Tag Archives: GA-ASI

The Future of Small UAS

But if remotely piloted aircraft have made themselves irreplaceable, they also can’t stop evolving.

Sparrowhawk Small UAS (SUAS)
Artist rendering of GA-ASI’s new Sparrowhawk Small UAS (SUAS), launched from an MQ-9B SkyGuardian in the distance. The Sparrowhawk is one of many GA-ASI investments in SUAS

One reason is that not every combat environment will be as friendly as the skies over Afghanistan and Iraq, where U.S. and allied aircraft enjoyed supremacy. For another, the jobs that commanders need done grow more complex by the year.

The good news is that GA-ASI is keeping ahead of those needs. Our newest technologies enable capabilities that no remotely piloted aircraft ever had before. They’re joining the hunt for hostile submarines under the ocean’s surface and releasing defensive countermeasures to protect themselves from enemy fire, just like a human-crewed fighter.

The MQ-9B SkyGuardian and variants also can integrate into a nation’s civil airspace in a way no remotely operated aircraft ever could before, vastly improving the way users can add these aircraft to their surveillance or other operations. The ability to fly the MQ-9B in and among normal British air traffic was one reason why it was selected to be the new platform of choice by the Royal Air Force: The Protector.

Our remotely piloted aircraft can even accommodate their own, small unmanned aerial systems, often known simply as SUAS. If the past 20 years has brought the golden age of large UAS, the coming 20 years will represent the evolution of their little brothers.

For example, GA-ASI has developed one game-changing SUAS known as Sparrowhawk, which an aircraft such as the MQ-9 can carry under its wing as it might a traditional payload like a sensor pod or a fuel tank. But when the MQ-9 reaches an area of interest on a mission, it can do something few remotely operated aircraft have ever done – launch the smaller UAS and then recover it in mid-flight.

The smaller, nimbler, swifter Sparrowhawk is difficult for an adversary to spot as it sprints low along its route. It does, via connection to its big brother, what remotely operated aircraft have been doing all along: Sends back vital information about what’s taking place, without the cost and risk of involving a human aircrew.

The Sparrowhawk might surveil an area and turn back to rendezvous with the aircraft that launched it. In a safe area, well away from hostile warplanes or anti-air systems, the larger UAS can snatch the Sparrowhawk out of the sky and continue its mission.

Once Sparrowhawk is secure, the larger aircraft can return to base – or, relying on its ability to stay aloft for many hours, continue its patrol and even launch another Sparrowhawk elsewhere later from its other wing station.

Integrating smaller aircraft with larger unmanned aircraft is possible in part thanks to advances in autonomy and multi-aircraft control pioneered by GA-ASI. As ever, the absence of human pilots on these aircraft means commanders can consider using them in ways they would never employ traditional fighters.

A SkyGuardian could release a Sparrowhawk with the intention of searching for hostile anti-air systems without needing to worry about the safety of the pilot. Indeed, an air commander’s goal might be to send Sparrowhawk to probe a denied environment so that it could report back about the radar or other systems that powered on or detected it – where they were, what type, and how many.

Sparrowhawk could respond with an electronic attack of its own to clear the way for other aircraft coming in behind it, jamming an enemy radar to deny its ability to sense a strike package passing through the area. Or the small aircraft could support missions focused on the suppression of enemy air defenses.

Small UAS will take the concept of unmanned aerial combat to new levels, with new capabilities like our Sparrowhawk and others leading the way in distributed aerial networking and joint, all-domain command and control. But SUAS won’t only help friendly forces deal with threats on the ground.

SUAS prototype
Artist’s rendering of a new SUAS prototype from GA-ASI, shown here operating from an MQ-1C Gray Eagle and teaming with U.S. Army rotorcraft to support stand-in jamming, suppression of enemy air defenses, artillery missions and more

Another small system in the works by GA-ASI will help clear the way through the skies. LongShot, being developed under a contract from DARPA, will launch from larger UAS or human-crewed aircraft and charge into hostile airspace armed with its own air-to-air missiles, able to fire on enemy targets if it were so commanded.

LongShot gives commanders options, just as all remotely operated systems always have. It could initiate a fighter sweep ahead of a strike wave without putting a human crew in danger, or it could join an attack alongside the vanguard with human-crewed warplanes.

LongShot SUAS
Artist rendering of GA-ASI’s new LongShot SUAS, currently in development with DARPA

LongShot also could give legacy aircraft such as bombers a potent new anti-air capability. Imagine if a friendly bomber were en route during a combat mission and allied battle networks detected the approach of hostile fighters. LongShot would let the bomber crew go on offense against the threat without the need for its own escorts or the retasking of friendly fighters, preserving its ability to service its targets as planned.

Airpower, naval and ground warfighters doubtlessly will find other new ways to incorporate these new systems into their missions, as troops always have with novel weapons that give them more options and flexibility.

