Tag Archives: MQ-9 Reaper

Rosetta Echo Payloads

In conjunction with the Air National Guard (ANG), the Air Force Reserve Command Test Center (AATC) and Ultra Electronics, General Atomics Aeronautical Systems, Inc. (GA‑ASI) successfully completed initial operational assessment of the Rosetta Echo Advanced Payloads (REAP) pod on an MQ-9 Reaper Remotely Piloted Aircraft (RPA). The first REAP flight test (known as REAP-1), held August 3 and based out of Syracuse, New York, demonstrated a communications relay network providing seamless connectivity between air and ground participants in the demonstration area. Specific waveforms supported by the REAP pod include Link 16, Ultra High Frequency/Very High Frequency (UHF/VHF) radio and P25 public safety, as well as mobile ad hoc networks (MANET).

MQ-9 Reaper
Airborne Comms Payload Provides Connectivity in Contested and Uncontested Environments

«GA-ASI is really excited to showcase the communication capabilities of the REAP pod, which provides the backbone for warfighters to collaborate and share critical battlefield situational awareness. Our MQ-9 Reaper, with its industry-leading persistent endurance, is the ideal platform for connecting sensors to shooters and realizing USAF’s Advanced Battle Management System (ABMS) vision», said GA-ASI President David R. Alexander.

According to the ANG/AATC, a REAP-equipped MQ-9 Reaper relayed video received from a Coyote small Unmanned Aircraft System (sUAS) to a ground node at distances over 110 miles / 177 km. All this was done while simultaneously bridging voice communications over the MANET at extended distances.

Major Curt Wilson, National Guard Bureau (NGB) A5 Branch Chief for Special Mission Aircraft, said: «REAP far exceeded our expectations for a first flight and initial operational assessment. The REAP pod is the first step in a number of innovations that the NGB, Ultra and GA-ASI have pioneered to demonstrate near-term and affordable Joint All-Domain Command & Control (JADC2) capabilities on the MQ-9 Reaper».

The ANG and AATC are working to schedule another flight test in late 2020 with the REAP pod installed on the MQ-9 Reaper. A REAP-2 pod, due for completion in mid-2021, encompasses all of the REAP-1 capability plus 4G/LTE, the addition of which will add disaster relief operations as a capability to its existing military waveform relay and bridging capability. REAP-2 will be integrated into AFRL’s (Air Force Research Laboratory) open architecture AgilePod16 variant, demonstrating GA-ASI’s continued commitment to widely adopting and proliferating Open Mission Systems (OMS) and open architecture. REAP was also featured as part of the second Advanced Battle Management System (ABMS) Demo that took place September 1-3, 2020.

AgilePod

In March 2018, the Air Force Life Cycle Management Center’s (AFLCMC) Sensors Program Office, working jointly with the AFLCMC Medium Altitude Unmanned Aerial Systems Program Office, sponsored three demonstration flights of an MQ-9 Reaper with AgilePod.

The Air Force Life Cycle Management Center recently sponsored three demonstration flights of an MQ-9 Reaper with AgilePod (Courtesy photo)
The Air Force Life Cycle Management Center recently sponsored three demonstration flights of an MQ-9 Reaper with AgilePod (Courtesy photo)

The flights were a first for AgilePod on an Air Force major weapon system and were the result of collaboration between AFLCMC and the Air Force Research Lab (AFRL).

«These flights mark the culmination of more than two years of cutting-edge technology development led by our colleagues within the Air Force Research Laboratory’s Materials and Manufacturing Directorate ManTech team, and Sensors Directorate Blue Guardian team», said Lieutenant Colonel Elwood Waddell, the advanced technologies branch chief within the Sensors Program Office.

The AgilePod program will offer a family of non-proprietary, government-owned pods of several sizes that can accommodate various missions, quickly change payloads and fit on multiple platforms.

The program uses open adaptable architecture and standards-based design to ensure maximum flexibility without proprietary constraints.

