Tag Archives: DARPA

Tactical Boost Glide

Raytheon Company won a $63.3 million DARPA contract to further develop the Tactical Boost Glide hypersonic weapons program. The joint DARPA and U.S. Air Force effort includes a critical design review, a key step in fielding the technology.

Raytheon wins $63.3 million DARPA contract for hypersonic weapons work
Raytheon wins $63.3 million DARPA contract for hypersonic weapons work

«This latest contract adds to Raytheon’s growing number of hypersonic weapons programs», said Doctor Thomas Bussing, Raytheon Advanced Missile Systems vice president. «Raytheon is working closely with our customers to quickly field these advanced weapon systems and provide our nation’s military with the tools they need to stay ahead of the escalating threat».

Hypersonic weapons will enable the U.S. military to engage from longer ranges with shorter response times and enhanced effectiveness compared to current weapon systems.

Systems that operate at hypersonic speeds – five times the speed of sound (Mach 5) and beyond – offer the potential for military operations from longer ranges with shorter response times and enhanced effectiveness compared to current military systems. Such systems could provide significant payoff for future U.S. offensive strike operations, particularly as adversaries’ capabilities advance.

The Tactical Boost Glide (TBG) program is a joint DARPA/U.S. Air Force (USAF) effort that aims to develop and demonstrate technologies to enable future air-launched, tactical-range hypersonic boost glide systems. In a boost glide system, a rocket accelerates its payload to high speeds. The payload then separates from the rocket and glides unpowered to its destination.

The TBG program plans to focus on three primary objectives:

  • Vehicle Feasibility – Vehicle concepts possessing the required aerodynamic and aerothermal performance, controllability and robustness for a wide operational envelope;
  • Effectiveness – System attributes and subsystems required to be effective in relevant operational environments;
  • Affordability – Approaches to reducing cost and increasing value for both the demonstration system and future operational systems.

TBG is a two-phase effort that plans to include ground and flight testing to mature critical technologies, and aims to demonstrate the system performance achievable through the integration of those technologies. The program is using a disciplined systems engineering approach to define demonstration system objectives and identify enabling technologies needed for future systems. The TBG program is exploiting the technical knowledge and lessons derived from development and flight testing of previous boost glide systems, including the Hypersonic Technology Vehicle 2 (HTV-2).

Blackjack program

Airbus Defense and Space Inc. has been awarded a contract from the Defense Advanced Research Projects Agency (DARPA) to develop a satellite bus in support of the Blackjack program.

Airbus wins DARPA contract to develop small constellation satellite bus for Blackjack program
Airbus wins DARPA contract to develop small constellation satellite bus for Blackjack program

DARPA describes the Blackjack program as an architecture demonstration intending to show the military utility of global low-earth orbit constellations and mesh networks of lower size, weight and cost. DARPA wants to buy commercial satellite buses and pair them with military sensors and payloads. The bus drives each satellite by generating power, controlling attitude, providing propulsion, transmitting spacecraft telemetry, and providing general payload accommodation including mounting locations for the military sensors.

«Airbus has previously co-invested hundreds of millions of dollars in high-rate manufacturing technology and supply chain logistics to build large constellations of small satellites», said Tim Deaver, Director of U.S. Space Programs at Airbus Defense and Space, Inc. «Airbus is committed to growing manufacturing capability in the U.S. and our government customers can leverage this commercial capability to develop low-earth orbit constellations to complement large existing systems».

This contract positions Airbus Defense and Space, Inc., of Herndon, Virginia, and its strategic joint venture partner, OneWeb Satellites, of Exploration Park, Florida, as the ideal service providers for Blackjack.

High production rates and design-to-cost management techniques enable OneWeb Satellites to offer low cost constellation solutions for the U.S. government and current customers. Constellations of inexpensive satellites permit wide scale disaggregated architectures enhancing survivability across many different mission areas.

OneWeb Satellites is pioneering new value propositions in space. They are leading the design and manufacturing of ultra-high performing satellites at high-volumes.

«We have created a game changer with our overall design, supply chain and production system», said Tony Gingiss, CEO, OneWeb Satellites. «Our team is transforming the space industry and we are in the midst of demonstrating we can deliver on our promises».

OneWeb Satellites brings to bear capabilities which dramatically lower the cost and shorten acquisition timelines for customers thanks to a modular design and agile serial production of satellites.

