Tag Archives: MAGMA

Flight control

For the first time in aviation history, an aircraft has been manoeuvred in flight using supersonically blown air, removing the need for complex movable flight control surfaces.

Successful demonstration of breakthrough blown-air flight technologies to revolutionise future aircraft design
Successful demonstration of breakthrough blown-air flight technologies to revolutionise future aircraft design

In a series of ground-breaking flight trials that took place in the skies above north-west Wales, the MAGMA Unmanned Aerial Vehicle (UAV) demonstrated two innovative flow control technologies which could revolutionise future aircraft design.

MAGMA, designed and developed by researchers at The University of Manchester in collaboration with engineers from BAE Systems, successfully trialled the two ‘flap-free’ technologies earlier this month at the Llanbedr Airfield.

The technologies have been designed to improve the control and performance of aircraft. By replacing moving surfaces with a simpler ‘blown air’ solution, the trials have paved the way for engineers to create better performing aircraft that are lighter, more reliable and cheaper to operate. The technologies could also improve an aircraft’s stealth as they reduce the number of gaps and edges that currently make aircraft more observable on radar.

Developing such technologies helps to ensure the UK has the right technologies and skills in place for the future and could be applied to the development of a Future Combat Air System. It is the latest technological breakthrough to come from a number of BAE Systems collaborations with academia and industry, that will help the UK to deliver more advanced capability, more quickly, and through shared investment.

Julia Sutcliffe, Chief Technologist, BAE Systems Air, said: «MAGMA is a great example of how collaborating with bright minds at British universities can deliver ground-breaking research and innovation. Our partnership with The University of Manchester has identified cutting-edge technology, in this case flap-free flight, and turned what began as a feasibility study into a proven capability in just a number of months. It demonstrates how Science, Technology, Engineering and Mathematics (STEM) can be applied in the real-world and I hope the success of these trials inspires the next generation of much-needed engineers and scientists».

Bill Crowther, senior academic and leader of the MAGMA project at The University of Manchester, added: «We are excited to have been part of a long-standing effort to change the way in which aircraft can be controlled, going all the way back to the invention of wing warping by the Wright brothers. It’s been a great project for students to be part of, highlighting that real innovation in engineering is more about finding practical solutions to many hundreds of small technical challenges than having single moments of inspiration. The partnership with BAE Systems has allowed us the freedom as a university to focus on research adventure, with BAE Systems providing the pathway to industrial application. We made our first fluidic thrust vectoring nozzle from glued together bits of plastic and tested it on a hair drier fan nearly 20 years ago. Today BAE Systems is 3D printing our components out of titanium and we are flight testing them on the back of a jet engine in an aircraft designed and built by the project team. It doesn’t get much better than that».

The technologies demonstrated in the trials were:

  • Wing Circulation Control: Taking air from the aircraft engine and blowing it supersonically through narrow slots around a specially shaped wing tailing edge in order to control the aircraft.
  • Fluidic Thrust Vectoring: Controlling the aircraft by blowing air jets inside the nozzle to deflect the exhaust jet and generate a control force.

The trials form part of a long-term collaboration between BAE Systems, academia and the UK government to explore and develop flap-free flight technologies, and the data will be used to inform future research programmes. Other technologies to improve the aircraft performance are being explored in collaboration with NATO Science and Technology Organisation.

MAGMA

BAE Systems and The University of Manchester set to change the future of aircraft design with unique flight control technology.

Successful first flight trial completion of unmanned aerial vehicle, MAGMA
Successful first flight trial completion of unmanned aerial vehicle, MAGMA

Together with The University of Manchester, we have successfully completed the first phase of flight trials with MAGMA – a small scale Unmanned Aerial Vehicle (UAV), which will use a unique blown-air system to manoeuvre the aircraft – paving the way for future stealthier aircraft designs.

The new concept for aircraft control removes the conventional need for complex, mechanical moving parts used to move flaps to control the aircraft during flight. This could give greater control as well as reduce weight and maintenance costs, allowing for lighter, stealthier, faster and more efficient military and civil aircraft in the future.

The two technologies to be trialled first using the jet-powered UAV, MAGMA, are:

  • Wing Circulation Control, which takes air from the aircraft engine and blows it supersonically through the trailing edge of the wing to provide control for the aircraft
  • Fluidic Thrust Vectoring, which uses blown air to deflect the exhaust, allowing for the direction of the aircraft to be changed.

The flight trials are part of an ongoing project between our two organisations and wider long-term collaboration between industry, academia and government to explore and develop innovative flight control technology. Further flight trials are planned for the coming months to demonstrate the novel flight control technologies with the ultimate aim of flying the aircraft without any moving control surfaces or fins. If successful, the tests will demonstrate the first ever use of such circulation control in flight on a gas turbine aircraft and from a single engine.

Clyde Warsop, Engineering Fellow here at BAE Systems, said: «The technologies we are developing with The University of Manchester will make it possible to design cheaper, higher performance, next generation aircraft. Our investment in research and development drives continued technological improvements in our advanced military aircraft, helping to ensure UK aerospace remains at the forefront of the industry and that we retain the right skills to design and build the aircraft of the future».

Bill Crowther, a senior academic and leader of the MAGMA project at The University of Manchester, adds: «These trials are an important step forward in our efforts to explore adaptable airframes. What we are seeking to do through this programme is truly ground-breaking».

Additional technologies to improve the performance of the UAV are being explored in collaboration with the University of Arizona and NATO Science and Technology Organisation.

Innovation is a key focus for us here at BAE Systems, having invested £4.4 billion in Research and Development (R&D) over the past five years, representing a major asset to the UK defence industry. Our company has spent £1 billion on R&D in 2016 alone, including £10.7 million partnering with leading UK universities in areas such as novel materials, advanced manufacturing, artificial intelligence, air vehicles and avionics testing. We have also made strategic investments in a range of evolving technologies in the aerospace sector including the SABRE (Synergistic Air-Breathing Rocket Engine) air-breathing rocket engine with Reaction Engines Ltd and mixed reality cockpit technology in partnership with The University of Birmingham as well as unique flight control technology with The University of Manchester.