Tag Archives: General Atomics Electromagnetic Systems (GA-EMS)

Dry Combat Submersible

General Atomics Electromagnetic Systems (GA-EMS) announced that the first Dry Combat Submersible (DCS) featuring GA-EMS’ Lithium-ion Fault Tolerant (LiFT) battery system as an energy source was accepted by the U.S. Special Operations Command (USSOCOM). The DCS is a long endurance delivery vehicle capable of transporting personnel in a dry environment. GA-EMS is under contract with Lockheed Martin Corporation to provide LiFT batteries to power the DCS propulsion and internal support systems.

General Atomics Announces Dry Combat Submersible with LiFT Batteries Accepted by USSOCOM

«With demonstrated performance through sea trials and the confidence of USSCOM, our LiFT battery system is becoming a go-to technology when performance is essential for mission assurance», stated Scott Forney, president of GA-EMS. «The acceptance of the first DCS with LiFT technology represents a solid leap toward meeting the demand for battery systems that offer greater reliability, capability and safety to support critical undersea operations. We are proud to be the provider of this energy source and look forward to seeing DCS vehicles with LiFT battery systems onboard achieve USSOCOM acceptance».

The LiFT battery system’s modular design and single cell fault tolerance is designed to prevent uncontrolled and catastrophic cascading Lithium-ion cell failure, improving the safety of personnel and platforms while keeping power available for high mission assurance. LiFT battery systems have undergone rigorous at-sea testing by the Navy and have been classified for use on undersea vehicles by Det Norske Veritas Germanischer Lloyd (DNV-GL), an international accredited registrar and classification society for the maritime industry, further demonstrating the safe operation of the LiFT battery system architecture.

 

Specifications

Length 12 m/39.37 feet
Width 2.2 m/7.22 feet
Weight 30 tonnes/66.139 lbs.
Operating Depth 36+ m/118.11 feet
Crew/Pax 2 pilots/8 passengers divers
Range 25+ NM/28.7+ miles/46.3 km
Transport Various
Power Battery

 

Advanced Arresting Gear

General Atomics Electromagnetic Systems (GA-EMS) announced that High Cycle Testing of its Advanced Arresting Gear (AAG) system for Ford-class aircraft carriers was successfully completed over a two-day period in October 2019 at the Runway Arrested Landing Site (RALS) in Lakehurst, New Jersey. High Cycle Testing was conducted at RALS on a single AAG system that is identical to the three systems aboard the USS Gerald R. Ford (CVN-78). Five F/A-18E/F Super Hornets were involved in the testing to simulate the operational tempo of carrier flight operations at sea.

General Atomics Advanced Arresting Gear System Completes Critical High Cycle Testing

«Over and over again, in rapid succession, AAG sustained an aircraft arrestment rate of nearly one per minute, successfully testing the system’s capability to handle the recovery sequence required for combat readiness», stated Scott Forney, president of GA-EMS. «Arresting aircraft at a high rate over a sustained period on the same wire is an aggressive test and shows the ability of the system to withstand extreme conditions. The USS Gerald R. Ford (CVN-78) has the capability for an even higher operational tempo than demonstrated at the test site because it has three wires and clears aircraft from the flight path more efficiently».

High cycle testing is part of the verification and validation of AAG System requirements. The AAG system test program has completed more than 5,000 arrestments at the land-based test facilities at Joint Base McGuire-Dix-Lakehurst, New Jersey, and 747 arrestments aboard USS Gerald R. Ford (CVN-78) during the ship’s initial sea trials. The U.S. Navy has also issued an Aircraft Recovery Bulletin for the fleet air wing, clearing the AAG system for use on all Ford-class carriers.

«We look forward to USS Gerald R. Ford (CVN-78) getting back out to sea in early 2020 to conduct more robust flight operations», continued Forney. «We anticipate executing significantly more sorties during this phase, utilizing both jet and prop aircraft. AAG works as intended, and we will continue to collaborate with the U.S. Navy to ensure system readiness and reliability to meet operational objectives».

AAG is a turbo-electric system designed for controlled and reliable deceleration of aircraft. AAG is installed on board USS Gerald R. Ford (CVN-78) along with the GA-EMS Electromagnetic Aircraft Launch System (EMALS), which uses electromagnetic technology to launch aircraft from the deck of naval aircraft carriers. In addition to USS Gerald R. Ford (CVN-78), EMALS and AAG are being delivered for the future USS John F. Kennedy (CVN-79) and the USS Enterprise (CVN-80).