Tag Archives: Mars 2020 Rover

Mars 2020 Rover

The capsule-shaped aeroshell that will protect NASA’s Mars 2020 rover was delivered to NASA’s Kennedy Space Center, Florida on December 13, 2019. Built by Lockheed Martin, the aeroshell will encapsulate and protect the Mars 2020 rover during its deep space cruise to Mars, and from the intense heat as the entry system descends through the Martian atmosphere to the surface of Mars.

The aeroshell for the Mars 2020 rover was designed and built at Lockheed Martin Space near Denver and is comprised of two parts, the heat shield and the backshell

Because of the large mass and unique entry trajectory profile that could create external temperatures up to 3,800 degrees Fahrenheit/2,093 degrees Celsius, the heat shield uses a tiled Phenolic Impregnated Carbon Ablator (PICA) thermal protection system instead of the Mars heritage Super Lightweight Ablator (SLA) 561V. This will only be the second time PICA has flown on a Mars mission.

«Even though we have the experience of building the nearly identical aeroshell for the Curiosity Rover, the almost 15-foot/4.5-meter diameter composite structure was just as big a challenge to build and test 10 years later», said Neil Tice, Mars 2020 aeroshell program manager at Lockheed Martin Space. «We’ve built every Mars aeroshell entry system for NASA of its 40 years of exploring Mars, so we pulled from that experience to build this important system».

Along with the Curiosity mission, this is the largest aeroshell/heat shield ever built for a planetary mission at 4.5 meters (nearly 15 feet) in diameter. In contrast, the aeroshell/heat shield of the InSight lander measured 8.6 feet/2.62 m and Apollo capsule heat shields measured just less than 13 feet/3.96 м.

The backshell and heat shield were transported from Lockheed Martin’s Waterton facility in Littleton, Colorado where they were built, to nearby Buckley Air Force Base. They were then loaded onto an Air Force transport plane and flown to NASA’s Kennedy Space Center.

Recently, Lockheed Martin integrated the MSL Entry Descent and Landing Instrument (MEDLI2) onto the heat shield and backshell. Provided by NASA’s Langley and Ames Research Centers, MEDLI2 will collect temperature and pressure data during the spacecraft’s descent through the Martian atmosphere.

The Mars 2020 rover is in testing at NASA’s Jet Propulsion Laboratory, Pasadena, California., which manages the Mars 2020 project for the NASA Science Mission Directorate, Washington. The mission will launch in July 2020 and land on Mars in February 2021 at the Jezero Crater.

Mars 2020 Rover

Protecting against the extremes of space travel is critical to the success of any mission. Lockheed Martin has successfully completed the flight hardware structure of the heat shield, validating the physical integrity with a final static test after exposing it to flight-like thermal conditions. The heat shield is half of the large and sophisticated two-part aeroshell that Lockheed Martin is designing and building to encapsulate NASA Jet Propulsion Laboratory’s Mars 2020 rover from the punishing heat and friction of entry through the Martian atmosphere.

The Lockheed Martin-built heat shield, shown here in the testing phase, is just one component in the final aeroshell that will protect the Mars 2020 rover on its long journey to Mars
The Lockheed Martin-built heat shield, shown here in the testing phase, is just one component in the final aeroshell that will protect the Mars 2020 rover on its long journey to Mars

The Mars 2020 mission will be one of the most challenging entry, descent and landings ever attempted on the Red Planet. The heat shield aerodynamics serve as a «brake» to slow the spacecraft from about 12,000 mph (19,300 kph) so the structure needs to be flawless. As the tenth aeroshell system that Lockheed Martin has produced for NASA, this is one of the largest at 15 feet (4.5 meters) in diameter.

«Our experience building aeroshells for NASA Mars missions does not mean that it is ‘easy’», said Neil Tice, Lockheed Martin Mars 2020 Aeroshell program manager. «Tests like this structural test are absolutely essential to ensuring mission success in the long-run».

The static test was conducted on April 25 and was designed to mimic the load that the heat shield will experience during the most extreme part of its journey; the entry phase. To do that, engineers used vacuum pumps to simulate the pressure of approximately 140,000 pounds on the structure. The structure was tested to 120% of the expected flight load to push it to the limit.

For this particular test, the team also integrated a new form of instrumentation. Historically, this test utilizes conventional strain gauges and extensometers to monitor structural response at distinct points during loading. Partnering with NASA Langley Research Center, the team also applied a new tool called Photogrammetry or Digital Image Correlation. This allowed the team to monitor full-field strains and displacements over the entire visible area of the structure in real time. To use this technique, a vinyl wrap, similar to a decal, that has different visual cues (dark random speckles over a white background) was applied to the heat shield. During the test, a set of digital cameras optically monitor any changes in the pattern and generate a three-dimensional map of displacements and surface strains as the applied load increases.

«While we have used this full-field photogrammetry technique on test articles in the past, this is the first successful implementation on official flight hardware», said Doctor Sotiris Kellas, NASA Langley aerospace engineer and lead for the technical demonstration. «This technology will allow us to safeguard hardware during testing but more importantly provide data for test analysis correlation and improvement of our design and analysis tools».

Following this test, the Lockheed Martin team will apply Phenolic Impregnated Carbon Ablator (PICA) thermal protection system tiles to the structure. Once complete and through all environmental testing, the full heat shield will be mated to the backshell in early fall.

The Mars 2020 Project at NASA JPL manages rover development for the Science Mission Directorate at NASA Headquarters in Washington. The NASA Engineering and Safety Center at NASA Langley Research Center provided the photogrammetry support for this test.