Tag Archives: MQ-8C Fire Scout

First Flight from LCS

Northrop Grumman Corporation’s autonomous helicopter, MQ-8C Fire Scout, took to the air for the first time from a U.S. Navy independence-class Littoral Combat ship, USS Montgomery (LCS-8). The flight took place off the coast of California during the second phase of Dynamic Interface testing, once again demonstrating Fire Scout’s stability and safety while operating around the ship.

MQ-8C Fire Scout Completes Successful First Flight from Littoral Combat Ship
MQ-8C Fire Scout Completes Successful First Flight from Littoral Combat Ship

The two week at-sea event allowed the U.S. Navy to test the MQ-8C Fire Scout’s airworthiness and ability to land and take off from a littoral combat ship throughout a broad operational envelope. The MQ-8C Fire Scout conducted its initial at-sea flight test aboard the guided missile destroyer, USS Jason Dunham (DDG-108) in December 2015.

«Fire Scout’s successful testing aboard USS Montgomery (LCS-8) and USS Dunham (DDG-108) proves its capability to fly from multiple air capable ships», said Captain Jeff Dodge, program manager, Fire Scout, Naval Air Systems Command. «We plan to have the MQ-8C Fire Scout deployed aboard multiple ships in the near future giving the fleet the persistent intelligence, surveillance, reconnaissance and targeting asset they need».

With the completion of Dynamic Interface testing, the MQ-8C Fire Scout is one step closer to Initial Operational Test and Evaluation (IOT&E) and full operational deployment.

«Fire Scout’s autonomous technology coupled with the range and endurance of the MQ-8C airframe is truly a game-changer», said Leslie Smith, vice president, tactical autonomous systems, Northrop Grumman Aerospace Systems. «When the MQ-8C deploys with its advanced AESA maritime radar, the U.S. Navy will have unmatched situational awareness and the ability to provide sea control in any contested maritime environment».

The MQ-8C Fire Scout builds on the ongoing accomplishments of the MQ-8B Fire Scout program. Helicopter Squadron 23 is currently operating onboard the deployed littoral combat ship, USS Coronado (LCS-4), with two MQ-8B Fire Scouts in the South China Sea.

 

Specifications

Length 41.4 feet/12.6 m
Width 7.8 feet/2.4 m
Blades Folded Hangar 7.8×34.7×10.9 feet/2.4×10.6×3.3 m
Height 10.9 feet/3.3 m
Rotor Diameter 35 feet/10.7 m
Gross Takeoff Weight 6,000 lbs/2,721.5 kg
Engine Rolls-Royce M250-C47B with FADEC (Full Authority Digital Electronic Control)

 

Performance

Speed 140 knots/161 mph/259 km/h (maximum)
Operational Ceiling 17,000 feet/5,182 m
Maximum Endurance 14 hrs
Maximum Payload (Internal) 1,000 lbs/453.6 kg
Typical Payload 600 lbs/272 kg (11 hrs endurance)
Maximum Sling Load 2,650 lbs/1,202 kg

 

Engine Specifications

Power 651 shp/485.45 kW
Pressure ratio 9.2
Length 42.95 inch/1.09 m
Diameter 24.81 inch/0.63 m
Basic weight 274 lbs/124.3 kg
Compressor 1CF (centrifugal high-pressure)
Turbine 2HP (two-stage high-pressure turbine), 2PT (two-stage power turbine)

 

Osprey for Fire Scout

Leonardo-Finmeccanica’s Osprey Active Electronically Scanned Array (AESA) radar has been picked to serve as look-out on-board the US Navy’s newly-upgraded unmanned helicopter, the MQ-8C Fire Scout. The helicopter will be launched from the decks of U.S. naval combat vessels to keep watch for distant threats.

The AESA radar will be carried on the unmanned MQ-8C Fire Scout helicopter, helping expand crews’ surveillance capabilities aboard U.S. combat ships
The AESA radar will be carried on the unmanned MQ-8C Fire Scout helicopter, helping expand crews’ surveillance capabilities aboard U.S. combat ships

The contract will see Leonardo delivering an initial batch of 5 radars to the U.S. Navy’s procurement organisation, the Naval Air Systems Command (NAVAIR), for testing and evaluation work. NAVAIR then has an option to buy a larger quantity of the radars for use in real operations. Leonardo has already built a number of Osprey AESA radars so the primary task under this contract is integration with the MQ-8C Fire Scout in time for first production deliveries.

