Tag Archives: LTAMDS

Net centric radar

Northrop Grumman Corporation has received a contract from the U.S. Army’s Lower Tier Program Office (LTPO) to perform risk reduction for radar technology and associated mission capabilities intended to replace the Army’s 50-year-old Patriot radars.

Northrop Grumman to perform risk reduction for radar technology under Lower Tier Air and Missile Defense Sensor (LTAMDS) contract
Northrop Grumman to perform risk reduction for radar technology under Lower Tier Air and Missile Defense Sensor (LTAMDS) contract

LTAMDS will be the Army’s first net centric radar to be added to the Army’s Integrated Air and Missile Defense enterprise controlled by the Integrated Air and Missile Defense Battle Command System (IBCS), which Northrop Grumman also develops. IBCS is the advanced command and control system that integrates air and missile defense sensors and weapons, including Patriot, to generate a real-time comprehensive threat picture and enable any-sensor, best-shooter operations.

Northrop Grumman’s next-generation sensors will potentially benefit from decades-long experience in delivering rapidly deployable ground based radars, such as the high performance AN/TPS-80 G/ATOR active electronically scanned array production radar to the United States Marine Corps. G/ATOR capabilities include comprehensive, real-time, 360-degree multi-threat detection and tracking.

«We are excited about this award and the overall mission capabilities we can provide the Army», said Roshan Roeder, vice president, global ground based radars, Northrop Grumman. «We have more than forty years of experience in providing proven surveillance and threat engagement capabilities to more than 35 global customers».

Next Generation Sensor

The Department of Defense Ordnance Technology Consortium (DOTC) awarded Lockheed Martin a contract for the technology maturation of Lower Tier Air & Missile Defense Sensor (LTAMDS) prototypes.

Lockheed Martin’s Active Electronically Scanned Array (AESA) Radar for Engagement and Surveillance (ARES) prototype will be matured with funding from the Department of Defense Ordnance Technology Consortium
Lockheed Martin’s Active Electronically Scanned Array (AESA) Radar for Engagement and Surveillance (ARES) prototype will be matured with funding from the Department of Defense Ordnance Technology Consortium

DOTC, commissioned by the Under Secretary of Defense for Acquisition, Technology and Logistics, is a DoD initiative intended to facilitate collaboration between the government, industry and academia for technology development and prototyping. The funding from DOTC is used for technology development efforts that will further define performance requirements, mature technology and reduce risk for the LTAMDS program.

«Receiving DOTC funding is indicative of the rapid capability need the LTAMDS will fill for the U.S. Army», said Mark Mekker, director of next generation radar systems at Lockheed Martin. «Lockheed Martin is ready to leverage our significant experience, Active Electronically Scanned Array (AESA) technology and sensor capabilities in the LTAMDS concept definition phase to accelerate much needed enhanced capability to the warfighter».

Lockheed Martin is using its AESA Radar for Engagement and Surveillance (ARES) prototype investment program to mature technology and capabilities necessary for the future LTAMDS mission. Combined DOTC funding and Lockheed Martin investment will continue to mature technology for the prototype, including AESA and dual-band technology. The prototype will include mature Gallium Nitride (GaN) transmitter technology and advanced signal processing techniques including Lockheed Martin’s proven 360-degree rotational capability.

«Technology is maturing at such a pace that continuing to incrementally upgrade the heritage Patriot MPQ-65 radar system is no longer the most efficient and cost-effective option», said Mekker. «A next generation LTAMDS radar will leverage recent advances in radar technology to provide a cost effective, scalable, long term solution that can address current threats and adapt to emerging and future threats».

Lockheed Martin has developed and produced ground based radar systems for more than 40 years, and our latest open-architecture prototype leverages building blocks from several other successful radar products, including the Q-53, Long Range Discrimination Radar and Space Fence. Lockheed Martin’s low-risk solution is based on decades of development, backed by demonstrable technology and will be the first sensor specifically designed to operate within the Army Integrated Air & Missile Defense (IAMD) framework.

Next Generation Sensor

Lockheed Martin will unveil its next generation air and missile defense radar demonstrator at the annual Space & Missile Defense Symposium this week in Huntsville, Alabama. The Active Electronically Scanned Array (AESA) Radar for Engagement and Surveillance (ARES) is a representative full-scale prototype of the technology to support a modern, 360-degree capable sensor that the U.S. Army will use to address current and emerging air and ballistic missile threats.

