing, predicting and addressing changes to ecosystems, helping us to better understand the role sustainability plays in securing a safer world».
Landsat 9 will collect space-based images and data that will aid researchers in areas including agriculture, geology, land use mapping, forestry, global change research and water resource management. The Landsat images further support international emergency and disaster relief to save lives of those in areas most affected by natural disasters. Landsat 9 is based on Northrop Grumman’s flight proven LEOStar-3 platform and extensively leverages the design of the Landsat 8 spacecraft, which has been in service since 2013.
«Landsat 9 continues the uninterrupted monitoring of our Earth by building on the 50-year legacy of the NASA and USGS Landsat system», said Steve Krein, vice president, commercial and civil satellites, Northrop Grumman. «This is the fourth Landsat satellite built by Northrop Grumman that plays a critical role of global observation for monitoring, understanding and managing Earth’s natural resources».
Northrop Grumman Corporation and NASA successfully conducted a full-scale static fire of NASA’s Space Launch System (SLS) rocket motor, known as Flight Support Booster-2. The five-segment solid rocket booster is the world’s largest solid rocket motor and will provide more than 75 percent of the SLS rocket’s initial thrust during launch.
The five-segment solid rocket booster for NASA’s SLS rocket tested for early learning in support of next-generation systems at Northrop Grumman’s Promontory, Utah, test area
Over 300 measurement channels assessed the 154-foot-long/50-meter-long solid rocket booster as it fired for just over two minutes producing upwards of 3.6 million pounds of thrust. Today’s test evaluates new materials and demonstrates a new motor ignition system and an electronic thrust vector control system that steers the motors to provide data for the development of the next-generation Booster Obsolescence and Life Extension (BOLE) boosters.
Northrop Grumman was awarded a contract to develop the BOLE booster in December 2021. The award also included follow-on production and flight sets for Artemis IV through Artemis VIII, and a BOLE booster set for Artemis IX.
«Continuous product improvements and obsolescence mitigation helps NASA achieve its long-term mission to utilize SLS for its Artemis program», said Wendy Williams, vice president, propulsion systems, Northrop Grumman. «This opportunity for early learning on next-generation systems will help us develop an enhanced booster that is ready to support the greater payload demands of the SLS rocket through 2031».
Booster segments for Artemis II, the first crewed Artemis mission, and Artemis III, the mission that will land the first woman and first person of color on the lunar surface, are complete. Artemis IV segments are currently being cast with propellant and the first BOLE booster composite segment case to be used for development testing completed winding in October.
Northrop Grumman has supplied rocket propulsion for NASA’s Apollo and Space Shuttle Programs and developed the five-segment SLS solid rocket booster based on the flight-proven design of the space shuttle boosters. Designed with an additional segment and upgraded technology and materials, each of the twin solid rocket boosters generates 25 percent more thrust than its predecessor boosters to aid the SLS rocket’s ability to deliver greater mass and volume to space with greater departure energy than any existing launch vehicle.
Along with the twin solid rocket boosters, Northrop Grumman also produces the abort motor and attitude control motor for NASA’s Orion spacecraft’s Launch Abort System that increases astronaut safety on pad and during ascent. The company further supports the Artemis program providing the Habitation and Logistics Outpost module for NASA’s lunar Gateway and internally developing a Lunar Terrain Vehicle that supports human and robotic exploration of the moon and beyond.
Northrop Grumman is a technology company, focused on global security and human discovery. Our pioneering solutions equip our customers with capabilities they need to connect, advance and protect the U.S. and its allies. Driven by a shared purpose to solve our customers’ toughest problems, our 90,000 employees define possible every day.
The BOLT II «In memory of Mike Holden» flight experiment, managed by the Air Force Research Laboratory/Air Force Office of Scientific Research (AFRL/AFOSR), launched on the evening of March 21 from the National Aeronautics and Space Administration’s (NASA) Wallops Flight Facility in Virginia. Doctor Michael Holden, who, up until his passing in 2019, had been a leader in the hypersonics field since the 1960s. The flight experiment successfully flew the planned flight path and acquired tremendous scientific data to further our understanding of boundary layer transition, turbulent heating, and drag at hypersonic conditions.