The OneWeb Satellites satellite manufacturing facility in Florida is the latest step in Airbus’ continued and long-standing commitment to growth in U.S. manufacturing, job creation and investment.

This facility, which will ultimately support thousands of jobs and follows the opening of our U.S. Manufacturing Facility for A320 aircraft in Mobile, Alabama, from which we delivered our first aircraft in 2016. An A220 assembly line on the same site in Alabama will break ground in January of 2019.

With our extensive network of U.S. suppliers, Airbus is the largest consumer of U.S. aerospace and defense goods in the world – buying more than any other company or even country. Airbus invested $16.5 billion with U.S. companies in 2017, supporting 275,000 American jobs.

First-Of-Its-Kind

U.S. Army pilots exercised supervised autonomy to direct an Optionally-Piloted Helicopter (OPV) through a series of missions to demonstrate technology developed by Sikorsky, a Lockheed Martin company and the Defense Advanced Research Projects Agency (DARPA). The series of flights marked the first time that non-Sikorsky pilots operated the Sikorsky Autonomy Research Aircraft (SARA), a modified S-76B commercial helicopter, as an OPV aircraft.

U.S. Army Pilots Fly Autonomous Sikorsky Helicopter in First-Of-Its-Kind Demonstration
U.S. Army Pilots Fly Autonomous Sikorsky Helicopter in First-Of-Its-Kind Demonstration

«Future vertical lift aircraft will require robust autonomous and optimally-piloted systems to complete missions and improve safety», said Chris Van Buiten, vice president, Sikorsky Innovations. «We could not be more thrilled to welcome Army aviators to the cockpit to experience first-hand the reliability of optimally-piloted technology developed by the innovative engineers at Sikorsky and DARPA. These aviators experienced the same technology that we are installing and testing on a Black Hawk that will take its first flight over the next several months».

SARA, which has more than 300 hours of autonomous flight, successfully demonstrated the advanced capabilities developed as part of the third phase of DARPA’s Aircrew Labor In-Cockpit Automation System (ALIAS) program. The aircraft was operated at different times by pilots on board and pilots on the ground. Sikorsky’s MATRIX Technology autonomous software and hardware, which is installed on SARA, executed various scenarios including:

  • Automated Take Off and Landing: The helicopter autonomously executed take-off, traveled to its destination, and autonomously landed;
  • Obstacle Avoidance: The helicopter’s LIDAR and cameras enabled it to detect and avoid unknown objects such as wires, towers and moving vehicles;
  • Automatic Landing Zone Selection: The helicopter’s LIDAR sensors determined a safe landing zone;
  • Contour Flight: The helicopter flew low to the ground and behind trees.

The recent Mission Software Flight Demonstration was a collaboration with the U.S. Army’s Aviation Development Directorate, Sikorsky and DARPA. The Army and DARPA are working with Sikorsky to improve and expand ALIAS capabilities developed as a tailorable autonomy kit for installation in both fixed wing airplanes and helicopters.

Over the next few months, Sikorsky will for the first time fly a Black Hawk equipped with ALIAS. The company is working closely with the Federal Aviation Administration to certify ALIAS/MATRIX technology so that it will be available on current and future commercial and military aircraft.

«We’re demonstrating a certifiable autonomy solution that is going to drastically change the way pilots fly», said Mark Ward, Sikorsky Chief Pilot, Stratford, Conn. Flight Test Center. «We’re confident that MATRIX Technology will allow pilots to focus on their missions. This technology will ultimately decrease instances of the number one cause of helicopter crashes: Controlled Flight Into Terrain (CFIT)».

Through the DARPA ALIAS program, Sikorsky is developing an OPV approach it describes as pilot directed autonomy that will give operators the confidence to fly aircraft safely, reliably and affordably in optimally piloted modes enabling flight with two, one or zero crew. The program will improve operator decision aiding for manned operations while also enabling both unmanned and reduced crew operations.

Wireless Transmission

Northrop Grumman Corporation and the Defense Advanced Research Projects Agency (DARPA) have set a new standard for wireless transmission by operating a data link at 100 gigabits per second (Gbps) over a distance of 20 kilometers/12.4 miles in a city environment.