Those pilots, air crews, squadrons and other units are the latest links in a chain that goes back decades. From unpowered contraptions of wood and fabric to sophisticated warplanes that can launch and recover their own smaller squadrons, remotely piloted aircraft have made incredible progress since the days of William Eddy and his camera kites. And with stealthier and advanced new programs in the works, including some in support of the Air Force’s MQ-Next concept, there’s a great deal more to come.

What won’t change is their utility and indispensability from today’s and tomorrow’s military, security, governance and environmental protection operations, with an ever-growing suite of missions beyond those for which they were originally designed.

That, too, is something Eddy himself discovered following his return to New Jersey, when he found that thieves had stolen a batch of ice cream from his back porch.

As one local history records, Eddy reeled out his aerial surveillance kite and captured some images of the area: «One shot showed two men eating ice cream under a tree near Newark Bay. Eddy said he later found his ice cream box under the tree».

Static Testing

General Atomics Aeronautical Systems, Inc. (GA-ASI) recently completed Full Scale Static (FSS) testing on the MQ-9B Remotely Piloted Aircraft (RPA) wing after three months of extensive testing. MQ-9B includes SkyGuardian and SeaGuardian RPA produced by GA-ASI.

MQ-9B SkyGuardian
GA-ASI Completes Full-Scale Static Testing On MQ-9B SkyGuardian Wing Structure

The testing included multiple load cases to 150 percent of expected maximum flight loads. The wing was loaded using specially designed fixtures to apply a distributed load across the wingspan – simulating gust and maneuver flight conditions – with no failures.

«Successful completion of FSS testing on the MQ-9B wing was a critical step in proving that our design meets stringent certification standards for structural strength and integrity», said Dee Wilson, Vice President, Engineering Research Development & Design Hardware. «The wing performed as expected, matching analytical predictions closely. Our engineering design, stress and test teams are commended for an exceptional effort in meeting this critical milestone».

This particular wing design is the culmination of a large development effort from multiple areas within GA-ASI and represents a major milestone in qualifying the MQ-9B SkyGuardian and SeaGuardian RPA to fly in non-segregated airspace. The wing test success also establishes the baseline wing design for the entire MQ-9B product line. This is critical as GA-ASI starts deliveries to the multiple customers pursuing the MQ-9B including the United Kingdom, Belgium and Australia.

Guardian

General Atomics Aeronautical Systems, Inc. (GA-ASI) concluded a series of flight demonstrations using its MQ-9 Guardian Remotely Piloted Aircraft System (RPAS) on December 19, 2019. The demonstrations showcased the maritime surveillance capabilities of the MQ-9, and the GA-ASI-developed Detect and Avoid (DAA) system for traffic-deconfliction in civil airspace. The flights were sponsored by the Hellenic Air Force (HAF) and the Hellenic Coast Guard (HCG) and staged out of Larissa Air Base in Greece. The flights were performed for an audience of European military and civilian representatives.

GA-ASI Concludes Successful Series of MQ-9 Demonstrations in Greece

«We were honored to have the HAF’s and the HCG’s support for these flight demonstrations with our MQ-9», said Linden Blue, CEO, GA-ASI. «The MQ-9 RPAS is already a strategic asset for NATO countries, providing mission persistence and interoperability between allies. We showcased MQ-9s maritime surveillance and the civil airspace integration capabilities for our European customers». The MQ-9 configuration demonstrated is operational in the U.S.

Currently GA-ASI aircraft systems support the Italian Air Force, the UK Royal Air Force, the French Air Force, and the Spanish Air Force. The Ministry of Defence for the Netherlands has selected MQ-9 for the Royal Netherlands Air Force, and the Government of Belgium has approved Belgian Defense to negotiate the acquisition of GA-ASI’s MQ-9B. In early December, the Australian Government announced selection of MQ-9B for the Australian Defence Force under Project Air 7003. GA-ASI RPAS are operated by the U.S. Air Force, U.S. Army, U.S. Marine Corps, U.S. Department of Homeland Security and NASA.

«The advanced capabilities of these aircraft are striking. Through the 10 days of demonstrations, the country of Greece has seen the value of MQ-9’s for maritime patrol and Exclusive Economic Zone (EEZ) monitoring, border surveillance, support for search and rescue efforts, and over-watch of forest fire response efforts», said an HAF official.

The DAA system consists of an air-to-air radar integrated with Traffic Alert and Collision Avoidance System (TCAS II), and Automatic Dependent Surveillance-Broadcast (ADS-B). The DAA system enables safe flight of an MQ-9 in civil airspace, and can even detect air traffic that is not actively transmitting its position.

The MQ-9 also demonstrated a multi-mode, maritime surface-search radar, and High-Definition/Full-Motion Video Optical and Infrared sensor. This sensor suite enables real-time detection and identification of large and small surface vessels in all-weather at long ranges, 360 degrees around the aircraft. The featured Raytheon SeaVue surface-search radar provided continuous tracking of maritime targets and correlation of Automatic Identification System (AIS) transmitters with radar detections. The Inverse Synthetic Aperture Radar (ISAR) mode facilitates classification of vessels which are beyond optical sensor range.