Lockheed Martin’s radar technology demonstrator is being developed to serve as the next generation sensor specifically designed to operate within the U.S. Army Integrated Air & Missile Defense (IAMD) framework (Photo courtesy Lockheed Martin)
Lockheed Martin’s radar technology demonstrator is being developed to serve as the next generation sensor specifically designed to operate within the U.S. Army Integrated Air & Missile Defense (IAMD) framework (Photo courtesy Lockheed Martin)

This fractional array is representative of Lockheed Martin’s potential Lower Tier Air & Missile Defense Sensor (LTAMDS) solution, built on a modular and scalable architecture to scale to the Army’s requirements, once finalized, to replace the aging Patriot MPQ-65 radar. The array on display in Huntsville will be used to mature technology and verify performance to ensure uniform 360-degree threat detection and system performance.

«Incremental upgrades to the existing Patriot radar no longer address current sustainment issues, current threat performance shortcomings, or provide growth for future and evolving threats», said Mark Mekker, director of next generation radar systems at Lockheed Martin. «Lockheed Martin is prepared to offer a next generation missile defense system that will leverage advances in radar technology to provide a modular, scalable architecture and reduce the total cost of ownership well over its 30-year lifecycle».

Lockheed Martin’s active electronically scanned array (AESA) technology incorporates Gallium Nitride (GaN) transmitter technology and advanced signal processing techniques including recently developed and proven 360-degree sensor/fire control algorithms based on advanced threat sets. These technologies and concepts have been fully integrated into both demonstration and production systems resulting in the industry’s first fielded ground based radars with GaN technology.

The AESA technology is also in use in the AN/TP/Q-53 radar system, which Lockheed Martin designed, developed and delivered to the Army on an urgent need timeline in under 36 months, and which continues to be scaled to address emerging threats.

«Our solution for the U.S. Army’s new air and missile defense sensor is not a new-start program. It’s a combination of technology maturation over several years and includes capability leveraged from our current development programs and battlefield-proven radars. We rely heavily on our modern radar systems such as the Q-53 and the Long Range Discrimination Radar (LRDR) to rapidly bring low-risk, proven technology to the warfighter», Mekker said. «We look forward to the opportunity to participate in this competition that will ultimately drive up performance and reduce costs for the U.S. Army».

As a proven world leader in systems integration and development of air and missile defense systems and technologies, Lockheed Martin delivers high-quality missile defense solutions that protect citizens, critical assets and deployed forces from current and future threats. The company’s experience spans radar and signal processing, missile design and production, hit-to-kill capabilities, infrared seekers, command and control/battle management, precision pointing and tracking optics, as well as threat-representative targets for missile defense tests.

Missile Defense Radar Technology

A look into the future

Raytheon Company has given the U.S. Army a look into the future of missile defense technology, as the company provided its comprehensive vision for the next generation of air and missile defense radar. The information was supplied to the U.S. Army as part of its process to define the requirements for a future Lower Tier Air and Missile Defense Sensor (LTAMDS).

Raytheon's re-engineered Patriot radar prototype uses two key technologies – active electronically scanned array, which changes the way the radar searches the sky; and gallium nitride circuitry, which uses energy efficiently to amplify the radar's high-power radio frequencies
Raytheon’s re-engineered Patriot radar prototype uses two key technologies – active electronically scanned array, which changes the way the radar searches the sky; and gallium nitride circuitry, which uses energy efficiently to amplify the radar’s high-power radio frequencies

«Raytheon’s solution for the LTAMDS is based on the more than $200 million that the company has invested in Gallium Nitride (GaN) powered Active Electronically Scanned Array (AESA) technology», said Ralph Acaba, vice president of Integrated Air and Missile Defense at Raytheon’s Integrated Defense Systems business. «Raytheon showed it can quickly and affordably design, build, test and field a GaN-based AESA radar capable of defeating all threats when we exhibited a potential LTAMDS solution at the winter AUSA tradeshow this past March».

Raytheon’s GaN-based AESA LTAMDS radar is designed to serve as a sensor on the Integrated Air and Missile Defense Battle Command System (IBCS) network. It will be fully interoperable with NATO, and also retains backwards compatibility with both the current Patriot system and any future system upgrades fielded by any of the 13-nations that currently own Patriot.

«Others may draw on lesson learned from the terminated Medium Extended Air Defense System (MEADS) air and missile defense project or repeatedly re-baselined naval radars; Raytheon’s LTAMDS solution builds on successful programs such as the U.S. Navy’s Next Generation Jammer (NGJ) and the Air and Missile Defense Radar (AMDR)», said Doug Burgess, director of Integrated Air and Missile defense AESA programs. «Our response, and our AESA GaN radar rollout at AUSA show there doesn’t need to be a wait of a decade or longer to get the sensor of the future. It will be available much, much sooner».

 

About GaN

Raytheon has been leading the innovation and development of GaN for 17 years and has invested more than $200 million to get this latest technology into the hands of the military faster and at lower cost and risk. Raytheon has demonstrated the maturity of the technology in a number of ways, including exceeding the reliability requirement for insertion into the production of military systems.