100G hardware will be flown aboard the Proteus demonstration aircraft developed by Northrop Grumman subsidiary Scaled Composites
100G hardware will be flown aboard the Proteus demonstration aircraft developed by Northrop Grumman subsidiary Scaled Composites

The two-way data link, which featured active pointing and tracking, was demonstrated January 19, 2018 in Los Angeles.

The blazing data rate is fast enough to download a 50 Gigabyte blue ray video in four seconds. The demonstration marked the successful completion of Northrop Grumman’s Phase 2 contract for DARPA’s 100 Gbps (100G) RF Backbone program.

The 100G system is capable of rate adaptation on a frame by frame basis from 9 Gbps to 102 Gbps to maximize data rate throughout dynamic channel variations. Extensive link characterization demonstrated short-term error-free performance from 9 to 91 Gbps, and a maximum data rate of 102 Gbps with 1 erroneous bit received per ten thousand bits transmitted.

The successful data link results from the integration of several key technologies. The link operates at millimeter wave frequencies (in this case, 71-76 gigahertz and 81-86 gigahertz) with 5 gigahertz of bandwidth, or data carrying capacity, and uses a bandwidth efficient signal modulation technique to transmit 25 Gbps data streams on each 5 gigahertz channel. To double the rate within the fixed bandwidth, the data link transmits dual orthogonally polarized signals from each antenna. Additionally, the link transmits from two antennas simultaneously (spatial multiplexing) and uses Multiple-Input-Multiple-Output (MIMO) signal processing techniques to separate the signals at two receiving antennas, thus again doubling the data rate within the fixed bandwidth.

According to Louis Christen, director, research and technology, Northrop Grumman, «This dramatic improvement in data transmission performance could significantly increase the volume of airborne sensor data that can be gathered and reduce the time needed to exploit sensor data».

«Next generation sensors such as hyperspectral imagers typically collect data faster, and in larger quantity than most air-to-ground data links can comfortably transmit», said Christen. «Without such a high data rate link data would need to be reviewed and analyzed after the aircraft lands».

By contrast, a 100G data link could transmit high-rate data directly from the aircraft to commanders on the ground in near real time, allowing them to respond more quickly to dynamic operations.

The successful 100G ground demonstration sets the stage for the flight test phase of the 100G RF Backbone program. This next phase, which started in June, demonstrates the 100G air-to-ground link up to 100 Gbps over a 100 km/62.1 miles range and extended ranges with lower data rates. The 100G hardware will be flown aboard the Proteus demonstration aircraft developed by Northrop Grumman subsidiary Scaled Composites.

Northrop Grumman’s 100G industry team includes Raytheon, which developed the millimeter wave antennas and related RF electronics and Silvus Technologies, which provides the key spatial multiplexing and MIMO signal processing technologies.

Northrop Grumman and DARPA 100 gigabits per second link demonstrated over 20 kilometer city environment on January 19, 2018 in Los Angeles
Northrop Grumman and DARPA 100 gigabits per second link demonstrated over 20 kilometer city environment on January 19, 2018 in Los Angeles

Einstein Box

Lockheed Martin Skunk Works and the Defense Advanced Research Projects Agency (DARPA) recently performed a series of flight tests demonstrating how a System of Systems (SoS) approach enables seamless – and rapid – integration across air, space, land, sea and cyber in contested environments.

DARPA, Lockheed Martin demonstrates technologies to enable a connected warfighter network
DARPA, Lockheed Martin demonstrates technologies to enable a connected warfighter network

The demonstrations held at the Naval Air Warfare Center in China Lake, California, were part of a five-year DARPA program called System of Systems Integration Technology and Experimentation (SoSITE). The flight tests demonstrated interoperability between a ground station, flying test bed, a C-12 and flight test aircraft, and proved the ability to transmit data between those systems using STITCHES, a novel integration technology.

The test used the Skunk Works developed Enterprise Open System Architecture Mission Computer version 2 (EMC2), known as the «Einstein Box», as the open computing environment, providing security protections between systems. The Einstein Box enables rapid and secure experimentation before deploying the capability to operational systems. The team successfully demonstrated four key capabilities:

  • The ability to automatically compose and transmit messages between systems, including those using legacy datalinks;
  • The first use of Non-Enterprise Data Links to create new, rich information exchanges in-flight through Link-16, enabling greater speed, agility, modernization and effectiveness;
  • The ability to link ground-based cockpit simulators with live aircraft systems in real time to demonstrate how a SoS approach reduces the data-to-decision timeline;
  • Integration between the APG-81 radar, currently used on the F-35, and DARPA’s Automatic Target Recognition software to reduce operator workload and to create a comprehensive picture of the battlespace.