«The AgilePod program began with a desire to bring agile manufacturing practices to the ISR (Intelligence, Surveillance and Reconnaissance) enterprise, culminating in a wholly government-owned, open architecture ISR capability that was both payload and platform agnostic», said Andrew Soine, a program manager with AFRL’s Materials and Manufacturing Directorate. «The program is really taking off, with proposed ISR and non-ISR applications that we couldn’t have foreseen only a few years ago. By owning the technical baseline, we’ve shown what can be done in relatively little time and cost when faced with emergent user needs».

«Blue Guardian’s mission is to rapidly demonstrate emerging sensor technology», added Captain Juliana Nine, a program manager with AFRL’s Sensors Directorate. «These MQ-9 flights did exactly that. The open adaptable architecture based on Open Mission Systems and common electrical/mechanical interfaces developed by the Blue Guardian team enabled the rapid re-configurability of the sensors inside the AgilePod. This capability will help the warfighter adapt their sensor payloads as the mission dictates».

U.S. Air Force ownership of the registered trademark for AgilePod is key to the program, giving the Air Force the authority to designate a given pod as an AgilePod. This cultivates a highly collaborative relationship with industry partners as the Air Force shares existing technical data under the protection of an Information Transfer Agreement.

The agreement enables the sharing of all government technical data on AgilePod while protecting government ownership and enabling industry innovation. For the demonstration, the Air Force partnered with Leidos (facilitated the open architecture sensor integration), the University of Dayton Research Institute (implemented the open software for sensor command and control), AdamWorks (built the AgilePod) and General Atomics (integrated the podded system onto the MQ-9 aircraft).

«We believe this program has the potential to both increase the velocity at which future sensor technology is made available to the warfighter, as well as to improve agility in employing various sensor modalities to fit any given scenario», said Waddell.

The Sensors Program Office continues to collaborate with AFRL and industry partners on the design and upgrade of several AgilePod variants and has plans to test various sensor modalities within AgilePod on operational platforms in the near future.

First GBU-38 drop

Airmen from the 432nd Wing/432nd Air Expeditionary Wing, here, and the 26th Weapons Squadron, Nellis Air Force Base, Nevada, made history earlier this week, by employing the first GBU-38 Joint Direct Attack Munition (JDAM) from an MQ-9 Reaper.

An MQ-9 Reaper is loaded with a GBU-12 laser-guided bomb on the left and a GBU-38 Joint Direct Attack Munition on the right April 13, 2017, at Creech Air Force Base, Nevada. The JDAM is a GPS guided munition which brings added capability to the warfighters, specifically by aircrews being able to employ weapons through inclement weather. The first two GBU-38s employed in training successfully hit their targets May 1, 2017, over the Nevada Test and Training Range (U.S. Air Force photo/Senior Airman Christian Clausen)
An MQ-9 Reaper is loaded with a GBU-12 laser-guided bomb on the left and a GBU-38 Joint Direct Attack Munition on the right April 13, 2017, at Creech Air Force Base, Nevada. The JDAM is a GPS guided munition which brings added capability to the warfighters, specifically by aircrews being able to employ weapons through inclement weather. The first two GBU-38s employed in training successfully hit their targets May 1, 2017, over the Nevada Test and Training Range (U.S. Air Force photo/Senior Airman Christian Clausen)

While the JDAM has been around since the late ’90s, the munition has just recently been validated and now proven for real world engagements marking a significant step in the Reapers’ joint warfighter role.

«We had a great opportunity to drop the first live GBU-38s in training», said Captain Scott, a 26th WPS weapons instructor pilot. «The GBU-38 is a weapon we’ve been trying to get on the MQ-9 for several years now and we had the opportunity to be the first to drop during training».

While waiting for the aircraft to approach the target area, members of the weapons squadron waited anxiously. After the bombs successfully struck their practice targets in a controlled environment, the entire room cheered.

For the past 10 years, skilled MQ-9 aircrew have been employing AGM-114 Hellfire missiles and GBU-12 laser-guided bombs, but the JDAM brings new global positioning system capabilities to the warfighters.

«The GBU-38, just like the Hellfire and GBU-12, is a very accurate weapon and the fact that it’s GPS-guided gives us another versatile way to guide the weapon, specifically, through inclement weather onto targets», Scott said.