Using its electronic beam technology to scan from high in the sky, crews back on-board will be able to spot even those threats who think they are hiding safely beyond the range of standard ship-based sensors. Employing high-frequency radio waves to ‘see’, an Osprey-equipped MQ-8C Fire Scout can detect targets at extremely long ranges, at night and even in stormy weather conditions when visibility is extremely poor. The radar’s world-first flat-panel technology also means it can be installed within the mould line of the helicopter rather than having to use an underslung belly-pod.

Leonardo is an international leader in radar technology and the Osprey was selected in part because it is the world’s first radar to provide the needed coverage without moving parts or the need for a bulky external radome, all in a package light enough to fit on an MQ-8C Fire Scout. The MQ-8C Fire Scout is expected in future to be fully integrated with both variants of the U.S. Navy’s littoral combat ship and be used extensively on operations.

The U.S. Navy has chosen the 2-panel version of the Osprey which will provide a 240-degree instantaneous field of view and a range of digital modes including weather detection, air-to-air targeting and a Ground Moving Target Indicator (GMTI). The lack of moving parts inherent in the ‘E-Scan’ design means that repair and support costs are vastly reduced compared to alternative radar options. Osprey also provides an open architecture, meaning the U.S. Navy can insert new software independently.

Persistent ISR

Northrop Grumman Corporation is set to build 10 additional MQ-8C Fire Scout unmanned helicopters for the U. S. Navy, giving maritime commanders persistent, real-time Intelligence, Surveillance and Reconnaissance (ISR).

MQ-8C Fire Scout’s on the assembly line at Northrop Grumman’s Manufacturing Center in Moss Point, Mississippi (Photo by Northrop Grumman)
MQ-8C Fire Scout’s on the assembly line at Northrop Grumman’s Manufacturing Center in Moss Point, Mississippi (Photo by Northrop Grumman)

The additional build will bring the total number of MQ-8C Fire Scout air vehicles procured to 29, extending the range and endurance of naval operations.

«MQ-8C is meeting all of its performance objectives, and the system is delivering a greater naval warfighting capability», said Captain Jeff Dodge, program manager, Fire Scout, Naval Air Systems Command. «We are looking forward to moving the MQ-8C operational testing and deployment as a part of surface warfare mission packages».

The MQ-8C Fire Scout airframe is based on the reliable commercial Bell 407, a mature helicopter with more than 1,600 airframes produced and over 4.4 million flight hours. Modifications to the MQ-8C’s airframes are carried out at the Bell Helicopter facility in Ozark, Alabama, while final assembly is performed in Moss Point, Mississippi.

«In partnership with the U.S. Navy, we are dedicated to fielding this state-of-the-art, ship-based ISR platform as part of a strategy that provides warfighters ISR», said Leslie Smith, vice president, tactical autonomous systems, Northrop Grumman Aerospace Systems. «We are pleased to support the Navy with additional MQ-8C Fire Scouts with maritime dominance support through this procurement. Our team will strive to exceed expectations in affordability, quality and on-time delivery».

MQ-8C Fire Scout has completed operational assessment, a developmental flight test program and is now preparing for Milestone C. MQ-8C Fire Scout has accrued over 730 flight hours and flown 353 sorties.

 

Specifications

Length 41.4 feet/12.6 m
Width 7.8 feet/2.4 m
Blades Folded Hangar 7.8×34.7×10.9 feet/2.4×10.6×3.3 m
Height 10.9 feet/3.3 m
Rotor Diameter 35 feet/10.7 m
Gross Takeoff Weight 6,000 lbs/2,721.5 kg
Engine Rolls-Royce M250-C47B with FADEC (Full Authority Digital Electronic Control)

 

Performance

Speed 140 knots/161 mph/259 km/h (maximum)
Operational Ceiling 17,000 feet/5,182 m
Maximum Endurance 14 hrs
Maximum Payload (Internal) 1,000 lbs/453.6 kg
Typical Payload 600 lbs/272 kg (11 hrs endurance)
Maximum Sling Load 2,650 lbs/1,202 kg

 

Engine Specifications

Power 651 shp/485.45 kW
Pressure ratio 9.2
Length 42.95 inch/1.09 m
Diameter 24.81 inch/0.63 m
Basic weight 274 lbs/124.3 kg
Compressor 1CF (centrifugal high-pressure)
Turbine 2HP (two-stage high-pressure turbine), 2PT (two-stage power turbine)

 

Operational Assessment

The U.S. Navy and Northrop Grumman Corporation completed a successful land-based Operational Assessment (OA) with the unmanned, autonomous helicopter MQ-8C Fire Scout, at Naval Base Ventura County, Point Mugu, November 20. The OA demonstrated the endurance and sensor integration capabilities on the new MQ-8C airframe.

