Tag Archives: Boeing

It’s not PowerPoint

Boeing and Saab have proven that Boeing’s Small Diameter Bomb I (SDB I), originally developed for use by aircraft, can be adapted for launch from a ground artillery system. The companies recently tested the Ground Launched Small Diameter Bomb (GLSDB), integrating the SDB I and M26 rocket motor technologies for the Multiple Launch Rocket System. The testing showed that the bomb can withstand a rocket artillery launch without its performance being compromised.

The weapon can do both high and low angles of attack, fly around terrain to hit targets on the back of mountains, or circle back around to attack a target behind the launch vehicle
The weapon can do both high and low angles of attack, fly around terrain to hit targets on the back of mountains, or circle back around to attack a target behind the launch vehicle

«GLSDB combines two highly successful, combat-proven systems into an effective ground forces offensive capability», said Beth Kluba, vice president, Boeing Weapons and Missile Systems. «Boeing and Saab bring together deep knowledge of precision weapon systems and can quickly and cost-effectively deliver GLSDB domestically and around the world. Moreover, this is not developmental, it’s not PowerPoint. It’ hardware, it exists, and through our investment we’re able to bring this capability to the war fighter very quickly».

GLSDB allows the artillery system to reach targets from significantly longer distances, and engage hard-to-reach targets, while maintaining the Small Diameter Bomb’s flight maneuverability and accuracy. Under a teaming agreement signed last year, Boeing and Saab will offer GLSDB to current and future rocket artillery users. The rocket motor used during testing was provided by Nammo.

«Saab and Boeing have a history of successful cooperation that now extends into yet another technology area – precision weapons systems», said Görgen Johansson, Head of the Dynamics Business Area within Saab AB. «Together, we now offer a new and game-changing capability for the U.S. as well as the global market».

The weapon is designed to be launched out of a Multiple Launch Rocket System, used by a number of US allies already, avoiding the need to design a new launch system. That MLRS can hold six weapons per pod, with two pods per vehicle
The weapon is designed to be launched out of a Multiple Launch Rocket System, used by a number of US allies already, avoiding the need to design a new launch system. That MLRS can hold six weapons per pod, with two pods per vehicle

 

Ground Launched Small Diameter Bomb

The Ground Launched Small Diameter Bomb revolutionizes rocket artillery. GLSDB will provide the warfighter with a long-range, precision fires weapon capable of conducting reverse slope engagements and defeating targets ranging from hardened facilities to soft-skinned assets. With 360-degree target engagement ability, GLSDB provides commanders and planners with a highly flexible weapon that complements existing ballistic trajectory weapons.

GLSDB is an integration of combat proven systems, not a developmental program. It builds upon Boeing’s highly successful Small Diameter Bomb Increment I and existing Multiple Launch Rocket System (MLRS) rockets.

The SDB I is a 250-pound/113.3-kilogram class weapon with an Advanced Anti-Jam Global Positioning System aided Inertial Navigation System, combined with a multipurpose penetrating blast-and-fragmentation warhead and a programmable electronic fuze. The result of this integration is an innovative, low risk weapon that provides significantly more capability over current MLRS rockets.

More than 10,000 SDBs have been built at Boeing’s award-winning, modern production facility in St. Charles, Missouri. Since the first SDB delivery in April 2005, every weapon has been delivered on time and at cost.

The system essentially sticks a GBU-39B small diameter bomb, widely used by the US military and a number of international customers, on the front of a M26 rocket
The system essentially sticks a GBU-39B small diameter bomb, widely used by the US military and a number of international customers, on the front of a M26 rocket

 

General Characteristics

  • Increased range – extends range 60 km/37 miles beyond current Guided MLRS
  • Highly accurate
  • All angle, all aspect attack – even targets behind the launch point
  • Multiple rocket, multiple target, near simultaneous impact
  • All weather, 24/7 availability
  • Terrain avoidance, such as mountains
  • Cave breaching capability
  • Launches from hidden or protected positions to avoid detection
  • Programmable fuze provides impact and delay fuzing for deep penetration or proximity height-of-burst
  • SDB Focused Lethality Munition variant is also an option for low collateral damage
  • Laser SDB variant provides moving target capability

 

Key Performance Factors

  • Compatible with M270A1 MLRS and M142 HIMARS platforms
  • 150 km/93 miles range
  • 360-degree target engagement ability Six rockets per pod

 