AFRL/AFOSR BOLT II Rocket launching from NASA/Wallops Flight Facility on March 21, 2022 (NASA/Wallops photo/Brian Bonsteel)
The goal of the AFRL/AFOSR BOLT II flight experiment is to collect scientific data to better understand Boundary Layer Transition (BOLT) and Turbulence (BOLT II) during hypersonic flight. Monday’s successful launch of the two-stage suborbital sounding rocket has paved the way for the next chapter of discovery in this area of basic research.
«The flight experiment was designed to provide access to hypersonic boundary layer turbulence measurements in a combination of low-disturbance air and high Reynolds numbers seen in flight, but that are not achievable in ground test facilities», said Doctor Sarah Popkin, who oversees the AFRL/AFOSR BOLT II project as AFOSR’s Program Officer for High-Speed Aerodynamics.
«The experimental vehicle included over 400 sensors geared toward correlating surface pressure, heat flux, and skin friction in a hypersonic boundary layer. The two-sided experiment seeks to understand both «natural» and «tripped» turbulent boundary layer development», said Doctor Sarah Popkin.
The BOLT II science team is led by Texas A&M University with key collaborators at NASA, CUBRC, University of Minnesota, United States Air Force Academy, University of Maryland, University of Arizona, and Johns Hopkins University Applied Physics
Laboratory; along with international collaboration from Australia’s Defence Science and Technology group and the University of Queensland. Additional collaborators are mentioned in the BOLT II pre-launch press release.
As well, team members at AFRL’s Aerospace System’s Directorate have been instrumental in this project by doing a lot of the heavy lifting ensuring that the entire team was able to successfully collect the data needed from the experiment.
Strategic partnerships like these are vital to AFRL/AFOSR’s basic research success. By creating and supporting opportunities for highly diversified partnerships such as these, AFRL/AFOSR can also provide important pathways to build the next generation of scientists and engineers who can solve difficult problems and contribute to modernizing the future science and technology needs for the nation.
Similar to the BOLT I program, BOLT II included a symbiotic trio of wind tunnel testing, high-fidelity computations, and a flight experiment. The wind tunnel and computational data acquired during the BOLT II project informed the design and placement of over 400 sensors to capture correlations needed to, in turn, improve and validate boundary layer turbulence models.
Unique to BOLT II, this project provided the first-ever full-scale ground testing of the flight geometry. Post-processing of the flight data will be directly compared to the earlier entry into the CUBRC LENS II shock tunnel. This facility replicated the Mach and Reynolds number conditions expected for the BOLT II trajectory but at higher, conventional disturbance air conditions. «The results from these two data sources provide a one-of-a-kind direct comparison between ground and flight experiment conditions with identical hardware. A second, full-scale wind tunnel test campaign, is being carried out by the University of Queensland, which is also matching flight conditions and simulating vehicle surface heating observed during flight», said Popkin.
«Words cannot express how grateful and happy I am that we have reached this moment. Absolutely, we would not be where we are without our amazing team and I’m excited to see what the data will teach us about high-speed turbulence», said Popkin.
Doctor Rodney Bowersox, professor of aerospace engineering at TAMU and lead principle investigator on BOLT II, couldn’t agree more, «I am very grateful to have been a part of this great team effort involving multiple research groups at TAMU, including Dr. Helen Reed and Doctor Edward White and the cadre of brilliant students, CUBRC, AFRL, NASA, NASA Sounding Rocket Operations Contract (NSOROC), Lockheed Martin, other universities, and most importantly AFRL/AFOSR. I am confident the data obtained will serve the scientific research community for many years to come. Mike Holden would be very proud».
BOLT II exemplifies just how AFRL/AFOSR continues to discover, shape and champion bold, high risk, high reward basic research for the United States Air Force and Space Force. As AFRL/AFOSR celebrates 70 years of innovation, this legacy continues through smart investments in basic research opportunities that take deep dives into scientific transformational principles and conceptions that clear the path to new inventions, products and capabilities. As well, BOLT II illustrates the importance of basic research as a long-term investment that requires commitment and a sound strategy.
A new type of large, fully-composite, linerless cryogenic fuel tank, designed and manufactured by Boeing, passed a critical series of tests at NASA’s Marshall Space Flight Center at the end of 2021. The successful test campaign proves the new technology is mature, safe and ready for use in aerospace vehicles.
