Tag Archives: General Atomics Aeronautical Systems

Mojave

General Atomics Aeronautical Systems, Inc. (GA-ASI) is unveiling a new Unmanned Aircraft System (UAS) called Mojave, named for one of the harshest and most austere areas the world, where deadly rattlesnakes and horned lizards adapt to survive the extreme forces of nature.

Mojave
Next Step in UAS Capability Evolution Includes STOL and Unmatched Payload Capacity

Mojave is based on the avionics and flight control systems of MQ-9 Reaper and MQ-1C Gray Eagle-ER but is focused on Short-TakeOff and Landing (STOL) capabilities and increased firepower. It features enlarged wings with high-lift devices, and a 450-HP/336 kW turboprop engine.

Mojave provides options for forward-basing operations without the need for typical airport runways or infrastructure. It can land and takeoff from unimproved surfaces while also retaining significant advantages in endurance and persistence over manned aircraft. These innovations make Mojave the perfect UAS to perform armed overwatch, attack and armed reconnaissance missions.

A prototype aircraft first flew this summer and is continuing to demonstrate exceptional short-field performance and other unique qualities.

«We’re proud to bring these extraordinary capabilities to our Predator line of UAS», said GA-ASI CEO Linden Blue. «We are providing the ground force with a long-endurance, armed overwatch UAS that can quickly reload weapons at austere sites, located close to the conflict zone. This revolutionary design, based on 7 million flight hours of UAS experience, increases expeditionary employment options – making Mojave a real game changer».

GA-ASI’s history in UAS technology is second to none and is continually pushing technologies to adapt to emerging threats. Predator-series UAS have evolved since their support of the U.S. war effort following the 9/11 terrorist attacks in 2001 to become not only a critical provider of Intelligence, Surveillance and Reconnaissance (ISR), but also provide kinetic and non-kinetic capabilities to neutralize threats and achieve overmatch.

The Mojave project brings together all the best of the proven technologies for employment, sustainment and production and capability to achieve industry-leading reliability, range and endurance. STOL capability increases the number of employment options available to Mojave, potentially including aircraft carrier-based options, unlocking naval missions or sea-based support for special operations forces.

Payload capacity is 3,600 lb. (1,633 kg) and Mojave can carry up to 16 Hellfire or equivalent missiles. Mojave can be equipped with a sensor suite including Electro-Optical/InfraRed (EO/IR), Synthetic Aperture Radar/Ground Moving Target Indicator (SAR/GMTI) and Signal Intelligence (SIGINT) to support land or maritime missions.

Off-Board Sensing Station

General Atomics Aeronautical Systems, Inc. (GA-ASI) received a $17.8 million award from the Air Force Research Laboratory (AFRL) to design and develop an unmanned Off-Board Sensing Station (OBSS) aircraft. AFRL is developing an open architecture concept Autonomous Collaborative Platform (ACP) to achieve its goals of rapid time-to-market and low acquisition cost, while extending and enhancing the sensing volume of manned platforms.

Off-Board Sensing Station (OBSS)
GA-ASI Awarded OBSS Contract from AFRL

«We’re excited to continue working on this project with AFRL», said Chris Seat, senior vice president of Special Programs for GA-ASI. «Our experience in developing and delivering the most cost-effective and forward-looking UAS solutions puts GA-ASI in a great position to deliver the right ACP to meet our customer’s requirements».

The award covers the next 12 months as the base effort, and if the option is exercised, GA-ASI will spend the following 15 months manufacturing and flight demonstrating the aircraft with the award potentially growing to a total of $49 million.

Additional 13 Protector

The UK Ministry of Defence (MoD) has exercised the clause in its contract with General Atomics Aeronautical Systems, Inc (GA-ASI) to manufacture and deliver 13 additional Protector RG Mk1 Remotely Piloted Air Systems (RPAS) that had previously been identified as options. The initial contract order was for three Protector RPAS, establishing 16 as the new total of Protectors to be delivered to the UK MoD.