Dimensions

  • Length: 154 in/3.9 m
  • Weight: 615 lbs/279 kg
The SDB I is a 250-pound/113.3-kilogram class weapon with an Advanced Anti-Jam Global Positioning System aided Inertial Navigation System, combined with a multipurpose penetrating blast-and-fragmentation warhead and a programmable electronic fuze
The SDB I is a 250-pound/113.3-kilogram class weapon with an Advanced Anti-Jam Global Positioning System aided Inertial Navigation System, combined with a multipurpose penetrating blast-and-fragmentation warhead and a programmable electronic fuze

Warhead

  • Penetrating blast fragmentation
  • Weight: 205 lbs/93 kg – 4340 steel cylindrical case with conical-shaped nose
  • Explosive Fill: 36 lbs/16 kg Insensitive Munition Certified
  • Fuse: Integrated Electronic Safe/Arm Fuse System Impact and Delayed Settings with Height of Burst Sensor
  • Size: 71 in/1.80 m (L) x 7.75 in/0.20 m (H) x 7.5 in/0.19 m (W)
  • Wingspan: 63.3 in/1.60 m (open), 7.5 in/0.19 m (stowed)

 

Guidance Set

  • Inertial Navigation System (INS)/Global Positioning System (GPS)
  • Anti-jam and Selective Availability Anti-Spoofing Module
  • Advanced Core Processor Two Module

 

Defence and security company Saab and Boeing have proven that Boeing’s Small Diameter Bomb I, originally developed for use by aircraft, can be adapted for launch from a ground artillery system

Australian Weapon

The Boeing Joint Direct Attack Munition Extended Range (JDAM ER) demonstrated significant range increase while maintaining its expected accuracy during flight-testing conducted by Boeing and the Royal Australian Air Force (RAAF).

A guided bomb unit-54rests on the wing of a F-16 Fighting Falcon at Bagram Airfield, Afghanistan. The GBU-54 is the Air Force's newest 500-pound precision weapon, equipped with a special targeting system that uses a combination of Global Position System and laser guidance to accurately engage and destroy moving targets. (U.S. Air Force photo/Staff Sgt. Christopher Boitz)
A guided bomb unit-54rests on the wing of a F-16 Fighting Falcon at Bagram Airfield, Afghanistan. The GBU-54 is the Air Force’s newest 500-pound precision weapon, equipped with a special targeting system that uses a combination of Global Position System and laser guidance to accurately engage and destroy moving targets. (U.S. Air Force photo/Staff Sgt. Christopher Boitz)

The testing centered on a new wing kit that, when used in conjunction with the weapon’s guidance kit, increases the bomb’s range from approximately 15 miles (24 kilometers) to more than 45 miles (72 kilometers), as shown during tests above the Woomera Test Range in Australia.

«The JDAM ER wing kit takes advantage of the conventional JDAM aircraft interface and Small Diameter Bomb glide technology», said Beth Kluba, vice president, Boeing Weapons and Missile Systems. «This keeps integration, development and sustainment costs low while bringing customers the range increase needed to neutralize current and future threats».

The 500-pound (227-kilogram) winged JDAM, jointly developed by Boeing and Australia’s Defence Science and Technology Organisation, was dropped from RAAF F/A-18 Classic Hornets from altitudes ranging from 40,000 feet (12,190 meters) down to 10,000 feet (3,048 meters). The weapon deployed its wing kit successfully during each test and flew to a pre-determined aim point, impacting within meters of its target.

«The extended range wing kit will allow the Australian Defence Force to employ JDAM more flexibly and safely in the target area», said Rear Adm. Tony Dalton, responsible for the acquisition of Guided Weapons in Australia. «Additionally, the program also stands to significantly benefit local Australian industry».

Boeing will produce and integrate JDAM ER wing kits for the RAAF under a contract awarded in 2011. Following additional flight and certification testing, production and initial deliveries of JDAM ER to the RAAF are planned for 2015.

Ferra Engineering supplies major sub-assemblies for the JDAM ER modular wing kit to Boeing from its facility in Brisbane, Australia.

JDAM is a low-cost guidance kit that converts existing unguided bombs into near-precision weapons. Including the JDAM ER wing kit, Boeing designed JDAM technology to accept a variety of upgrades such as a laser sensor, improved immunity to GPS jamming, and an all-weather radar sensor. Boeing has built more than 260,000 JDAM tail kits in its Saint Charles, Missouri, facility since production started in 1998. JDAM is used by 27 international militaries.