The JDAM being added to the arsenal is another step in furthering the attack capabilities of the MQ-9 Reaper force. «There’s definitely times when I could’ve used the GBU-38 in combat prior to this», Scott said.

MQ-9 Reapers add to arsenal with first GBU-38 drop
MQ-9 Reapers add to arsenal with first GBU-38 drop

Not only does the GBU-38 perform through poor weather conditions, it also helps the munitions Airmen and the weapons load crew members who load them.

«The GBU-38 has a 20-minute load time compared to the GBU-12, which has a 30-minute load time», said Senior Airman Curtis, a 432nd Aircraft Maintenance Squadron load crew member. «The GBU-38 is a quicker load compared to the GBU-12 and gets the plane in the air quicker».

Incorporating this new munition into the total strike package will give MQ-9 aircrews additional capabilities. «Our job at the weapons school is to train to the highest standard possible», Scott said. «We’re going to take the GBU-38 and incorporate it into our advanced scenarios, prove the weapon and integrate with all Air Force assets. What that gives us is the ability to take it downrange and employ in the most demanding circumstances possible».

The JDAM will add flexibility and efficiency to the targeting process. Aircrews will continue to employ the AGM-114 Hellfires and GBU-12s downrange in addition to the GBU-38 that is now ready for combat.

«The overall impact of the GBU-38 is aircrew will have more versatility for the commanders to provide different effects and make a difference for the guys on the ground», Scott said. «It has a different guidance system and it opens the bridge to more GPS-guided weapons in the future».

Creech Air Force Base, Nevada, 5 May 2017–From training phase to operational, MQ-9 Reapers from Creech Air Force Base, Nevada will begin adding GBU-38s to their arsenal

Third French Predator

General Atomics Aeronautical Systems, Inc. (GA‑ASI), a leading manufacturer of Remotely Piloted Aircraft (RPA) systems, radars, and electro-optic and related mission systems solutions, announced on May 29 that it has delivered a third Predator B/MQ-9 Reaper RPA to the French Ministry of Defense. Delivered less than two months after contract award, the aircraft joins two other French Reapers in service, which together have accumulated over 4,000 flight hours since operations began in January 2014.

USAF MQ-9 Reaper
USAF MQ-9 Reaper

«This latest order from the French Defense Procurement and Technology Agency (Direction Générale de l’Armement – DGA) is a testament to Reaper’s ability to enhance the Intelligence, Surveillance, and Reconnaissance (ISR) of the French Air Force in support of national, NATO, and other coalition operations», said Frank W. Pace, president, Aircraft Systems, GA-ASI.

Pilots and sensor operators from Drone Squadron 1/33 ‘Belfort,’ 709 Air Base Cognac-Château Bernard are performing mission operations to include delivering increased battlefield situational awareness, augmenting combat search and rescue, and providing ground troop support. A total of 12 aircraft are planned to be in service by 2019.

The multi-mission Predator B is a long-endurance, medium-high-altitude RPA that can be used for ISR as well as targeting missions. The current aircraft configuration features an extensive payload capacity (850 lbs/386 kg internally, 3,000 lbs/1,361 kg externally), with a maximum altitude of 50,000 feet/15,240 meters, and can stay aloft for up to 27 hours.

Predator B is currently operational with the U.S. Air Force and Royal Air Force as MQ-9 Reaper and with the Italian Air Force as MQ-9. Predator B provides unparalleled close air support and persistent situational awareness over land or sea to coalition forces, demonstrating proven NATO interoperability. Some 240 Predator B aircraft have amassed more than one million flight hours since its first flight in 2001.

Italian Air Force MQ-9
Italian Air Force MQ-9

 

Predator B RPA

Designated MQ-9 Reaper by its U.S. Air Force and Royal Air Force customers, the turboprop-powered, multi-mission Predator B RPA was developed with GA-ASI funding and provides significantly greater capabilities than Predator. First flown in 2001, Predator B is a highly sophisticated development built on the experience gained with the company’s battle-proven Predator RPA and is a major evolutionary leap forward in overall performance and reliability.

