Tag Archives: Boeing

Maritime Patrol Aircraft

The first submarine-hunting Poseidon MRA1 Maritime Patrol Aircraft (MPA) has been delivered to the Royal Air Force (RAF).

The first Boeing P-8A Poseidon for the Royal Air Force taxies after landing at NAS Jacksonville, in Florida, after flying in from Seattle where it was handed over to the customer. It will be known as Poseidon MRA1 in RAF service (RAF photo)

The Ministry of Defence (MOD) is investing £3 billion in nine state-of-the-art jets which will enhance the UK’s tracking of hostile maritime targets, protect the British continuous at-sea nuclear deterrent and play a central role in NATO missions across the North Atlantic.

Defence Secretary Ben Wallace said: «The arrival of the world-class Poseidon aircraft marks a step-change in the UK’s maritime patrol capability. Using the world’s most advanced sensors and operating for long periods, these aircraft will transform the quality of intelligence available to our armed forces and protect our vital nuclear deterrent».

Following an unveiling ceremony in Seattle, the aircraft was flown to Naval Air Station (NAS) Jacksonville in Florida where RAF personnel are being trained to operate the aircraft.

On arrival Michelle Sanders, Defence Equipment & Support (DE&S) Delivery Team Leader, signed the paperwork to formally transfer the aircraft, named Pride of Moray, to UK ownership.

Air Chief Marshal Mike Wigston, Chief of the Air Staff, said: «Poseidon is a game-changing maritime patrol aircraft, able to detect, track and if necessary destroy the most advanced submarines in the world today. With Poseidon MRA1, I am delighted and very proud that the Royal Air Force will once again have a maritime patrol force working alongside the Royal Navy, securing our seas to protect our nation».

First Sea Lord, Admiral Tony Radakin, said: «Poseidon marks a superb upgrade in the UK’s ability to conduct anti-submarine operations. This will give the UK the ability to conduct long range patrols and integrate seamlessly with our NATO allies to provide a world-leading capability. This will maintain operational freedom for our own submarines, and apply pressure to those of our potential foes. I look forward to working with the RAF and our international partners on this superb capability».

The Poseidon MRA1 is designed to carry out extended surveillance missions at both high and low altitudes. The aircraft is equipped with cutting-edge sensors which use high-resolution area mapping to find both surface and sub-surface threats.

The aircraft can carry up to 129 sonobuoys, small detection devices which are dropped from the aircraft into the sea to search for enemy submarines. The systems survey the battlespace under the surface of the sea and relay acoustic information via radio transmitter back to the aircraft.

The aircraft will also be armed with Harpoon anti-surface ship missiles and Mk-54 torpedoes capable of attacking both surface and sub-surface targets.

Michelle Sanders, DE&S Delivery Team Leader, said: «Seeing the first Poseidon MRA1 handed over to the Royal Air Force is an incredibly proud moment for all of the team at DE&S. Close, collaborative working with colleagues in Air Capability, the US Navy and industry has helped us deliver this very capable aircraft».

As leading members of NATO, the UK has signed agreements with both the US and Norwegian militaries to cooperate closely on operating their Poseidon fleets across the North Atlantic.

In August this year, Defence Minister Anne Marie-Trevelyan hosted Norwegian State Secretary Tone Skogen at RAF Lossiemouth to deepen the two country’s partnership on the Poseidon programme.

To maintain the skills required to deliver this vital capability, the RAF has embedded aircrew within MPA squadrons in Australia, Canada, New Zealand and the USA.

The first aircraft will arrive in Scotland in early 2020, with the fleet to be based at RAF Lossiemouth in Moray. All nine aircraft will be delivered by November 2021.

The aircraft will be flown initially by 120 Squadron which was originally stood up on 1 January 1918 and was the leading anti-submarine warfare squadron in WWII. 201 Squadron will also join the programme in due course.

The Poseidon MRA1 programme is bringing significant economic benefits to the communities near RAF Lossiemouth. A total of £460 million is being invested in the station to prepare for the arrival of the new aircraft, including the construction of a £132 million strategic facility for the fleet to be completed next year.

The programme will also bring around 700 additional personnel to Moray, taking the total number of employees there to approximately 2,500.