Demonstrating rapid and affordable integration of mission systems into existing and new architectures, SoSITE will help U.S. forces maintain their advantage in today’s dynamic world.

«The successful demonstrations focused on advancing integration technologies to increase capabilities of systems in operation today, enabling our warfighters to use those systems in unexpected ways», said Justin Taylor, Lockheed Martin Skunk Works Mission Systems Roadmaps director. «The SoS approach is essential for allowing U.S. forces to rapidly reconfigure systems and prevail over any threat».

The project was led by Lockheed Martin Skunk Works in partnership with the U.S. Air Force and support from industry partners Apogee Research, Northrop Grumman, Lockheed Martin Missiles and Fire Control, BAE Systems, Phoenix Flight Test, General Dynamics and Rockwell Collins.

Skunk Works’ expertise in open system architecture spans more than a decade. The success of SoSITE is a critical step to enabling multi-domain operations and maintaining superiority in the future battlespace. In its 75th year, Lockheed Martin Skunk Works is proud to advance SoS integration in partnership with DARPA as they celebrate 60 years of creating breakthrough technologies and capabilities for national security.

Future combat vehicles

DARPA’s Ground X-Vehicle Technologies (GXV-T) program aims to improve mobility, survivability, safety, and effectiveness of future combat vehicles without piling on armor. Several Phase 2 contract awardees recently demonstrated advances on a variety of potentially groundbreaking technologies to meet the program’s goals.

GXV-T advances radical technology for future combat vehicles
GXV-T advances radical technology for future combat vehicles

«We’re looking at how to enhance survivability by buttoning up the cockpit and augmenting the crew through driver-assistance aids», said Major Amber Walker, the program manager for GXV-T in DARPA’s Tactical Technology Office. «For mobility, we’ve taken a radically different approach by avoiding armor and developing options to move quickly and be agile over all terrain».

Demonstrations, such as one in May at Aberdeen Test Center, have given potential military service transition partners an opportunity to observe technical progress on the GXV-T program, including:

 

Radically Enhanced Mobility

GXV-T envisions future combat vehicles that could traverse up to 95 percent of off-road terrain, including slopes and various elevations. Capabilities include revolutionary wheel-to-track and suspension technologies that would enable access and faster travel both on- and off-road, compared to existing ground vehicles.

Reconfigurable Wheel-Track (RWT)

Wheels permit fast travel on hard surfaces while tracks perform better on soft surfaces. A team from Carnegie Mellon University National Robotics Engineering Center (CMU NREC) demonstrated shape-shifting wheel-track mechanisms that transition from a round wheel to a triangular track and back again while the vehicle is on the move, for instant improvements to tactical mobility and maneuverability on diverse terrains.

Electric In-hub Motor

Putting motors directly inside the wheels offers numerous potential benefits for combat vehicles, such as heightened acceleration and maneuverability with optimal torque, traction, power, and speed over rough or smooth terrain. In an earlier demonstration, QinetiQ demonstrated a unique approach, incorporating three gear stages and a complex thermal management design into a system small enough to fit a standard military 20-inch/51-cm rim.

Multi-mode Extreme Travel Suspension (METS)

Pratt & Miller’s METS system aims to enable high-speed travel over rough terrain while keeping the vehicle upright and minimizing occupant discomfort. The vehicle demonstrator incorporates standard military 20-inch/51-cm wheels, advanced short-travel suspension of four-to-six inches, and a novel high-travel suspension that extends up to six feet – 42 inches/106.7 cm upward and 30 inches/76.2 cm downward. The demonstration in May showed off its ability to tackle steep slopes and grades by actively and independently adjusting the hydraulic suspension on each wheel of the vehicle.

 

Crew Augmentation

Traditional combat vehicle designs have small windows that improve protection, but limit visibility. GXV-T sought solutions with multiple onboard sensors and technologies to provide high-resolution, 360-degree situational awareness while keeping the vehicle enclosed.