Featuring unmatched operational flexibility, Predator B has an endurance of over 27 hours, speeds of 240 KTAS/276 mph/444 km/h, can operate up to 50,000 feet/15,240 meters, and has a 3,850-pound (1,746 kilogram) payload capacity that includes 3,000 pounds (1,361 kilograms) of external stores. Twice as fast as Predator, the aircraft carries 500% more payload and has nine times the horsepower. It provides a long-endurance, persistent surveillance/strike capability for the war fighter.

An extremely reliable aircraft, Predator B is equipped with a fault-tolerant flight control system and triple redundant avionics system architecture. It is engineered to meet and exceed manned aircraft reliability standards.

Predator B is powered by the flight-certified and proven Honeywell TPE331-10 turboprop engine, integrated with Digital Electronic Engine Control (DEEC), which significantly improves engine performance and fuel efficiency, particularly at low altitudes.

NASA Predator B ("Ikhana")
NASA Predator B (“Ikhana”)

The aircraft is highly modular and is configured easily with a variety of payloads to meet mission requirements. Predator B is capable of carrying multiple mission payloads to include:

  • Electro-optical/Infrared (EO/IR);
  • Lynx Multi-mode Radar;
  • Multi-mode maritime surveillance radar;
  • Electronic Support Measures (ESM);
  • Laser designators;
  • Various weapons packages.

Predator B continues to improve and evolve, making it more relevant for its customers’ emerging needs. A new variant, Predator B ER, has been designed with field-retrofittable capabilities such as wing-borne fuel pods and a new reinforced landing gear that extends the aircraft’s already impressive endurance from 27 hours to 34 hours while further increasing its operational flexibility.

In 2016, the aircraft will evolve again when its wingspan will grow from 66 feet/20 meters to 79 feet/24 meters to hold the fuel that was previously stored in the fuel pods. This configuration will deliver 42 hours of endurance.

This aircraft has been acquired by the U.S. Air Force, U.S. Department of Homeland Security, NASA, the Royal Air Force, the Italian Air Force, the French Air Force, and soon others.

Guardian (Maritime Predator B Variant)
Guardian (Maritime Predator B Variant)

 

Features

  • Triple-redundant flight control system
  • Redundant flight control surfaces
  • Remotely piloted or fully autonomous
  • MIL-STD-1760 stores management system
  • 7 external stations for carriage of payloads
  • C-Band line-of-sight data link control
  • Ku-Band Beyond Line-of-Sight (BLOS)/SATCOM data link control
  • Over 90% system operational availability
  • C-130 transportable (or self-deploys)
Predator B ER
Predator B ER

Characteristics

Wing Span 66 feet/20 m
Length 36 feet/11 m
Powerplant Honeywell TPE331-10
Maximum Gross Take-Off Weight (GTOW) 10,500 lbs/4,763 kg
Fuel Capacity 3,900 lbs/1,769 kg
Payload Capacity 850 lbs/386 kg internally
3,000 lbs/1,361 kg externally
Power 11.0 kW/45.0 kVA (Block 5) (redundant)
Maximum Altitude 50,000 feet/15,240 m
Max Endurance 27 hours
Maximum Air Speed 240 KTAS/276 mph/444 km/h
Weapons Hellfire missiles
GBU-12 laser-guided bombs
GBU-38 JDAM
GBU-49 laser-JDAM
Payloads MTS-B EO/IR
Lynx Multi-mode Radar
Multi-mode maritime radar
Automated Identification System (AIS)
SIGINT/ESM system
Communications relay

 

Perform multi-mission Intelligence, Surveillance and Reconnaissance and “Hunter-Killer” missions over land or sea

Four Reapers
for the Netherlands

The State Department has made a determination approving a possible Foreign Military Sale to the Netherlands for MQ-9 Reapers and associated equipment, parts and logistical support for an estimated cost of $339 million. The Defense Security Cooperation Agency delivered the required certification notifying Congress of this possible sale.