Protector RG Mk1 RPAS
GA-ASI and UK MOD Exercise Contract for Additional 13 Protector RPAS

«Our fleet of 16 Protector aircraft equipped with ultra-modern technology will provide the Royal Air Force (RAF) with a vast global reach allowing us to monitor and protect the battlespace for hours on end. The Protector programme involves industry across the UK with vital parts of the aircraft manufactured on the Isle of Wight, supporting highly-skilled jobs for years to come», said Jeremy Quin, UK Minister for Defense Procurement.

GA-ASI’s MQ-9B SkyGuardian is the baseline system being configured for the RAF as the Protector RG Mk1. It includes X-band satellite communications (SATCOM) and support for UK weapon systems, as well as the aircraft’s onboard sensors such as its electro-optical sensor ball and Lynx Multi-mode Radar.

«This commitment for 13 additional unmanned aircraft confirms the long-term confidence of the UK MoD and the Royal Air Force in the MQ-9B system and the Protector program», said Linden Blue, CEO, GA-ASI. «The MQ-9B system will bring unparalleled reconnaissance capability to the RAF and help to ensure the security of the UK and its allies».

In July 2020, the UK MoD and GA-ASI announced a production contract for the first three Protector RPAS. In September 2020, GA-ASI announced the completion of the first Protector-configured MQ-9B, which is now supporting system testing as part of a combined UK MoD, U.S. Air Force and GA-ASI test team. Known as UK1, this first Protector will be delivered to the MoD later this year, but will remain in the U.S. to complete the Royal Air Force’s test and evaluation program before moving to its UK home base in 2022.

«The contract for the additional 13 Protector aircraft, taking the total to 16, is a major milestone for the UK. When Protector enters service in 2024, UK Defence will take an enormous jump forward in capability, giving us the ability to operate globally with this cutting edge, highly adaptable platform», said Air Commodore Richard Barrow, Senior Responsible Owner for the RAF Protector Programme.

The partnership between GA-ASI and the UK MoD also brings significant benefits to UK aerospace and defense industries. One example is GKN Aerospace, which is manufacturing the advanced composite V-tails for the MQ-9B at its centre of excellence in Cowes, the Isle of Wight.

GA-ASI’s development of MQ-9B began in 2014 as a company-funded program to deliver an RPA that meets the stringent NATO STANAG-4671 and UK DEFSTAN 00-970 aircraft system airworthiness requirements. These provide the basis for type certification by NATO member-state military airworthiness authorities. The MQ-9B is designed to accommodate the GA-ASI-developed Detect and Avoid System (DAAS), which helps the aircraft integrate with the normal flow of aviation traffic and keeps operators in contact with air traffic control. The aircraft is built for adverse weather performance with lightning protection, damage tolerance, and a de-icing system. MQ-9B features rapid integration of new payloads with nine hard points. The aircraft can self-deploy using SATCOM-enabled Automatic Takeoff and Landing, which eliminates forward-based launch-and-recovery equipment and personnel. In addition to the Protector and SkyGuardian configurations, MQ-9B is available as the SeaGuardian – with revolutionary anti-submarine and surface search capabilities – for maritime missions.

MQ-9B has garnered significant interest from customers throughout the world. In addition to the UK, SkyGuardian has been selected by the Australian Defence Force under Project Air 7003 and the Belgian Ministry of Defense signed a contract for SkyGuardian.

SeaGuardian

General Atomics Aeronautical Systems, Inc. (GA-ASI) is working with Leonardo to integrate the Leonardo Seaspray 7500E V2 radar into the centerline radar pod of its MQ-9B SeaGuardian Remotely-Piloted Aircraft System (RPAS). The integration of this market-leading radar onto the SeaGuardian will enable persistent maritime ISR and is available to our international customer base.