Staff Sgts. Michael Jackson and Anthony Bagen align a 500-pound GBU-54 Laser Joint Direct Attack Munition before connecting it to an F-16 Fighting Falcon
Staff Sgts. Michael Jackson and Anthony Bagen align a 500-pound GBU-54 Laser Joint Direct Attack Munition before connecting it to an F-16 Fighting Falcon

 

Laser Joint Direct Attack Munition

Description and Purpose

The Laser Joint Attack Direct Munition (Laser JDAM) expands the capabilities of the Joint Direct Attack Munition (JDAM). JDAM is a low-cost guidance kit produced by Boeing that converts existing unguided free-fall bombs into near-precision guided «smart» weapons. The JDAM kit consists of a tail section that contains a Global Positioning System/Inertial Navigation System (GPS/INS) and body strakes for additional stability and lift.

Because of its modular design, an affordable laser sensor kit can easily be installed on an existing JDAM in the field within minutes. In addition to the outstanding all-weather GPS/INS capability that conventional JDAMs offer, Laser JDAM now adds the flexibility to prosecute targets of opportunity, including mobile and even maritime targets.

Customers

U.S. Navy, U.S. Air Force and six international countries use the laser sensor kit on their JDAMs.

F-15E-1 firing 4 JDAM missiles, with Edwards AFB markings
F-15E-1 firing 4 JDAM missiles, with Edwards AFB markings

General Characteristics

Currently, tail kit variants are integrated with the Mk-84 2,000-pound and BLU-109 2,000-pound (900-kg) warheads (GBU-31). Mk-83 1,000-pound (450-kg) (GBU-32) and Mk-82 500-pound (225-kg) warheads (GBU-38) are in production to deliver the cost-effective JDAM. When employed, these weapons have proven highly accurate and can be delivered in any flyable weather. JDAM can be launched from more than 15 miles (24 kilometers) from the target with updates from GPS satellites to help guide the weapon to the target. Laser JDAM has been integrated with the GBU-38. Follow-on integration with the GBU-31 and GBU-32 is planned.

Background

Laser JDAM is operational on U.S. Air Force F-15E and F-16 and U.S. Navy F/A-18 and A/V-8B platforms. Boeing completed the Laser JDAM development and testing cycle in less than 17 months, and delivered the first production Laser JDAMs to the U.S. Air Force in May 2008. Laser JDAM was successfully employed in combat in Iraq in August 2008. The U.S. Navy’s first Laser JDAMs were delivered in October 2008. In March 2010, the Navy selected Laser JDAM to satisfy its Direct Attack Moving Target Capability (DAMTC) requirement.

In September 2012, Boeing received a $22.7 million modification to an existing U.S. Navy contract for more than 2,300 Laser JDAM sensors, starting full-rate production in order to meet the Navy’s DAMTC program requirements.

Very accurate and highly reliable, JDAM can be delivered in virtually any weather condition
Very accurate and highly reliable, JDAM can be delivered in virtually any weather condition

Big Three

It is said in The Aerospace Daily & Defense Report that Airbus and Boeing are jointly attempting to unseat Lockheed Martin from South Korea’s KF-X indigenous fighter program, offering stealth know-how from Europe that could not be supplied from U.S. sources.

F/A-18E/F Super Hornets in flight over mountains, snow. In route to India Aero Show.
F/A-18E/F Super Hornets in flight over mountains, snow. In route to India Aero Show.

With Korean Airlines as the local partner, the pair are likely to be proposing the Boeing F/A-18E/F Super Hornet as a base design for the KF-X. The defense ministry’s procurement office, the Defense Acquisition Program Agency (DAPA), issued a request for proposals for KF-X development on December 23, 2014.

The Boeing-Airbus KF-X proposal should be an economical alternative to a fighter design of the defense ministry’s Agency for Defense Development (ADD) that Korea Aerospace Industries has been expected to build with technical assistance from Lockheed Martin.

According to DefenseNews.com, Seoul aims to produce 120 KF-X jets between 2023 and 2030. The state-funded ADD has long studied a twin-engine concept, either of the C103 design that looks somewhat like the F-35 or the C203 design following the European approach and using forward canards in a stealth-shaped airframe. Both of the twin-engine platforms would be powered by two 18,000-pound (80 kN/8,165 kgf) engines, ADD officials said.