Boeing’s all-composite cryogenic fuel tank undergoing pressure testing at NASA’s Marshall Space Flight Center (Boeing photo)
The 4.3-meter (14 foot) diameter composite tank is similar in size to the fuel tanks intended for use in the upper stage of NASA’s Space Launch System (SLS) rocket, which is the foundational capability in NASA’s Artemis lunar and deep space human exploration program. If the new composite technology were implemented in evolved versions of the SLS’s Exploration Upper Stage, the weight savings technology could increase payload masses by up to 30 percent.
«Composites are the next major technological advancement for large aerospace cryogenic storage structures», said Boeing Composite Cryotank Manufacturing Lead Carlos Guzman. «And while they can be challenging to work with, they offer significant advantages over traditional metallic structures. Boeing has the right mix of experience, expertise and resources to continue to advance this technology and bring it to market in a variety of applications across aerospace and aeronautics».
During the testing, which was funded by DARPA and Boeing, engineers from Boeing and NASA filled the vessel with cryogenic fluid in multiple test cycles, pressurizing the tank to expected operational loads and beyond. In the final test, which intended to push the tank to failure, pressures reached 3.75 times the design requirements without any major structural failure.
«NASA’s support through this testing has been invaluable», said Boeing Test Program Manager Steve Wanthal. «We were able to use their technical expertise and investments made in the testing infrastructure at the Marshall Space Flight Center to continue to advance this technology, which will ultimately benefit the entire industry».
Applications for the technology expand past spaceflight. The test which builds upon Boeing’s extensive experience with the safe use of hydrogen in aerospace applications will inform Boeing’s ongoing studies of hydrogen as a potential future energy pathway for commercial aviation. In addition to use in space programs, Boeing has completed five flight demonstration programs with hydrogen.
As a leading global aerospace company, Boeing develops, manufactures and services commercial airplanes, defense products and space systems for customers in more than 150 countries. As a top U.S. exporter, the company leverages the talents of a global supplier base to advance economic opportunity, sustainability and community impact. Boeing’s diverse team is committed to innovating for the future and living the company’s core values of safety, quality and integrity.
Airbus Crisa, an affiliate company of Airbus, has signed a contract for the development of the Power Management and Distribution (PMAD) system for the Habitation and Logistics Outpost (HALO) with Northrop Grumman.
Airbus to develop the Power Management and Distribution System for key Lunar Gateway module
Airbus Crisa is a Spanish company founded in 1985 to design and manufacture electronic equipment and software for space applications, and engineering projects for ground stations. It is fully integrated into Airbus Defence and Space.
The new Lunar Gateway station, scheduled for launch in 2024, will initially have two modules and will be expanded in successive years to five modules. The station is intended to serve as a space laboratory as well as an intermediate logistics post for future trips to the surface of the Moon and on to Mars. The two initial modules are known as PPE and HALO. PPE (Power and Propulsion Element) has solar arrays that power the station and thrusters that allow it to maintain a stable orbit around the Moon. HALO is the Habitation and Logistics Outpost module where the astronauts will live during the estimated 40 days of the first missions.
«This contract worth more than $50 million reflects our ability to deliver highly specialised space equipment to global manufacturers and is our first contribution to the Moon-orbiting Gateway, which is part of NASA’s Artemis programme to return to the Moon», said Fernando Gómez-Carpintero, CEO of Airbus Crisa. «This is an exciting step as Airbus Crisa is designing the PMAD to become the standard modular power management system for all future space stations and human vehicles. We have provided a disruptive solution, with an architectural concept never before seen in the sector. This lays the foundations for a new international standard, placing the company at the forefront of the sector».
The PMAD has four power units and will manage the electricity from the solar panels of the Power and Propulsion Element (PPE). It will distribute the power to onboard equipment and the rest of the station as required, always ensuring the safety of the crew on board. The PMAD will power the life support system, the interior lighting, the communications systems and the scientific experiments. It will ensure that HALO’s battery remains at optimal levels and is ready for use when the panels do not receive sufficient sunlight. PMAD must also provide power to visiting vehicles when they dock.
Airbus Crisa is a key international player in the fields of power conversion digital control and energy management and distribution for satellite and launcher applications thanks to the experience gained in the challenging European Space Agency (ESA) exploration missions. This contract demonstrates its great potential to provide reliable flight products to U.S. manufacturers.