Tag Archives: GPS

Military Code signal

The final steps to fully-enable the ultra-secure, jam-resistant Military Code (M-Code) signal on the Global Positioning System (GPS) are now underway.

GPS III SV-03 «Columbus» satellite packed prior to shipment to Cape Canaveral

As part of the U.S. military’s effort to modernize GPS, the U.S. Space Force has been steadily upgrading its existing GPS Ground Operational Control System (OCS). The Space Force recently announced Operational Acceptance of the GPS Contingency Operations (COps) upgrade, developed by Lockheed Martin. COps enabled control of the operational GPS constellation, now containing 21 M-Code capable GPS satellites, including Lockheed Martin’s first two GPS III satellites, until the next generation OCX ground control system is delivered.

 

M-Code operational availability on track for 2020

The Space Force’s M-Code Early Use (MCEU) upgrade, delivered earlier this year, will enable the OCS to task, upload and monitor M-Code within the GPS constellation, as well as support testing and fielding of modernized user equipment, prior to the completion of the next-generation ground control systems.

This Spring, work will begin to install the components needed to command and monitor the M-Code encrypted GPS signal, which enhances anti-jamming and protection from spoofing, as well as increases secure access for our forces, into the GPS OCS. M-Code signals are currently available on all the on-orbit GPS IIR-M, IIF and III space vehicles.

A key to enabling M-Code is a new software-defined receiver Lockheed Martin developed and is installing at all six Space Force monitoring sites. The M-Code Monitor Station Technology Capability (M-MSTIC) uses a commercial, off-the-shelf general purpose Graphics Processing Unit (GPU) to cost effectively receive and monitor M-Code signals. Operators can monitor the signal as needed. M-MSTIC complements MSTIC’s, which Lockheed Martin developed and fielded to replace aging hardware receivers that were becoming difficult and expensive to maintain.

«Our warfighters depend on GPS signals every day for many critical missions, so anything we can do to make these signals more resistant to jamming and spoofing is extremely important – and available today», said Johnathon Caldwell, Lockheed Martin Vice President of Navigation Systems. «The more powerful GPS III/IIIF satellites coupled with Lockheed Martin’s upgrades to the GPS ground system are making that possible».

 

Second GPS III satellite joins GPS Constellation

On March 27, the Space Force declared Operational Acceptance of Lockheed Martin’s second GPS III satellite. Another M-Code enabled satellite, GPS III Space Vehicle 02, «nicknamed Magellan», is modernizing today’s GPS satellite constellation with new 3× greater accuracy and up to 8× improved anti-jamming capabilities. GPS III also provides a new L1C civil signal, compatible with other international global navigation satellite systems, like Europe’s Galileo.

Lockheed Martin is currently contracted to build up to 32 GPS III/GPS III Follow On (GPS IIIF) satellites to help modernize the GPS constellation with new technology and advanced capabilities. The delivery tempo for these modernized GPS satellites will allow for several launches per year. The third M-code enabled GPS III satellite, named “Columbus,” is expected to launch in April, 2020.

 

Cyber security significantly hardened with Red Dragon Cyber Security Suite

Cyber defenses across the upgraded GPS system were recently evaluated by a government assessment team and passed the Operational Utility Evaluation. Lockheed Martin delivered the Red Dragon Cybersecurity Suite (RDCSS) Phase III upgrade during the fourth quarter of 2019, dramatically improving Defensive Cyber Operations (DCO) visibility into GPS network traffic. Other add-ons include user behavior analytics to analyze patterns of traffic and network taps to improve data collections.

«GPS is an attractive target for our adversaries, so it was critical we bring our best cybersecurity defenses to the table», said Stacy Kubicek, Vice President of Mission Solutions Defense and Security. «Since we began sustaining the Ground OCS in 2013, we have systematically upgraded and replaced software and hardware – it’s now a very secure system».

Lockheed Martin has sustained the GPS Ground OCS since 2013. In November of 2018, the team completed the AEP 7.5 architectural change – replacing the hardware and software to improve resiliency and cybersecurity. In December of 2018, the Air Force awarded Lockheed martin the GPS Control Segment Sustainment II (GCS II) contract to further modernize and sustain the AEP OCS through 2025.

The GPS III team is led by the Production Corps, Medium Earth Orbit Division, at the Space Force’s Space and Missile Systems Center, at Los Angeles Air Force Base. The GPS OCS sustainment is managed by the Enterprise Corps, GPS Sustainment Division at Peterson Air Force Base. 2 SOPS, at Schriever Air Force Base, manages and operates the GPS constellation for both civil and military users.