An MQ-9 Reaper, armed with GBU-12 Paveway II laser guided munitions and AGM-114 Hellfire missiles, piloted by Col. Lex Turner flies a combat mission over southern Afghanistan. (U.S. Air Force Photo / Lt. Col. Leslie Pratt)
An MQ-9 Reaper, armed with GBU-12 Paveway II laser guided munitions and AGM-114 Hellfire missiles, piloted by Col. Lex Turner flies a combat mission over southern Afghanistan. (U.S. Air Force Photo / Lt. Col. Leslie Pratt)

The Government of the Netherlands has requested a possible sale of:

  • 4 MQ-9 Block 5 Reaper Remotely Piloted Aircraft;
  • 4 Mobile Ground Control Stations Block 30 (option Block 50);
  • 6 Honeywell TPE331-10T Turboprop Engines (4 installed and 2 spares);
  • 2 SATCOM Earth Terminal Sub-System;
  • 6 AN/DAS-1 Multi-Spectral Targeting Systems (MTS)-B;
  • 4 General Atomics Lynx (exportable) Synthetic Aperture Radar/Ground Moving;
  • Target Indicator (SAR/GMTI) Systems, w/Maritime Wide Area Search capability;
  • 2 Ruggedized Aircraft Maintenance Test Stations;
  • 20 ARC-210 RT-1939 Radio Systems;
  • 8 KY-1006 Common Crypto Modules;
  • 8 Ku-band Link-Airborne Communications Systems;
  • 4 KIV-77 Mode 4/5 Identification Friend or Foe;
  • 4 AN/APX-119 Mode 4/5 Identification Friend or Foe (IFF) Transponder (515 Model);
  • 14 Honeywell H-764 Adaptive Configurable Embedded Global Positioning System/Inertial Guidance Units (EGI) with Selective Availability Anti-Spoofing Module (SAASM) (12 installed and 2 spares).

Also provided are an Initial Spares Package (ISP) and Readiness Spares Package (RSP) to support 3400 Flight Hours for a three year period, support and test equipment, publications and technical documentation, personnel training and training equipment, U.S. Government and contractor engineering, technical and logistics support services, and other related elements of logistical and program support. The estimated cost is $339 million.

The Netherlands is one of the major political and economic powers in Europe and NATO and an ally of the United States in the pursuit of peace and stability. It is vital to the U.S. national interest to assist the Netherlands to develop and maintain a strong and ready self-defense capability. This potential sale will enhance the Intelligence, Surveillance, and Reconnaissance (ISR) capability of the Dutch military in support of national, NATO, UN-mandated, and other coalition operations. Commonality of ISR capabilities will greatly increase interoperability between U.S. and Dutch military and peacekeeping forces.

The Netherlands requests this capability to provide for the defense of its deployed troops, regional security, and interoperability with the U.S. The proposed sale will improve the Netherland’s capability to meet current and future threats by providing improved Intelligence, Surveillance, and Reconnaissance coverage that promotes increased battlefield situational awareness, anticipates enemy intent, augments combat search and rescue, and provides ground troop support. The Netherlands will have no difficulty absorbing this additional capability into its armed forces.

The proposed sale of this equipment and support will not alter the basic military balance in the region. The principal contractor will be General Atomics Aeronautical Systems, Inc. in San Diego, California. There are no known offset agreements proposed in connection with this potential sale. Implementation of this proposed sale may require U.S. contractor representatives to make multiple trips to the Netherlands and potentially to deployed locations to provide initial launch, recovery, and maintenance support. There will be no adverse impact on U.S. defense readiness as a result of this proposed sale. This notice of a potential sale is required by law and does not mean the sale has been concluded.

A maintenance Airman inspects an MQ-9 Reaper in Afghanistan Oct. 1. Capable of striking enemy targets with on-board weapons, the Reaper has conducted close air support and intelligence, surveillance and reconnaissance missions. (Courtesy photo)
A maintenance Airman inspects an MQ-9 Reaper in Afghanistan Oct. 1. Capable of striking enemy targets with on-board weapons, the Reaper has conducted close air support and intelligence, surveillance and reconnaissance missions. (Courtesy photo)

 

MQ-9 Reaper

Designated as MQ-9 Reaper by its U.S. Air Force and Royal Air Force customers, the turboprop-powered, multi-mission Predator B Unmanned Aircraft System (UAS) was developed with GA-ASI funding and provides significantly greater capabilities than Predator. First flown in 2001, Predator B is a highly sophisticated development built on the experience gained with GA-ASI’s battle-proven Predator UAS and a major evolutionary leap in overall performance and reliability.