Enhanced 360-degree Awareness with Virtual Windows

Honeywell International demonstrated its windowless cockpit in an All-Terrain Vehicle (ATV) with an opaque canopy. The 3-D near-to-eye goggles, optical head-tracker and wrap-around Active Window Display screens provide real-time, high-resolution views outside the vehicle. In off-road courses, drivers have completed numerous tests using the system in roughly the same time as drivers in All Terrain Vehicles with full visibility.

Virtual Perspectives Augmenting Natural Experience (V-PANE)

A tactical vehicle offers limited visibility and data for decision-making, especially when moving rapidly through unfamiliar territory. Raytheon BBN Technologies’ V-PANE technology demonstrator fuses data from multiple vehicle-mounted video and LiDAR cameras to create a real-time 3-D model of the vehicle and its nearby surroundings. In a final Phase 2 demonstration, drivers and commanders in a windowless recreational vehicle successfully switched among multiple virtual perspectives to accurately maneuver the vehicle and detect targets of interest during both low- and high-speed travel.

Off-Road Crew Augmentation (ORCA)

A second CMU NREC technology demonstration, ORCA aims to predict in real time the safest and fastest route and when necessary, enable a vehicle to drive itself off-road – even around obstacles. In Phase 2 testing, drivers using the ORCA aids and visual overlays traveled faster between waypoints and eliminated nearly all pauses to determine their routes. The team found autonomy improved either vehicle speed or risk posture, and sometimes both.

 

Walker said GXV-T performers are pursuing a variety of transition paths for the new technologies.

«DARPA’s excited about the progress made to date on the GXV-T program and we look forward to working with the Services to transition these technologies into ground vehicle technologies of the future», said Walker.

DARPA’s Ground X-Vehicle Technologies (GXV-T) program demonstrations show progress on technologies for traveling quickly over varied terrain and improving situational awareness and ease of operation

Drone swarms

Under DARPA’s Offensive Swarm-Enabled Tactics (OFFSET) program, Raytheon BBN Technologies is developing technology to direct and control swarms of small, autonomous air and ground vehicles. The technology includes:

  • a visual interface that allows «drag and drop» creation and manipulation of drone tactics;
  • a game-based simulator to evaluate those tactics;
  • a physical swarm testbed to perform live tactics evaluations.
The Coyote UAS is a low-cost, expendable system with a broad spectrum of capabilities
The Coyote UAS is a low-cost, expendable system with a broad spectrum of capabilities

«Operators use speech or gestures to control the swarm. This is a tremendous advantage during operations», said Shane Clark, Doctor of Philosophy (Ph.D.) and principal investigator on the program. «The system provides sensor feeds and mission status indicators for complete situational awareness».

The flexible, scalable programming software and simulation environment means users can coordinate drone behaviors in teams composed of different vehicle types that use various sensors.

Defense Advanced Research Projects Agency (DARPA) is inviting additional organizations to participate in OFFSET as «sprinters» through an open Broad Agency Announcement. Sprinters can create their own novel swarm tactics and the Raytheon BBN team will work with them to evaluate the tactics in simulation, and possibly field them for live trials.

In 2016, Raytheon, as part of the Office of Naval Research Low-Cost UAV Swarming Technology (LOCUST) program, conducted demonstrations that successfully netted together 30 Coyote Unmanned Aerial Vehicles (UAVs) in a swarm. Raytheon BBN Technologies is a wholly owned subsidiary of Raytheon Company.

Phase 1 Swarm

The Defense Advanced Research Projects Agency (DARPA) selected Northrop Grumman Corporation as a Phase 1 Swarm Systems Integrator for the Agency’s OFFensive Swarm-Enabled Tactics (OFFSET) program. As part of the program, Northrop Grumman will launch its first open architecture test bed and is seeking participants to create and test their own swarm-based tactics on the platform. Northrop Grumman is teamed with Intelligent Automation, Inc. (IAI) and the Interactive Computing Experiences Research Cluster, directed by Doctor Joseph LaViola at the University of Central Florida.