MQ-9B SeaGuardian
Leonardo Seaspray AESA Maritime Radar to be Integrated on GA-ASI SeaGuardian

GA-ASI’s MQ-9B is revolutionizing the long-endurance RPAS market by providing all-weather capability and compliance with STANAG-4671 (NATO airworthiness standard for Unmanned Aircraft Systems). These features, along with an operationally proven collision-avoidance radar, enables flexible operations in civil airspace. SeaGuardian has a multi-mode maritime surface-search radar with Inverse Synthetic Aperture Radar (ISAR) imaging mode, an Automatic Identification System (AIS) receiver, and a High-Definition – Full-Motion Video sensor equipped with optical and infrared cameras. This sensor suite, augmented by automatic track correlation and anomaly-detection algorithms, enables real-time detection and identification of surface vessels over thousands of square nautical miles.

The Seaspray 7500E V2 radar is well-suited to the SeaGuardian mission set, using Active Electronically Scanned Array (AESA) technology to detect, track and classify hundreds of maritime contacts. The integration will also include an Open Mission Systems (OMS) approach, which enables the SeaGuardian and its sensor suite to offer operational and sustainment flexibility to end users.

Numerous countries use Leonardo Seaspray E-scan radars and the company has utilized operational feedback from these customers to expand and optimize the radar’s suite of advanced modes. These include Leonardo’s patented small target detection capability, allowing it to spot extremely difficult targets such as submarine periscopes and shipwrecked individuals at long range, even in very stormy seas. A key discriminator of Leonardo’s E-scan radars is their high reliability and fault tolerance that allows effective operation throughout a mission even if a number of individual radar modules fail.

The Seaspray greatly enhances the capabilities of the MQ-9B and builds on the already close working partnership between GA-ASI and Leonardo. Earlier this year GA-ASI announced the completion of initial integration work of Leonardo’s SAGE electronic surveillance unit onto the SeaGuardian, equipping the aircraft with the ability to gather intelligence information on maritime and land-based radar emitters over a wide area.

Customers will be able to choose from a wide assortment of sensors and payloads on the SeaGuardian platform, with both Seaspray and SAGE as off-the-shelf sensor options.

Static Testing

General Atomics Aeronautical Systems, Inc. (GA-ASI) recently completed Full Scale Static (FSS) testing on the MQ-9B Remotely Piloted Aircraft (RPA) wing after three months of extensive testing. MQ-9B includes SkyGuardian and SeaGuardian RPA produced by GA-ASI.

MQ-9B SkyGuardian
GA-ASI Completes Full-Scale Static Testing On MQ-9B SkyGuardian Wing Structure

The testing included multiple load cases to 150 percent of expected maximum flight loads. The wing was loaded using specially designed fixtures to apply a distributed load across the wingspan – simulating gust and maneuver flight conditions – with no failures.

«Successful completion of FSS testing on the MQ-9B wing was a critical step in proving that our design meets stringent certification standards for structural strength and integrity», said Dee Wilson, Vice President, Engineering Research Development & Design Hardware. «The wing performed as expected, matching analytical predictions closely. Our engineering design, stress and test teams are commended for an exceptional effort in meeting this critical milestone».

This particular wing design is the culmination of a large development effort from multiple areas within GA-ASI and represents a major milestone in qualifying the MQ-9B SkyGuardian and SeaGuardian RPA to fly in non-segregated airspace. The wing test success also establishes the baseline wing design for the entire MQ-9B product line. This is critical as GA-ASI starts deliveries to the multiple customers pursuing the MQ-9B including the United Kingdom, Belgium and Australia.

Avenger

On October 28, 2020, General Atomics Aeronautical Systems, Inc. (GA-ASI) conducted an autonomous flight using a government-supplied Collaborative Operations in Denied Environment (CODE) autonomy engine to support air-to-air targeting missions. The CODE autonomy engine was installed on a GA-ASI Avenger Unmanned Aircraft System (UAS).