The MQ-8C Fire Scout completes a test flight at the Point Mugu Sea Range, Naval Base Ventura County (Photo by Northrop Grumman)
The MQ-8C Fire Scout completes a test flight at the Point Mugu Sea Range, Naval Base Ventura County (Photo by Northrop Grumman)

The MQ-8C Fire Scout collected real time data points during OA flights to validate system performance parameters and assess risk to future operational testing. The U.S. Navy’s Air Test and Evaluation Squadron VX-1 performed all of the flights over three weeks culminating in 83.4 hours of flight and 72 data points.

«MQ-8C represents a significant capability improvement to the Fleet», said Captain Jeff Dodge, program manager, Fire Scout, Naval Air Systems Command. «Testing has shown the system is meeting or exceeding our goals and the completion of this test event represents a major step on the road to Fleet introduction».

Northrop Grumman engineers’ hard work in developing the MQ-8C Fire Scout ensured that all aircraft systems successfully met VX-1 flight requirements. MQ-8C Fire Scout sensors and systems were vigorously tested at different altitudes and ranges to validate operational effectiveness. Successful integration of an improved ice detector system was also validated during OA with an alert to the test team of icing during a flight. This system allowed for necessary altitude corrections by descending the helicopter until the indication cleared so that the mission could resume its target detection runs.

«The completion of land-based OA is once again validation of the incredible performance the MQ-8C Fire Scout system is capable of», said Leslie Smith, MQ-8C Fire Scout program director, Northrop Grumman. «As demonstrated in the test, MQ-8C Fire Scout’s multi-INT (Multiple Intelligence) capability and endurance, coupled with outstanding reliability are changing the way Intelligence, Surveillance and Reconnaissance (ISR) systems are measured; we have significantly raised the bar».

MQ-8C Fire Scout completed the developmental flight tests program earlier this year and now the program will prepare for milestone «C» next year. The MQ-8C Fire Scout has accumulated over 730 flight hours and flown 353 sorties.

This flight was one of 11 operational assessment events to validate the system's performance, endurance and reliability (Photo by Northrop Grumman)
This flight was one of 11 operational assessment events to validate the system’s performance, endurance and reliability (Photo by Northrop Grumman)

 

Specifications

Length 41.4 feet/12.6 m
Width 7.8 feet/2.4 m
Blades Folded Hangar 7.8×34.7×10.9 feet/2.4×10.6×3.3 m
Height 10.9 feet/3.3 m
Rotor Diameter 35 feet/10.7 m
Gross Takeoff Weight 6,000 lbs/2,722 kg
Engine Rolls-Royce M250-C47B with FADEC (Full Authority Digital Electronic Control)

 

Performance

Speed 140 knots/161 mph/260 km/h (maximum)
Operational Ceiling 17,000 feet/5,182 m
Maximum Endurance 14 hrs
Maximum Payload (Internal) 1,000 lbs/454 kg
Typical Payload 600 lbs/272 kg (11 hrs endurance)
Maximum Sling Load 2,650 lbs/1,202 kg

 

Engine Specifications

Power 651 shp/485 kW
Pressure ratio 9.2
Length 42.95 in/1 m
Diameter 24.81 in/0.63 m
Basic weight 274 lbs/124 kg
Compressor 1CF (centrifugal high-pressure)
Turbine 2HP (two-stage high-pressure turbine), 2PT (two-stage power turbine)

 

Fire Scout

Northrop Grumman Corporation and the U.S. Navy successfully demonstrated endurance capabilities with the MQ-8C Fire Scout unmanned helicopter. On a planned 10+ hour flight and range out to 150 nautical miles/173 miles/278 km flight from Naval Base Ventura County, Point Mugu; the MQ-8C Fire Scout achieved 11 hours with over an hour of fuel in reserve.