Featuring unmatched operational flexibility, the multi-mission Predator B has an endurance of over 27 hours, speeds of 240 KTAS (Knots True AirSpeed)/276 mph/444 km/h, can operate up to 50,000 feet/15,240 m, and has a 3,850 lbs (1,746 kg) payload capacity that includes 3,000 lbs (1,361 kg) of external stores. Twice as fast as Predator, it carries 500% more payload and has nine times the horsepower. Predator B provides a long-endurance, persistent surveillance/strike capability for the war fighter.

An extremely reliable aircraft, it is equipped with a fault-tolerant flight control system and triple redundant avionics system architecture. Predator B is engineered to meet and exceed manned aircraft reliability standards.

Predator B is powered by the flight-certified and proven Honeywell TPE331-10 turboprop engine, integrated with Digital Electronic Engine Control (DEEC), which significantly improves engine performance and fuel efficiency, particularly at low altitudes.

The Predator B multi-mission aircraft is highly modular and is easily configured with a variety of payloads to meet mission requirements. Predator B is capable of carrying multiple mission payloads to include: Electro-Optical/Infrared (EO/IR), Lynx Multi-mode Radar, multi-mode maritime surveillance radar, Electronic Support Measures (ESM), laser designators, and various weapons packages.

Aircrews perform a preflight check on an MQ-9 Reaper before it takes off on a mission in Afghanistan Oct. 1. The Reaper is larger and more heavily-armed than the MQ-1 Predator and attacks time-sensitive targets with persistence and precision, to destroy or disable those targets. (Courtesy photo)
Aircrews perform a preflight check on an MQ-9 Reaper before it takes off on a mission in Afghanistan Oct. 1. The Reaper is larger and more heavily-armed than the MQ-1 Predator and attacks time-sensitive targets with persistence and precision, to destroy or disable those targets. (Courtesy photo)

 

Characteristics

Wing Span:                                      66 feet/20 m

Length:                                              36 feet/11m

Height:                                               12.5 feet/3.8 m

Powerplant:                                    Honeywell TPE 331-10

Thrust:                                                900 shaft horsepower maximum

Weight:                                              4,900 pounds/2,223 kg empty

Max Gross Takeoff Weight:  10,500 lbs/4,763 kg

Fuel Capacity:                                3,900 lbs/1,769 kg

Payload Capacity:

850 lbs internal/386 kg

3,000 lbs external/1,361 kg

Cruise speed:                                  around 200 knots/230 mph/370 km/h

Range:                                                1,000 NM/1,150 miles/1,850 km

Ceiling:                                               Up to 50,000 feet/15,240 m

Weapons:

Hellfire missiles

GBU-12 laser-guided bombs

GBU-38 JDAM (Joint Direct Attack Munition)

GBU-49 laser-JDAM

Payloads:

MTS-B EO/IR (Electro-Optical/Infrared)

Lynx Multi-mode Radar

Multi-mode maritime radar

Automated Identification

System (AIS, Aeronautical Information Service)

SIGINT/ESM (Electronic Support Measures) system

Communications relay

Power:                                               11.0 kW/45.0 kVA (Block5) (redundant)

An MQ-9 Reaper sits on a ramp in Afghanistan Oct. 1. The Reaper is launched, recovered and maintained at deployed locations, while being remotely operated by pilots and sensor operators at Creech Air Force Base, Nev. (Courtesy photo)
An MQ-9 Reaper sits on a ramp in Afghanistan Oct. 1. The Reaper is launched, recovered and maintained at deployed locations, while being remotely operated by pilots and sensor operators at Creech Air Force Base, Nev. (Courtesy photo)

 

Features:

  • Triple-redundant flight control system
  • Redundant flight control surfaces
  • Remotely piloted or fully autonomous
  • MIL-STD-1760 stores management system
  • Seven external stations for carriage of payloads
  • C-Band line-of-sight data link control
  • Ku-Band beyond line-of-sight/SATCOM data link control
  • Over 90% system operational availability
  • C-130 transportable (or self-deploys)