Avenger UAS
GA-ASI Demonstrates Government-Supplied Code Autonomy Engine

The CODE autonomy engine was implemented to further understand cognitive Artificial Intelligence (AI) processing on larger UAS platforms, such as Avenger. Using a network- enabled Tactical Targeting Network Technology (TTNT) radio for mesh network mission communications, GA-ASI was able to show integration of emerging Advanced Tactical Data Links (ATDL) and separation between flight and mission critical systems.

«This represents a big step on the path to more sophisticated autonomous missions for unmanned aircraft where operator input can be minimized to support optimal manning of multiple products for complex air battles», said GA-ASI President David R. Alexander. «For this initial flight, we used Avenger as the flight surrogate for the Skyborg capability set, which is a key focus for GA-ASI emerging air-to-air portfolio».

As part of the autonomous flight, the CODE autonomy software controlled the maneuvering of the Avenger UAS for over two hours without traditional pilot input. GA-ASI furthered the development of the CODE software by adding behavioral functions for a coordinated air-to-air search with up to six aircraft (for the demonstration, five of the aircraft were virtual). The CODE operator, using a small form factor commercial computer running the government-provided software, set mission objectives for the flight in which the autonomy software was used to coordinate the six aircraft to accomplish the air-to-air search objective.

GA-ASI created ground and air adapter services that passed operator mission inputs to the flying constellation of aircraft using Link 16-formatted messages that followed Joint Range Extension Applications Protocol (JREAP). The open architecture of the CODE software enables communications between the aircraft, the CODE software and the autopilot.

 

Characteristics

Wing Span 66 feet/20 m
Length 44 feet/13 m
Powerplant Pratt & Whitney PW545B turbofan
Maximum Gross Takeoff Weight 18,200 lbs./8,255 kg
Fuel Capacity 7,900 lbs./3,583 kg
Payload Capacity Internal – 3,500 lbs./1,588 kg
Total – 6,500 lbs./2,948 kg
Weapons Hellfire missiles; GBU-12/49, GBU-31, GBU-32, GBU-38 JDAM, GBU-39, GBU-16/48
Payloads Electro-Optical/Infra-Red (EO/IR); Lynx Multi-mode Radar; Signals Intelligence (SIGINT)/Electronic Support Measures (ESM) System; Communications relay
Power 20 kW (redundant)
Maximum Altitude >50,000 feet/>15,240 m
Maximum Endurance 20 hr
Maximum Air Speed 400 KTAS/460 mph/741 km/h
Standard Dash 350 KTAS/403 mph/648 km/h

 

Rosetta Echo Payloads

In conjunction with the Air National Guard (ANG), the Air Force Reserve Command Test Center (AATC) and Ultra Electronics, General Atomics Aeronautical Systems, Inc. (GA‑ASI) successfully completed initial operational assessment of the Rosetta Echo Advanced Payloads (REAP) pod on an MQ-9 Reaper Remotely Piloted Aircraft (RPA). The first REAP flight test (known as REAP-1), held August 3 and based out of Syracuse, New York, demonstrated a communications relay network providing seamless connectivity between air and ground participants in the demonstration area. Specific waveforms supported by the REAP pod include Link 16, Ultra High Frequency/Very High Frequency (UHF/VHF) radio and P25 public safety, as well as mobile ad hoc networks (MANET).

MQ-9 Reaper
Airborne Comms Payload Provides Connectivity in Contested and Uncontested Environments

«GA-ASI is really excited to showcase the communication capabilities of the REAP pod, which provides the backbone for warfighters to collaborate and share critical battlefield situational awareness. Our MQ-9 Reaper, with its industry-leading persistent endurance, is the ideal platform for connecting sensors to shooters and realizing USAF’s Advanced Battle Management System (ABMS) vision», said GA-ASI President David R. Alexander.

According to the ANG/AATC, a REAP-equipped MQ-9 Reaper relayed video received from a Coyote small Unmanned Aircraft System (sUAS) to a ground node at distances over 110 miles / 177 km. All this was done while simultaneously bridging voice communications over the MANET at extended distances.