The Agency for Defense Development has long studied a twin-engine concept, either of the C103 design that looks somewhat like the F-35
The Agency for Defense Development has long studied a twin-engine concept, either of the C103 design that looks somewhat like the F-35

Korea Aerospace Industries, on the other hand, prefers a single-engine concept, dubbed C501, which is to be built based on the FA-50, a light attack aircraft version of the T-50 supersonic trainer jet co-produced by Lockheed Martin. The C501 aircraft, powered by a 29,000-pound (129 kN/13,154 kgf) engine, is designed to be fitted with a limited low-observable configuration and advanced avionics.

The U.S. limits the technology that its companies can transfer abroad. Thus, South Korea lacks technology in many fields, such as active, electronically scanning radar. Nevertheless, Airbus, as an airframe company, is probably involved in the Boeing bid as a supplier of stealth know-how that the U.S. company is not authorized to provide.

A budget of 8.6991 trillion won ($7.9171 billion) approved by the finance ministry this month must be intended to pay for development of the ADD KF-X. However, parliament has not yet authorized that spending or the launch of full-scale development, nor can it do so before it votes on the government’s 2016 budget next December.

Korea Aerospace Industries, on the other hand, prefers a single-engine concept, dubbed C501, which is to be built based on the FA-50, a light attack aircraft version of the T-50 supersonic trainer jet co-produced by Lockheed Martin
Korea Aerospace Industries, on the other hand, prefers a single-engine concept, dubbed C501, which is to be built based on the FA-50, a light attack aircraft version of the T-50 supersonic trainer jet co-produced by Lockheed Martin

In the meantime, KAL (Korean Air Lines) looks likely to submit the cheaper alternative, based on the Super Hornet, to DAPA in response to its request for proposals.

Industry officials previously told Aviation Week that Boeing was proposing the Advanced Super Hornet, an update of the F/A-18E/F with a weapons pod and conformal tanks. Other industry officials said Boeing was working with Korean Airlines. Now different officials say that Airbus is also on the team.

This is not the first time that Boeing has offered non-U.S. technology to South Korea. When proposing an advanced F-15 version called the Silent Eagle for the separate F-X Phase 3 fighter program, Boeing suggested technology transfer from Israel Aerospace Industries, an industry official says. Lockheed Martin won F-X Phase 3 with the F-35 and in return is supposed to back KF-X development.

Boeing suggested F-15 Silent Eagle for the separate F-X Phase 3 fighter program
Boeing suggested F-15 Silent Eagle for the separate F-X Phase 3 fighter program

Pegasus on the rise

The Boeing KC-46 Pegasus development program completed its first flight of Engineering, Manufacturing and Development (EMD) aircraft №1 on December 28. Boeing EMD №1 is a provisioned 767-2C freighter and the critical building block for the KC-46 missionized aerial refueler. The maiden flight took off at 9:29 AM PST from Paine Field in Everett, Washington, and landed at 1:01 PM PST at Boeing Field in Seattle.

The maiden flight took off at 9:29 AM PST from Paine Field in Everett, Washington, and landed at 1:01 PM PST at Boeing Field in Seattle
The maiden flight took off at 9:29 AM PST from Paine Field in Everett, Washington, and landed at 1:01 PM PST at Boeing Field in Seattle

«Getting in the air is a critical step in the development of this important capability for the warfighter», said Brig. Gen. Duke Z. Richardson, the program executive officer for tankers at the Air Force Life Cycle Management Center. «The team at Boeing has done a remarkable job creating an entirely new aircraft that will soon become the backbone of our ability to project power anywhere in the world».

The 767-2C freighter is the initial step toward producing a KC-46. The aircraft will undergo additional finishing work s at the Boeing facility such as installing the refueling boom and other military specific equipment. The first flight of a Boeing KC-46 Pegasus (EMD №2) is expected in the spring of 2015.

«Today’s flight is a key step in the next generation of tankers», said Col. Christopher Coombs, the KC-46 system program manager. «We know flight testing will lead to some discovery; today’s flight kick-starts that work. There is an aggressive schedule going forward into the Milestone C decision point for approval to start Low Rate Initial Production (LRIP), but we remain cautiously optimistic we can meet the mark».

The Air Force contracted with Boeing in February 2011 to acquire 179 Boeing KC-46 refueling tankers to begin recapitalizing the aging tanker fleet. This flight is an early but important step toward meeting the required assets available date – a milestone requiring 18 KC-46 aircraft and all necessary support equipment to be on the ramp, ready to support warfighter needs, by the August 2017 timeframe.