 

Technical Specifications

Wing Span 123.6 feet/37.64 m
Height 42.1 feet/12.83 m
Length 129.5 feet/39.47 m
Propulsion 2 × CFM56-7B engines
27,000 lbs./12,237 kgf/120 kN thrust
Speed 490 knots/564 mph/908 km/h
Range 1,200 NM/1,381 miles/2,222 km with 4 hours on station
Ceiling 41,000 feet/12,496 m
Crew 9
Maximum Take-Off Gross Weight 189,200 lbs./85,820 kg

 

Space Launch System

NASA and Boeing have initiated a contract for the production of 10 Space Launch System core stages and up to eight Exploration Upper Stages to support the third through the twelfth Artemis missions.

Boeing is building the massive 212-foot/64.6-meter Space Launch System (SLS) core stage for NASA’s Artemis I mission. SLS is the only rocket that can carry the Orion spacecraft and necessary cargo beyond Earth orbit in a single mission, making it a critical capability for NASA’s deep-space Artemis program (NASA photo)

Up to 10 additional core stages may be ordered under the contract, leveraging active labor, materials, and facility resources and supply chain efficiencies for production savings.

SLS is NASA’s deep space exploration rocket that will launch astronauts in the 27-metric ton Orion crew vehicle, plus cargo, from Earth to the moon and eventually to Mars. Boeing is the prime contractor for the rocket’s core stage, avionics, and variations of the upper stage. The rocket is designed to be evolvable for missions beyond the moon.

«We greatly appreciate the confidence NASA has placed in Boeing to deliver this deep space rocket and their endorsement of our team’s approach to meeting this unprecedented technological and manufacturing challenge in support of NASA’s Artemis program», said Jim Chilton, senior vice president of Boeing’s Space and Launch division.

«Together with a nationwide network of engaged and innovative suppliers we will deliver the first core stage to NASA this year for Artemis I», Chilton added. «This team is already implementing lessons learned and innovative practices from the first build to produce a second core stage more efficiently than the first. We are committed to continuous improvement as they execute on this new contract».

Boeing designed, developed, tested and built the first SLS core stage under the original NASA Stages contract, including refurbishing the company’s manufacturing area at the Michoud Assembly Facility (MAF) in New Orleans, building test versions of the SLS structures, and designing more efficient, modern tooling, all while abiding by stringent safety and quality standards for human spaceflight. The second core stage is simultaneously in production at MAF.

Boeing last year delivered the first upper stage, the Interim Cryogenic Propulsion System, built by United Launch Alliance in Decatur, Alabama, for the Block 1 version of the evolvable vehicle. The more powerful Exploration Upper Stage design for the Block 1B version is in development, while the MAF facility is being prepared for that build.

SLS is the only rocket that can carry the Orion, and necessary cargo, beyond Earth orbit in a single mission, making it a critical capability for NASA’s deep-space Artemis program.

«Boeing has implemented advanced manufacturing technologies for design, test, and production of the core stages, which will make both core stage production and upper stage development faster, more efficient, and safer», said John Shannon, Boeing vice president and Space Launch System program manager. «The evolvable nature of the rocket will allow us to onboard new advances in materials and production technologies as we move forward to the moon and on to Mars».

JMR TD program

The U.S. Army is looking to improve its aviation technology and recently called upon the Arnold Engineering Development Complex (AEDC) – National Full-Scale Aerodynamics Complex (NFAC) at Moffett Field in Mountain View, California, to advance this effort.

Sikorsky-Boeing SB>1 Defiant Helicopter Achieves First Flight
The Sikorsky-Boeing SB>1 DEFIANT is shown during its first flight in March. The military helicopter, being developed for the Army’s Joint Multi-Role Technology Demonstrator program, was tested earlier this year at the AEDC National Full-Scale Aerodynamics Complex at Moffett Field in Mountain View, California (Courtesy photo)

Engineers from Sikorsky Aircraft Corporation and The Boeing Company, in partnership with the U.S. Army Combat Capabilities Development Command Aviation & Missile Center Army Aviation Development Directorate, recently conducted a series of tests at NFAC to support the development of the SB>1 DEFIANT, a military helicopter being developed for the Army’s Joint Multi-Role Technology Demonstrator (JMR TD) program.