Northrop Grumman Launches First Open Architecture Test Bed to Support DARPAs OFFensive Swarm-Enabled Tactics OFFSET Program
Northrop Grumman Launches First Open Architecture Test Bed to Support DARPAs OFFensive Swarm-Enabled Tactics OFFSET Program

As part of the DARPA OFFSET program, Northrop Grumman serves as a swarm systems integrator, tasked with designing, developing and deploying a swarm-system, open-based architecture for swarm technologies in both a game-based environment and physical test bed. The team has been tasked to produce tactics and technologies to test on the architecture and is responsible for engaging a wider development and user audience through rapid technology-development exercises known as «swarm sprints».

Approximately every six months, DARPA plans to solicit proposals from potential “sprinters” in one of five thrust areas: swarm tactics, swarm autonomy, human-swarm teaming, virtual environment and physical test bed. Participants from academia, small business and large corporations are invited to join in these swarm sprints. Sprinters will work with the integration team to create and test their own novel swarm tactics within the test bed environment. The end of each sprint will coincide with live physical test experiments with DARPA, the systems integrator team and other sprinters.

The goal of the OFFSET program is to provide small-unit infantry forces with small Unmanned Aircraft Systems (UASs) or small Unmanned Ground Systems (UGSs) in swarms of 250 or more robots that support diverse missions in complex urban environments. OFFSET seeks to advance the integration of modern swarm tactics and leverage emerging technologies in swarm autonomy and human-swarm teaming.

«Cognitive autonomy has the potential to transform all defense and security systems. OFFSET will explore a variety of applications in relevant mission scenarios», said Vern Boyle, vice president, advanced technologies, Northrop Grumman Mission Systems. «We are applying cutting-edge technologies in robotics, robot autonomy, machine learning and swarm control to ultimately enhance our contributions to the warfighter».

MOCCA program

The U.S. Defense Advanced Research Projects Agency (DARPA) has awarded BAE Systems a $4.6 million contract for its Mobile Offboard Clandestine Communications and Approach (MOCCA) program. The MOCCA program’s goal is to enable submarines to detect other submerged vessels at greater distances, while minimizing the risk of counter-detection.

The company is working with DARPA to enable submarines to detect other submerged vessels at greater distances, while minimizing the risk of counter-detection
The company is working with DARPA to enable submarines to detect other submerged vessels at greater distances, while minimizing the risk of counter-detection

«Advances in maritime technology are critical to the Department of Defense and an area where the U.S. military can continue to strengthen its advantage», said Geoff Edelson, director of Maritime Systems and Technology at BAE Systems. «With the resurgence of near-peer competitors and an increasing number of submarines, MOCCA technology will provide Navy submariners with a vital asymmetrical advantage against a rapidly proliferating undersea threat».

To meet the MOCCA program’s ambitious Phase 1 goals, BAE Systems’ researchers will design efficient sonar capabilities to maximize detection range and improve target identification and tracking.

The MOCCA program demonstrates BAE Systems’ strength in innovation and its capability to design technologies for future combat scenarios. The research and development team at BAE Systems regularly works closely with DARPA and other defense research institutes to create and deliver capabilities that improve the competitive advantages of the U.S. armed forces.

Experimental Spaceplane

DARPA has selected The Boeing Company to complete advanced design work for the Agency’s Experimental Spaceplane (XS-1) program, which aims to build and fly the first of an entirely new class of hypersonic aircraft that would bolster national security by providing short-notice, low-cost access to space. The program aims to achieve a capability well out of reach today – launches to low Earth orbit in days, as compared to the months or years of preparation currently needed to get a single satellite on orbit. Success will depend upon significant advances in both technical capabilities and ground operations, but would revolutionize the Nation’s ability to recover from a catastrophic loss of military or commercial satellites, upon which the Nation today is critically dependent.

Phantom Express is envisioned as a highly autonomous experimental spaceplane, shown preparing to launch its expendable second stage on the top of the vehicle in this artist’s concept. The Defense Advanced Research Projects Agency is collaborating with Boeing to fund development of the Experimental Spaceplane (XS-1) program (Boeing rendering)
Phantom Express is envisioned as a highly autonomous experimental spaceplane, shown preparing to launch its expendable second stage on the top of the vehicle in this artist’s concept. The Defense Advanced Research Projects Agency is collaborating with Boeing to fund development of the Experimental Spaceplane (XS-1) program (Boeing rendering)

«The XS-1 would be neither a traditional airplane nor a conventional launch vehicle but rather a combination of the two, with the goal of lowering launch costs by a factor of ten and replacing today’s frustratingly long wait time with launch on demand», said Jess Sponable, DARPA program manager. «We’re very pleased with Boeing’s progress on the XS-1 through Phase 1 of the program and look forward to continuing our close collaboration in this newly funded progression to Phases 2 and 3 – fabrication and flight».

