Tag Archives: C-HGB

Glide Body

The Department of Defense successfully tested a hypersonic glide body in a flight experiment conducted from the Pacific Missile Range Facility, Kauai, Hawaii, March 19 at approximately 10:30 p.m. local time (HST).

A Common Hypersonic Glide Body (C-HGB) launches from Pacific Missile Range Facility, Kauai, Hawaii, at approximately 10:30 p.m. local time, March 19, 2020, during a Department of Defense flight experiment. The U.S. Navy and U.S. Army jointly executed the launch of the C-HGB, which flew at hypersonic speed to a designated impact point. Concurrently, the Missile Defense Agency (MDA) monitored and gathered tracking data from the flight experiment that will inform its ongoing development of systems designed to defend against adversary hypersonic weapons. Information gathered from this and future experiments will further inform DOD’s hypersonic technology development. The department is working in collaboration with industry and academia to field hypersonic warfighting capabilities in the early- to mid-2020s (U.S. Navy photo/Released)

The U.S. Navy and U.S. Army jointly executed the launch of a Common Hypersonic Glide Body (C-HGB), which flew at hypersonic speed to a designated impact point.

Concurrently, the Missile Defense Agency (MDA) monitored and gathered tracking data from the flight experiment that will inform its ongoing development of systems designed to defend against adversary hypersonic weapons.

Information gathered from this and future experiments will further inform DOD’s hypersonic technology development, and this event is a major milestone towards the department’s goal of fielding hypersonic warfighting capabilities in the early- to mid-2020s.

«This test builds on the success we had with Flight Experiment 1 in October 2017, in which our C-HGB achieved sustained hypersonic glide at our target distances», said Vice Admiral Johnny R. Wolfe, Director, Navy’s Strategic Systems Programs, which is the lead designer for the C-HGB. «In this test we put additional stresses on the system and it was able to handle them all, due to the phenomenal expertise of our top notch team of individuals from across government, industry and academia. Today we validated our design and are now ready to move to the next phase towards fielding a hypersonic strike capability».

Hypersonic weapons, capable of flying at speeds greater than five times the speed of sound (Mach 5), are highly maneuverable and operate at varying altitudes. This provides the warfighter with an ability to strike targets hundreds and even thousands of miles away, in a matter of minutes, to defeat a wide range of high-value targets. Delivering hypersonic weapons is one of the department’s highest technical research and engineering priorities.

«This test was a critical step in rapidly delivering operational hypersonic capabilities to our warfighters in support of the National Defense Strategy», said U.S. Army LTG L. Neil Thurgood, Director of Hypersonics, Directed Energy, Space and Rapid Acquisition, whose office is leading the Army’s Long Range Hypersonic Weapon program and joint C-HGB production. «We successfully executed a mission consistent with how we can apply this capability in the future. The joint team did a tremendous job in executing this test, and we will continue to move aggressively to get prototypes to the field».

The C-HGB – when fully fielded – will comprise the weapon’s conventional warhead, guidance system, cabling, and thermal protection shield. The Navy and Army are working closely with industry to develop the C-HGB with Navy as the lead designer, and Army as the lead for production. Each service will use the C-HGB, while developing individual weapon systems and launchers tailored for launch from sea or land.

The similarities in hypersonic weapon design for sea and land variants provide economies of scale for future production as we build the U.S. hypersonics industrial base.

«Hypersonic systems deliver transformational warfighting capability», said Mr. Mike White, Assistant Director, Hypersonics, OUSD Research and Engineering (Modernization). «The glide body tested today is now ready for transition to Army and Navy weapon system development efforts and is one of several applications of hypersonic technology underway across the Department. These capabilities help ensure that our warfighters will maintain the battlefield dominance necessary to deter, and if necessary, defeat any future adversary».

Additionally, MDA is working closely with Army and Navy in sharing data that will inform their development of enhanced capabilities for a layered hypersonic defense to support warfighter need and outpace the adversary threat.

Department of Defense Tests Hypersonic Glide Body

Hypersonic Weapon

On August 29, the U.S. Army awarded Lockheed Martin a contract at an estimated value of $347 million as part of a multi-year hypersonic weapons development in support of the Army’s focus in long-range precision strike missiles.

Notional hypersonic strike glide vehicle

As the prime contractor for the Long-Range Hypersonic Weapon (LRHW) systems integration project, the Lockheed Martin-team will develop and integrate a land-based hypersonic strike prototype in partnership with the Army Hypersonic Project Office, part of the Army Rapid Capabilities and Critical Technologies Office. The team includes: Dynetics Technical Solutions (DTS), Integration Innovation Inc. (i3), Verity Integrated Systems, Martinez & Turek, and Penta Research.

«Lockheed Martin is driving rapid technical development for these national priority programs», said Eric Scherff, vice president for Hypersonic Strike Programs for Lockheed Martin Space. «There are natural synergies with our industry teammates. We believe our relationships offer the Army unmatched expertise and puts us in the best position to deliver this critical capability to the nation. Lockheed Martin is proud to partner with the Army in integrating the common hypersonic glide body and the land-based hypersonic strike weapon system prototype. We are committed to combining the best of what our companies have to offer to deliver on this national priority program».

The Army also awarded a contract to DTS at an estimated value of $352 million to produce the first commercially manufactured set of Common-Hypersonic Glide Body (C-HGB) systems. DTS selected Lockheed Martin to support integration and prototyping of this new C-HGB. The C-HGB will be available across military services to provide commonality to air, land and sea platform needs and requirements.

«Dynetics Technical Solutions is pleased to partner with Lockheed Martin on this national defense priority. The Common-Hypersonic Glide Body and Long-Range Hypersonic Weapon programs will modernize our national capabilities and will counter the threat from our foreign adversaries. We are looking forward to the progress our teams will make as we deliver this combat capability to the warfighter», said Steve Cook, DTS president.

The Army LRHW prototype will leverage the C-HGB and introduce a new class of ultrafast and maneuverable long-range missles with the ability to launch from ground mobile platforms. The LRHW system prototype will provide residual combat capability to soldiers by 2023.

Hypersonic strike weapons, capable of flying speeds in excess of Mach 5, are a key aspect of the long-range precision fire modernization effort for the Army and the national security strategy to compete with and outpace potential threats.

LRHW program work will be performed at Lockheed Martin’s Alabama, Colorado, California and Texas facilities.

Lockheed Martin is an established industry leader in the development of hypersonic strike technology and our experience will serve as the cornerstone for hypersonic defense systems. Lockheed Martin’s hypersonic strike awards exceed over $2.5 billion across the corporation. We are proud to partner with the Army, Air Force, and Navy on the technology development and demonstration for multiple capabilities that span all hypersonic flight disciplines.