The goal of this wind tunnel test was to validate the aerodynamic performance and flight mechanics of Sikorsky’s X2 Technology aircraft. These configurations, which are being utilized on the SB>1 DEFIANT, include a lift-offset coaxial rotor system, composite fuselage and rear-mounted pusher propulsor that provides increased speed.

The SB>1 DEFIANT, which made its first flight in March, is a technology demonstrator for a medium-lift utility helicopter. Future uses of this type of air vehicle could include attack and assault, troop transport or medical evacuation (MEDEVAC).

The testing was conducted throughout the first half of 2019 and concluded in mid-June. To accomplish the tests, a 1/5 scale model of the SB>1 DEFIANT airframe with powered coaxial main rotors was placed in the NFAC 40- by 80-foot/12.2- by 24.4-meter wind tunnel.

Measurements included forces and moments on the various components, as well as fuselage, empennage and blade surface pressures.

David Wang, NFAC test engineer, said the recent tests expanded on data collected from a JMR wind tunnel entry conducted at NFAC in 2016 by gathering data at faster speed ranges.

«From the NFAC perspective, the wind tunnel test was successful», Wang said. «The test customer was able to collect performance and handling qualities data for their subscale model up to their maximum design flight speed».

Data collected during the recent tests is undergoing review and analysis. It is unknown at this time if there will be future testing of the SB>1 DEFIANT model at NFAC.

The full-scale SB>1 DEFIANT flight demonstrator is currently undergoing ground and flight tests at Sikorsky’s flight test facility. According to the Sikorsky-Boeing JMR Team, data from SB>1 DEFIANT will help the Army develop requirements for new utility helicopters expected to enter service in the early 2030s.

A previous Department of Defense (DOD) study concluded that upgrades to the aging DOD rotary wing aviation fleet would not provide the capabilities required for future operations. Significant improvement in several attributes of fleet aircraft, such as speed, payload, range, survivability and vertical lift are required to meet future needs. It was determined this improvement could be achieved through application of new technologies and designs.

To accomplish its goal, the Army has been executing a Science & Technology (S&T) effort to mitigate risk associated with maturity of critical technologies, feasibility of desired capabilities and cost of a technical solution. An aspect of this effort is the air vehicle development associated with the JMR TD program.

JMR TD is the alignment of Army Aviation’s S&T with the Future Vertical Lift initiative, which seeks to develop a new family of system to modernize and replace the government’s current fleet of rotorcraft. According to the Army, the intent of the JMR TD is to mitigate risk for the Future Vertical Lift program through means that include the testing of advanced technologies and efficient vehicle configurations.

NFAC, managed and operated by AEDC, is the largest wind tunnel complex in the world. It consists of both the 40- by 80-foot/12.2- by 24.4-meter and 80- by 120- foot/24.4- by 36.6-meter wind tunnels. These tunnels, which share a common drive system, are primarily used for aerodynamic and acoustic tests of rotorcraft and fixed wing, powered-lift Vertical and/or Short Take-Off and Landing (V/STOL) aircraft and developing advanced technologies for these vehicles.

Both subscale and full-scale models are tested at NFAC. The speed range of the 40- by 80-foot/12.2- by 24.4-meter wind tunnel test section is continuously variable from 0 to 300 knots/345 mph/555 km/h, while the speed range in the 80- by 120-foot/24.4- by 36.6-meter wind tunnel section is continuously variable from 0 to 100 knots/115 mph/185 km/h.

First Test Flight

Boeing and the U.S. Navy successfully completed the first test flight of the MQ-25 Stingray unmanned aerial refueler on 19 September 2019.

Boeing and the U.S. Navy successfully completed the first test flight of the MQ-25 Stingray unmanned aerial refueler September 19. The MQ-25 Stingray test asset, known as T1, completed the autonomous two-hour flight under the direction of Boeing test pilots operating from a ground control station at MidAmerica St. Louis Airport in Mascoutah, Illinois, where the test program is based (Boeing photo)

The MQ-25 Stingray test asset, known as T1, completed the autonomous two-hour flight under the direction of Boeing test pilots operating from a ground control station at MidAmerica St. Louis Airport in Mascoutah, Illinois, where the test program is based. The aircraft completed an autonomous taxi and takeoff and then flew a pre-determined route to validate the aircraft’s basic flight functions and operations with the ground control station.