The XS-1 program envisions a fully reusable unmanned vehicle, roughly the size of a business jet, which would take off vertically like a rocket and fly to hypersonic speeds. The vehicle would be launched with no external boosters, powered solely by self-contained cryogenic propellants. Upon reaching a high suborbital altitude, the booster would release an expendable upper stage able to deploy a 3,000-pound/1,360-kg satellite to polar orbit. The reusable first stage would then bank and return to Earth, landing horizontally like an aircraft, and be prepared for the next flight, potentially within hours.

In its pursuit of aircraft-like operability, reliability, and cost-efficiency, DARPA and Boeing are planning to conduct a flight test demonstration of XS-1 technology, flying 10 times in 10 days, with an additional final flight carrying the upper-stage payload delivery system. If successful, the program could help enable a commercial service in the future that could operate with recurring costs of as little as $5 million or less per launch, including the cost of an expendable upper stage, assuming a recurring flight rate of at least ten flights per year – a small fraction of the cost of launch systems the U.S. military currently uses for similarly sized payloads. (Note that goal is for actual cost, not commercial price, which would be determined in part by market forces.)

To achieve these goals, XS-1 designers plan to take advantage of technologies and support systems that have enhanced the reliability and fast turnaround of military aircraft. For example, easily accessible subsystem components configured as line replaceable units would be used wherever practical to enable quick maintenance and repairs.

The XS-1 Phase 2/3 design also intends to increase efficiencies by integrating numerous state-of-the-art technologies, including some previously developed by DARPA, NASA, and the U.S. Air Force. For example, the XS-1 technology demonstrator’s propulsion system is an Aerojet Rocketdyne AR-22 engine, a version of the legacy Space Shuttle main engine (SSME).

Once Phantom Express reaches the edge of space, it would deploy the second stage and return to Earth. It would then land on a runway to be prepared for its next flight by applying operation and maintenance principles similar to modern aircraft (Boeing rendering)
Once Phantom Express reaches the edge of space, it would deploy the second stage and return to Earth. It would then land on a runway to be prepared for its next flight by applying operation and maintenance principles similar to modern aircraft (Boeing rendering)

Other technologies in the XS-1 design include:

  • Advanced, lightweight composite cryogenic propellant tanks to hold liquid oxygen and liquid hydrogen propellants;
  • Hybrid composite-metallic wings and control surfaces able to withstand the physical stresses of suborbital hypersonic flight and temperatures of more than 2,000º F/1,093º C;
  • Automated flight-termination and other technologies for autonomous flight and operations, including some developed by DARPA’s Airborne Launch Assist Space Access (ALASA) program.

XS-1 Phase 2 includes design, construction, and testing of the technology demonstration vehicle through 2019. It calls for initially firing the vehicle’s engine on the ground 10 times in 10 days to demonstrate propulsion readiness for flight tests.

Phase 3 objectives include 12 to 15 flight tests, currently scheduled for 2020. After multiple shakedown flights to reduce risk, the XS-1 would aim to fly 10 times over 10 consecutive days, at first without payloads and at speeds as fast as Mach 5/3,836 mph/6,174 km/h. Subsequent flights are planned to fly as fast as Mach 10, and deliver a demonstration payload between 900 pounds/408 kg and 3,000 pounds/1,360 kg into low Earth orbit.

Another goal of the program is to encourage the broader commercial launch sector to adopt useful XS-1 approaches, processes, and technologies that facilitate launch on demand and rapid turnaround – important military and commercial needs for the 21st century. Toward that goal, DARPA intends to release selected data from its Phase 2/3 tests and will provide to all interested commercial entities the relevant specs for potential payloads.

«We’re delighted to see this truly futuristic capability coming closer to reality», said Brad Tousley, director of DARPA’s Tactical Technology Office (TTO), which oversees XS-1. «Demonstration of aircraft-like, on-demand, and routine access to space is important for meeting critical Defense Department needs and could help open the door to a range of next-generation commercial opportunities».

Experimental Spaceplane (XS-1) Phase 2/3 Concept Video