MQ-8C Fire Scout demonstrates a long range, long endurance flight part of a capability based test at Naval Base Ventura County, Point Mugu (Photo by Northrop Grumman)
MQ-8C Fire Scout demonstrates a long range, long endurance flight part of a capability based test at Naval Base Ventura County, Point Mugu (Photo by Northrop Grumman)

The long range, long endurance flight was part of a series of capability based tests used by the U.S. Navy to validate their concept of operations and previously tested performance parameters. The U.S. Navy conducted the demonstration with support of Northrop Grumman engineers.

«Endurance flights provide a full evaluation of the MQ-8C Fire Scout systems», said Captain Jeff Dodge, program manager, Fire Scout, Naval Air Systems Command. «We can better understand the capability of the system and look at crew tasks and interactions in a controlled environment. This will allow us to adjust operational procedures to maximize the system’s effectiveness».

This is a new flight record set for the MQ-8 Fire Scout; a system designed to provide persistent reconnaissance, situational awareness, and precision targeting support for ground, air and sea forces.

«Today’s MQ-8C Fire Scout performance matches our model exactly. With adjustments, our production aircraft will have 12 hours of total endurance on a standard day. This prolonged endurance gives the Navy’s commanders a tremendous operational advantage», said George Vardoulakis, vice president, medium range tactical systems, Northrop Grumman. «Increased time-on-station and fewer launch and recovery cycles better enables the Navy’s diverse missions».

The MQ-8C Fire Scout completed its developmental flight test program earlier this year and has operational assessment planned for later this year. The MQ-8C Fire Scout has accumulated over 513 flight hours and flown 353 sorties.

Unmanned helicopter providing unprecedented maritime multiple intelligence persistence (Photo by Northrop Grumman)
Unmanned helicopter providing unprecedented maritime multiple intelligence persistence (Photo by Northrop Grumman)

 

Specifications

Length 41.4 feet/12.6 m
Width 7.8 feet/2.4 m
Blades Folded Hangar 7.8×34.7×10.9 feet/2.4×10.6×3.3 m
Height 10.9 feet/3.3 m
Rotor Diameter 35 feet/10.7 m
Gross Take-Off Weight (GTOW) 6,000 lbs/2,721.5 kg
Engine Rolls-Royce 250-C47B with FADEC (Full Authority Digital Electronic Control)
Maximum Speed 140 knots/161 mph/259 km/h
Operational Ceiling 17,000 feet/5,100 m
Maximum Endurance 14 hours
Maximum Payload (Internal) 1,000 lbs/453.6 kg
Typical Payload (11 hours endurance) 600 lbs/272 kg
Maximum Sling Load 2,650 lbs/1,202 kg

 

MQ-8C takes first flight

Northrop Grumman reported that the U.S. Navy successfully flew the MQ-8C Fire Scout system for the first time off the guided-missile destroyer, USS Jason Dunham (DDG 109), Norfolk, VA, Dec. 16, off the Virginia coast.

After more than a year of land-based testing at Point Mugu, California, the MQ-8C Fire Scout grew its sea legs, making 22 takeoffs and 22 precision landings while being controlled from the ship’s ground control station.

 A Northrop Grumman MQ-8C has completed five days of dynamic interface tests on USS Jason Dunham. (Northrop Grumman)
A Northrop Grumman MQ-8C has completed five days of dynamic interface tests on USS Jason Dunham. (Northrop Grumman)

“The MQ-8C Fire Scout’s flights from the USS Dunham represent a significant Navy milestone. This is the first sea-based flight of the MQ-8C and the first time an unmanned helicopter has operated from a destroyer,” said Capt. Jeff Dodge, Fire Scout program manager at Naval Air Systems Command. “The extended capabilities will offer the Navy a dynamic, multipurpose unmanned helicopter with increased endurance, allowing for our ship commanders and pilots to have a longer on station presence.”

“These dynamic interface tests are an essential part in clearing the operational envelope of the system and are proving the system’s ability to operate off any air-capable ship,” said George Vardoulakis, vice president for medium range tactical systems, Northrop Grumman Aerospace System. “We are on track to validate all of the critical performance parameters of this Navy asset and ready the system for deployment and operational use.”

 

 

Air – Unmanned Systems – MQ-8C Fire Scout