«Seeing MQ-25 Stingray in the sky is a testament to our Boeing and U.S. Navy team working the technology, systems and processes that are helping get MQ-25 Stingray to the carrier», said Boeing MQ-25 Stingray Program Director Dave Bujold. «This aircraft and its flight test program ensure we’re delivering the MQ-25 Stingray to the carrier fleet with the safety, reliability and capability the U.S. Navy needs to conduct its vital mission».

The Boeing-owned test asset is a predecessor to the Engineering Development Model (EDM) aircraft and is being used for early learning and discovery to meet the goals of the U.S. Navy’s accelerated acquisition program. Boeing will produce four EDM MQ-25 Stingray air vehicles for the U.S. Navy under an $805 million contract awarded in August 2018.

The MQ-25 Stingray will provide the U.S. Navy with a much-needed carrier-based unmanned aerial refueling capability. It will allow for better use of the combat strike fighters currently performing the tanking role and will extend the range of the carrier air wing.

«Today’s flight is an exciting and significant milestone for our program and the Navy», said the U.S. Navy’s Unmanned Carrier Aviation (PMA-268) Program Manager Captain Chad Reed. «The flight of this test asset two years before our first MQ-25 Stingray arrives represents the first big step in a series of early learning opportunities that are helping us progress toward delivery of a game-changing capability for the carrier air wing and strike group commanders».

T1 received its experimental airworthiness certificate from the Federal Aviation Administration (FAA) in September, verifying that the air vehicle meets the agency’s requirements for safe flight. Testing will continue with T1 to further early learning and discovery that advances major systems and software development.

Boeing MQ-25 Unmanned Aerial Refueler Completes First Test Flight

Ramjet shell

For years, NATO artillery and missile systems have been at a range disadvantage compared to its future potential adversaries. New ramjet technology, however, has the potential to completely reverse the situation by closing the range gap.

Ramjet-powered artillery could reach as far out as 150 km/93 miles. With guidance, the projectile would be a mix of a missile and an artillery shell. The 155-mm HE-ExR (extreme range), as it is called, is scheduled for its first live-fire tests in 2020 (Photo/illustration: Nammo)

In the summer of 2016, Russia rolled out the latest version of the 9A52-4 Tornado rocket launcher. The «S»-variant now has the ability to fire shells at an enemy 120 kilometers/74.5 miles away, a remarkable improvement on the previous version. But even the previous version could reach targets 70 km/43.5 miles away.

At the same time, the country appears to be investing in other, more untraditional long-range missile systems. The recent accident near Severodvinsk – in what appears to have been a test of a new nuclear-powered cruise missile – is just one indication of this investment, as is the use of conventional cruise missiles in Syria.

NATO has favored a different approach: For decades, the alliance relied on air superiority. That situation is however changing rapidly. As air defense systems like the S-400 proliferate, Russian planners apparently hope to deny their opponents free use of the skies.

U.S. Army Chief of Staff, General Mark Milley, is one of many experts who now believe the situation has changed fundamentally – and put NATO forces at a disadvantage. When he appeared before the U.S. Senate Armed Services Committee in April 2016, Milley was asked whether the army was «outranged».

«We don’t like it, we don’t want it, but yes, technically [we are] outranged, outgunned on the ground», Milley said.

With superior range, artillery operators could simply disregard counter-battery fire, Thomas Danbolt, Nammo’s Vice President Large Caliber Ammunition, explains (Photo: Nammo)

 

The importance of range

Range – and especially the ability to hit at a distance where an opponent cannot retaliate – has been a prime concern on the battlefield since the days of the Romans. Sometimes, such an advantage has proven to be a deciding factor.

Roman triumvir Crassus is one who certainly would attest to that. When facing Parthian horse archers at the battle of Carrhae in 53 BC, his legions were wiped out when they could not counter their opponents’ range and mobility advantage.

Later, the English would inflict enormous damage on French forces in the Hundred Years’ war. At Crecy, Poitiers and Agincourt, English longbowmen significantly outranged their opponents. The great English victories here would effectively end the primacy of heavily armored knights, as well as adding decades to a conflict where the French held a great advantage in both resources and manpower.

Range also played a part in the U.S. War of Independence. Morgan’s Riflemen (famous for their long-range rifles) played their part in securing victory at important battles like Saratoga.