For the demonstration, GA-ASI partnered with SES, a leading satellite communications (SATCOM) operator and managed services provider, with over 70 satellites in Geostationary Orbit (GEO) and Medium Earth Orbit (MEO). SES provided the GEO satellite connectivity that enabled the MQ-9 to operate securely with a high capacity datalink, enabling real-time transmission of sensor data from the aircraft, and extending its effective operational range far beyond that of «line-of-sight» datalinks.

«With our global satellite fleet, SES has been supporting the critical needs of GA-ASI and their government customers who have operated these aircraft for close to two decades», said Nicole Robinson, Senior Vice President, Global Government at SES Networks. «We were proud to support this demonstration effort for the Hellenic Air Force as part of our long-standing relationship with General Atomics».

Brimstone and Protector

MBDA has received a contract for the integration of its Brimstone high-precision strike missile onto the Royal Air Force’s (RAF) Protector RG Mk1 remotely piloted aircraft developed and manufactured by General Atomics Aeronautical Systems, Inc. (GA-ASI).

The Protector RG Mk1 can carry three lightweight Brimstones per weapon station, and so offers a much higher loadout than the Reaper platform it will replace
The Protector RG Mk1 can carry three lightweight Brimstones per weapon station, and so offers a much higher loadout than the Reaper platform it will replace

Brimstone and Protector RG Mk1 will provide key new capabilities to the Royal Air Force’s Intelligence, Surveillance, Target Acquisition, and Reconnaissance (ISTAR) force, enabling them to engage high-speed moving and manoeuvring targets (including maritime fast attack craft for the first time). The Protector RG Mk1 can carry three lightweight Brimstones per weapon station, and so offers a much higher loadout than the Reaper platform it will replace.

Integration of Brimstone onto Protector RG Mk1 (which is the weaponised version of MQ-9B SkyGuardian) follows a series of successful firing trials of Brimstone from the Reaper/Predator B aircraft in the United States that demonstrated the advancement in performance that Brimstone offers. Brimstone integration will be completed in time for the entry to service of the aircraft with the RAF.

James Allibone, MBDA’s UK Sales Director, said: «Protector RG Mk1 is the third UK air platform to benefit from the unmatched capabilities of the Brimstone missile, providing UK Armed Forces with vital operational advantages and sovereign defence capabilities. Brimstone is unique in its ability to be carried by platforms in all domains, land, sea and air, providing a common weapon that delivers both operational and cost benefits. Commonality is a key part of all MBDA’s latest systems, and is a major contributor to the £1.7 billion in savings that the partnership approach between the UK MoD and MBDA has generated».

Earlier in 2018, the United Kingdom Ministry of Defence (UK MoD) announced a £400 million contract with MBDA for the Capability Sustainment Programme (CSP) of Brimstone missile, to build new missiles and extend this missile’s service life beyond 2030.

 

CHARACTERISTICS

Weight 50 kg/110.2 lbs.
Length 1.8 m/5.9 feet
Diameter 180 mm/7 inch

 

FAA approval

On August 16th General Atomics Aeronautical Systems, Inc. (GA-ASI) flew a MQ-9B SkyGuardian Remotely Piloted Aircraft (RPA) from Laguna Airfield at Yuma Proving Grounds, Arizona, through National Airspace, to its Gray Butte Flight Operations facility near Palmdale, California. The MQ-9B is a STANAG 4671 (NATO airworthiness standard for Unmanned Aircraft Systems)-compliant version of the Predator B product line. The 275-mile/443-km trip lasted approximately one hour, 45 minutes and required Federal Aviation Administration (FAA) approval to fly through various classes of non-restricted airspace.

Flight through Multiple Classes of Non-Segregated Airspace Represents another Step towards Certification
Flight through Multiple Classes of Non-Segregated Airspace Represents another Step towards Certification

«This flight is another milestone in our progression towards delivering an RPA system that meets NATO airworthiness requirements for Unmanned Aircraft Systems (UAS)», said Linden Blue, Chief Executive Officer (CEO), GA-ASI. «MQ-9B SkyGuardian will be the first RPA system of its kind with a design-assurance level compliant with international type-certification standards, and can therefore be integrated more easily than legacy RPAs into civil airspace operations around the world».

A weaponized variant of the system is being acquired by the UK Royal Air Force (RAF) under the MQ-9B PROTECTOR program. A maritime patrol variant, SeaGuardian, is designed to support open-ocean and littoral surface surveillance. All variants are designed to fly in excess of 35 hours with airspeeds up to 210 knots/242 mph/389 km/h, and to reach altitudes of more than 40,000 feet/12,192 m.

Development of MQ-9B began in 2012 as a company-funded effort. Program highlights include first flight in November 2016 and an endurance flight in May 2017 of 48.2 hours.

Qualification testing for type-certification will continue over the next two years, with deliveries to the RAF expected to begin early next decade.