Major Curt Wilson, National Guard Bureau (NGB) A5 Branch Chief for Special Mission Aircraft, said: «REAP far exceeded our expectations for a first flight and initial operational assessment. The REAP pod is the first step in a number of innovations that the NGB, Ultra and GA-ASI have pioneered to demonstrate near-term and affordable Joint All-Domain Command & Control (JADC2) capabilities on the MQ-9 Reaper».

The ANG and AATC are working to schedule another flight test in late 2020 with the REAP pod installed on the MQ-9 Reaper. A REAP-2 pod, due for completion in mid-2021, encompasses all of the REAP-1 capability plus 4G/LTE, the addition of which will add disaster relief operations as a capability to its existing military waveform relay and bridging capability. REAP-2 will be integrated into AFRL’s (Air Force Research Laboratory) open architecture AgilePod16 variant, demonstrating GA-ASI’s continued commitment to widely adopting and proliferating Open Mission Systems (OMS) and open architecture. REAP was also featured as part of the second Advanced Battle Management System (ABMS) Demo that took place September 1-3, 2020.

Sparrowhawk

General Atomics Aeronautical Systems, Inc. (GA-ASI) conducted captive carry Sparrowhawk Small Unmanned Aircraft Systems (sUAS) flight demonstrations on September 16-17, 2020. The Sparrowhawk aircraft is designed as an airborne launch and recovery demonstrator aircraft tailored to fit GA-ASI platforms, and is focused on Advanced Battle Management System’s attritableONE technologies. Sparrowhawk iterates on the DARPA Gremlins Program to further airborne recovery of sUAS, reducing the cost of operation and enabling new mission capabilities to GA-ASI’s MQ-9 Remotely Piloted Aircraft.

Sparrowhawk
GA-ASI conducts Sparrowhawk sUAS flight tests

«Sparrowhawk extends and multiplies MQ-9-based sensors, reduces manpower and increases ISR coverage», said GA-ASI President David R. Alexander. «With attritableONE technology that is survivable and precise, Sparrowhawk is a true game changer».

The Sparrowhawk sUAS was carried on a MQ-9A and controlled exclusively using GA-ASI’s Metis Software Defined Control Station hosted on a laptop computer, which drastically reduced the system’s logistical footprint and supports the vision for interfaces to the aircraft from across the battlefield – without the need for a Ground Control Station shelter or vehicle. Communications were achieved using a fielded meshONE datalink, enabling collaborative autonomy capabilities among the platforms. The Cooperation in Denied Environments (CODE) autonomy engine was implemented to further understand cognitive Artificial Intelligence (AI) processing for unmanned systems.

The test flights build on the capabilities demonstrated when Gray Eagle carried two Area-I Altius-600 Air Launched Effects (ALEs) during Multi-Domain Operations (MDO) demonstrations, underscoring GA-ASI’s commitment to expanding the capabilities of its aircraft. Sparrowhawk and airborne recovery also enable these benefits:

  • Allows below-the-weather Intelligence, Surveillance and Reconnaissance (ISR), and enables reduced visual and acoustic ISR
  • Enables attritable ISR/Electronic Warfare (EW) in the contested environment, allowing the MQ-9 to stand off at safe ranges
  • Employs larger and more expensive payloads at greater transit ranges compared to ground-launched aircraft and air-launched expendables
  • Maintains the chain of custody, through adverse weather, MQ-9 rotations, or with multiple targets

Remotely Piloted Aircraft

On January 8th General Atomics Aeronautical Systems, Inc. (GA‑ASI) for the first time flew a new MQ-9 Remotely Piloted Aircraft (RPA) to a customer location at Holloman Air Force Base in New Mexico. Typically, a new MQ-9 is packed and shipped by GA-ASI for reassembly after delivery. Ferrying the MQ-9 to Holloman saves costs and time in shipping, reducing time for airmen to reassemble the aircraft, making it available for training immediately upon arrival.