Flight Test

Northrop Grumman Corporation, in partnership with the Air Force Research Laboratory Sensors Directorate, demonstrated the first Software Defined Radio (SDR)-based, M-code enabled GPS receiver on production-capable hardware during a recent flight test. In real-time, the SDR acquired and tracked the modernized GPS military signal, known as M-code, during a live-sky demonstration.

Northrop Grumman Demonstrates GPS Software Defined Radio Navigation Solution During Flight Test

Additionally, Northrop Grumman achieved a security certification milestone by attaining Certification Requirements Review approval for the SDR-based GPS receiver from the GPS Directorate. This milestone constitutes a critical step on the way to fielding an M-code enabled GPS receiver that can be operated in an unclassified environment.

«Northrop Grumman’s secure software defined GPS solution provides an unprecedented level of agility and enables our customers to outpace the threat», said Vern Boyle, vice president, advanced technologies, Northrop Grumman.

Using a system-on-a-chip SDR approach, in lieu of the traditional fixed application specific integrated circuit (ASIC) design, enabled the platform to make rapid real-time field changes, an important capability in an evolving threat environment.

Augmentation System

Global Navigation Satellite System (GNSS) signals are critical tools for industries requiring exact precision and high confidence. Now, Geoscience Australia, an agency of the Commonwealth of Australia, and Lockheed Martin have entered into a collaborative research project to show how augmenting signals from multiple GNSS constellations can enhance positioning, navigation, and timing for a range of applications.

Second-Generation Satellite-Based Augmentation System (SBAS)
Second-Generation Satellite-Based Augmentation System (SBAS)

This innovative research project aims to demonstrate how a second-generation Satellite-Based Augmentation System (SBAS) testbed can – for the first time – use signals from both the Global Positioning System (GPS) and the Galileo constellation, and dual frequencies, to achieve even greater GNSS integrity and accuracy. Over two years, the testbed will validate applications in nine industry sectors: agriculture, aviation, construction, maritime, mining, rail, road, spatial, and utilities.

«Many industries rely on GNSS signals for accurate, safe navigation. Users must be confident in the position solutions calculated by GNSS receivers. The term ‘integrity’ defines the confidence in the position solutions provided by GNSS», explained Lockheed Martin Australia and New Zealand Chief Executive Vince Di Pietro. «Industries where safety-of-life navigation is crucial want assured GNSS integrity».

Ultimately, the second-generation SBAS testbed will broaden understanding of how this technology can benefit safety, productivity, efficiency and innovation in Australia’s industrial and research sectors.

«We are excited to have an opportunity to work with Geoscience Australia and Australian industry to demonstrate the best possible GNSS performance and proud that Australia will be leading the way to enhance space-based navigation and industry safety», Di Pietro added.

Basic GNSS signals are accurate enough for many civil positioning, navigation and timing users. However, these signals require augmentation to meet higher safety-of-life navigation requirements. The second-generation SBAS will mitigate that issue.

Once the SBAS testbed is operational, basic GNSS signals will be monitored by widely-distributed reference stations operated by Geoscience Australia. An SBAS testbed master station, installed by teammate GMV, of Spain, will collect that reference station data, compute corrections and integrity bounds for each GNSS satellite signal, and generate augmentation messages.

«A Lockheed Martin uplink antenna at Uralla, New South Wales will send these augmentation messages to an SBAS payload hosted aboard a geostationary Earth orbit satellite, owned by Inmarsat», explains Rod Drury, Director, International Strategy and Business Development for Lockheed Martin Space Systems Company. «This satellite rebroadcasts the augmentation messages containing corrections and integrity data to the end users. The whole process takes less than six seconds».

By augmenting signals from multiple GNSS constellations – both Galileo and GPS – second-generation SBAS is not dependent on just one GNSS. It will also use signals on two frequencies – the L1 and L5 GPS signals, and their companion E1 and E5a Galileo signals – to provide integrity data and enhanced accuracy for industries that need it the most.

Partners in this collaborative research project include the government of Australia. Lockheed Martin will provide systems integration expertise in addition to the Uralla radio frequency uplink. GMV-Spain will provide their ‘magicGNSS’ processors. Inmarsat will provide the navigation payload hosted on the 4F1 geostationary satellite. The Australia and New Zealand Cooperative Research Centre for Spatial Information will coordinate the demonstrator projects that test the SBAS infrastructure.

Lockheed Martin has significant experience with space-based navigation systems. The company developed and produced 20 GPS IIR and IIR-M satellites. It also maintains the GPS Architecture Evolution Plan ground control system, which operates the entire 31-satellite constellation.