 

Mission

The Boeing KC-46A Pegasus is intended to replace the U.S. Air Force’s aging fleet of KC-135 Stratotankers, which has been the primary refueling aircraft for more than 50 years. With more refueling capacity and enhanced capabilities, improved efficiency and increased capabilities for cargo and aeromedical evacuation, the KC-46A will provide aerial refueling support to the Air Force, Navy, Marine Corps as well as allied nation coalition force aircraft.

The KC-46A is intended to replace the United States Air Force's aging fleet of KC-135 Stratotankers and provides vital air refueling capability for the United States Air Force
The KC-46A is intended to replace the United States Air Force’s aging fleet of KC-135 Stratotankers and provides vital air refueling capability for the United States Air Force

 

Features

The KC-46A will be able to refuel any fixed-wing receiver capable aircraft on any mission. This aircraft is equipped with a modernized KC-10 refueling boom integrated with proven fly-by-wire control system and delivering a fuel offload rate required for large aircraft. In addition, the hose and drogue system adds additional mission capability that is independently operable from the refueling boom system.

Two high-bypass turbofans, mounted under 34-degree swept wings, power the KC-46A to takeoff at gross weights up to 415,000 pounds/188,240 kg. Nearly all internal fuel can be pumped through the boom, drogue and wing aerial refueling pods. The centerline drogue and wing aerial refueling pods are used to refuel aircraft fitted with probes. All aircraft will be configured for the installation of a multipoint refueling system.

MPRS (Multi-Point Refueling System) configured aircraft will be capable of refueling two receiver aircraft simultaneously from special «pods» mounted under the wing. One crewmember known as the boom operator controls the boom, centerline drogue, and wing refueling «pods» during refueling operations. This new tanker utilizes an advanced KC-10 boom, a center mounted drogue and wing aerial refueling «pods» allowing it to refuel multiple types of receiver aircraft as well as foreign national aircraft on the same mission.

A cargo deck above the refueling system can accommodate a mix load of passengers, patients and cargo. The KC-46A can carry up to 18 463L cargo pallets. Seat tracks and the onboard cargo handling system make it possible to simultaneously carry palletized cargo, seats, and patient support pallets in a variety of combinations. The new tanker aircraft offers significantly increased cargo and aeromedical evacuation capabilities.

The aircrew compartment includes 15 permanent seats for aircrew, which includes permanent seating for the aerial refueling operator and an aerial refueling instructor. Panoramic displays giving the ARO (Aerial Refueling Operator) wing-tip to wing-tip situational awareness.

 

Background

The Boeing Company was awarded a contract for the EMD phase of the KC-46 program on February 24, 2011. The first flight of a Boeing KC-46 Pegasus (EMD №2) is expected in the spring of 2015. The current contract, with options, provides the Air Mobility Command an inventory of 179 KC-46 tankers.

Boeing KC-46 Pegasus
Boeing KC-46 Pegasus

 

General Characteristics

Primary Function:                        Aerial refueling and airlift

Prime Contractor:                        The Boeing Company

Power Plant:                                    2 Pratt & Whitney 4062

Thrust:                                                 62,000 lbs/275.790 kN/28,123 kgf – Thrust per High-Bypass engine (sea-level standard day)

Wingspan:                                         157 feet, 8 inches (48.1 meters)

Length:                                                165 feet, 6 inches (50.5 meters)

Height:                                                52 feet, 10 inches (15.9 meters)

Maximum Takeoff Weight:    415,000 pounds (188,240 kilograms)

Maximum Landing Weight:    310,000 pounds (140,614 kilograms)

Fuel Capacity:                                 212,299 pounds (96,297 kilograms)

Maximum Transfer Fuel Load: 207,672 pounds (94,198 kilograms)

Maximum Cargo Capacity:     65,000 pounds (29,484 kilograms)

Maximum Airspeed:                   360 KCAS (knots calibrated airspeed)/ 0.86 M/414 mph/667 km/h

Service Ceiling:                              43,100 ft/13,137 m

Maximum Distance:                    8400 miles/13,518 km

Pallet Positions:                             18 pallet positions

Air Crew:                                            15 permanent seats for aircrew, including aeromedical evacuation aircrew

Passengers:                                       58 total (normal operations); up to 114 total (contingency operations)

Aeromedical Evacuation:         58 patients (24 litters/34 ambulatory) with the AE Patient Support Pallet configuration; 6 integral litters carried as part of normal aircraft configuration equipment

The KC-46A will be able to refuel any fixed-wing receiver capable aircraft on any mission
The KC-46A will be able to refuel any fixed-wing receiver capable aircraft on any mission