GA-ASI ferries new MQ-9 to Holloman Air Force Base (AFB)

A key aspect of delivery was flying the RPA through the National Airspace System (NAS) after originating from GA-ASI’s Flight Operations Center in Palmdale, California. GA-ASI and Holloman air crews worked together to ensure the successful ferry of the aircraft.

«GA-ASI continues to lead the charge towards enabling large unmanned aircraft to fly in the NAS», said David R. Alexander, president, GA-ASI. «Our efforts, along with other partners, are gaining momentum and successfully flying the MQ-9 to our U.S. Air Force customer further demonstrates the safety and efficiency of RPA flight in the broader airspace».

The USAF estimates that ferrying the MQ-9 saved 142 man hours.

«This is the first time that team Holloman has taken delivery of a new MQ-9 by ferry flight», said Colonel Casey Tidgewell, 49th Operations Group commander. «It’s critically important because flying outside of our training area helps normalize RPA flight inside the NAS and provides broader aviation experience for our instructors. I could not be more proud of our operations and maintenance professionals that made this happen».

GA-ASI has flown several RPA flights in the NAS while working with the FAA and other authorities to secure proper approvals. The company continues to work towards a future where its RPA can simply «file and fly» in the NAS just like commercial flights.

Demonstration Flights

General Atomics Aeronautical Systems, Inc. (GA-ASI) today announced the first flight of the Guardian Remotely Piloted Aircraft (RPA) in Japan during an opening ceremony on Iki Island. The demonstration flights, taking place over the next three weeks, intend to promote the civil and scientific applications of the RPA.

GA-ASI Begins Demonstration Flights in Japan
GA-ASI Begins Demonstration Flights in Japan

«We thank the Mayor of Iki and the many other public and private stakeholders for their making this demonstration possible», said Linden Blue, CEO GA-ASI. «We believe that these flights of long-endurance RPAs in Japan’s maritime environment will provide valuable information, and we look forward to reviewing the important data gathered from these flights».

Mayor Shirakawa provided a statement, which said: «We are delighted to host the RPA flight demonstration on our island of Iki. The demonstration is an important milestone for the many peaceful uses of RPAs, including maritime disaster security and maritime resource management. Iki is located near the boundaries of Japan, so surveillance capabilities are an important matter for us. Furthermore, holding the nation’s first demonstration of this kind has great economic significance for our island. I thank the national government’s ministries and agencies and the many other public and private stakeholders for their cooperation».

The Guardian will collect data for scientific research that will be shared across multiple government agencies, while operating from the island of Iki, in Japan’s Nagasaki Prefecture.

This is the first demonstration of a long endurance RPA by a private company in Japan. The aircraft’s sensors include a long-range maritime surface-search radar, stabilized optical and infrared video cameras, and an active collision-avoidance system, which includes a short range air-to-air radar. This configuration is similar to that operated by the U.S. Department of Homeland security over the maritime approaches to the U.S.

For demonstration purposes, the Guardian flights will consist of approximately 10 five-hour sorties over a three-week period, originating out of Iki Airport; however, this aircraft configuration is capable of more than 20 hours endurance in a single sortie. The Guardian system will demonstrate various missions, including:

  • Meteorological, disaster-relief and oceanic observations;
  • Marine accidents and rescue support;
  • Air space management and support of communications.

GA-ASI is leading the demonstrations in cooperation with Iki Airport personnel and Japanese national authorities. The sensor data collected by Guardian will be provided to scientific research institutions, and flight data will be given to airspace management organizations to help establish procedures for using RPA systems in national and international civil airspace.

GA-ASI has sent its own team of experienced RPA pilots, sensor operators, and maintenance personnel to Japan to ensure safe operations during all phases of the demonstration. The demonstration is funded by GA-ASI and the equipment used belongs to the company.