A computer-rendered illustration of what a future Ramjet missile could look like. Nammo hopes to have missiles ready in a few years – the motor testing is already well underway (Illustration: Nammo)

 

«There’s a race going on»

Longbows are however a thing of the past. But Nammo artillery and munitions expert Thomas Danbolt believes range is still of great importance to contemporary weapons, like artillery.

«Range is important. If you can shoot much farther than your opponent, counter-battery fire can simply be disregarded. Your own artillery will be safe, while at the same time you can strike enemy positions with impunity. I think we should not underestimate the consequences of having a range advantage», says Thomas Danbolt, Nammo’s Vice President Large Caliber Ammunition.

Danbolt thinks major nation-states have seen the importance of this, and are now scrambling to improve their defenses. His colleague, Frank Møller, has been part of designing rocket motors for missiles for decades. He sees a big change in that field as well.

«I think there’s a race going on internationally. Propulsion technology has improved. Cruise missiles are getting longer ranges, better sensors, improved accuracy, and the cost has gone down. But a reaction is coming: armed forces everywhere are scrambling to improve their missile defenses», says Frank Møller, Nammo’s VP of Strategy and Business Development (Aerospace Propulsion).

Nammo has already completed more than 150 motor tests. Testing so far has been very successful, showing ramjet motors can work in real life (Photo: Nammo)

 

150 km artillery range

As demand for longer range options increases, ramjet technology has been advancing steadily. It has now come to a point where it can has several new potential applications – both in missiles and artillery.

Nammo already has a long history of producing high-performing artillery ammunition. Now, it once again wants to be at the forefront, developing a new generation of shells covering all range requirements.

Nammo’s most ambitious project to date has been a Ramjet-powered, guided artillery shell with a range of up to 150 km/93 miles, now the subject of a development partnership with Boeing’s Phantom Works. The new design is expected to see its first live-fire tests in 2020.

«In practice, this is a mix of a missile and an artillery shell. We are talking about a range that is five to eight times greater than conventional artillery. With the guidance system, we believe we can consistently hit an area as small as the center of a football field. And even though the payload is somewhat smaller, the destructive force will likely be greater because of the accuracy», Danbolt says.

The Ramjet shell can be fired from every modern 155-mm L52 artillery gun – a trait it shares with all of Nammo’s other long-range shells.

 

The Ramjet revolution

Ramjets are also very well suited for missiles. In a conventional rocket motor, oxygen accounts for 80 percent of the fuel weight. But a Ramjet instead uses oxygen from the outside air. As a consequence, oxygen can be replaced with fuel, increasing the capacity four or five times. Erland Ørbekk, Nammo’s VP of Technology for Aerospace Propulsion, explains that the advantages are great if a missile can reach high enough speeds.

«In a traditional air breathing motor, you need a compressor, a combustion chamber and a turbine. But in a Ramjet, the oxygen pressure and temperature will be high enough just from reaching a high enough speed (roughly Mach 2.5). A Ramjet missile can have a burn time of up to 300 seconds (5 minutes), and can be throttled up and down, or even turned on and off», Ørbekk says.

What operational advantages can we expect?

«A Ramjet-powered missile will be superior to a conventional missile in all possible ways. Ground-based Ramjet missiles will be able to take out high-altitude targets. And if fired from aircraft, they will be effective against high-speed and highly maneuverable fighter jets at much greater distances than today. We believe they could even be effective against some of the new high-speed missiles being introduced outside NATO. If you have a good enough sensor system on the ground, it will be possible for Ramjet-powered missiles to intercept them».

 

Ready in a few years

Ramjet-powered artillery and missiles could be ready sooner than you think. Nammo has already completed more than 150 successful tests of its ramjet engines. While artillery ramjets could reach up to 150 km/93 miles, some air-to-air missiles could hit targets from an even more impressive 500 km/310 miles distance.

Frank Møller is sure we will see products on the market within a few years.

«Long-range Ramjet artillery will likely be on the market within two to four years. For missiles, it will take a bit longer, but we are confident that the technology is ready. What we are working on now is more focused on the practical applications and technical solutions».

Are you sure of that? Are you sure the technology will work?

«Absolutely. And it will be a momentous change».

Red Hawk

The Air Force’s all-new advanced trainer aircraft, the T-X, has officially been named the T-7A Red Hawk.

The Air Force’s all-new advanced trainer aircraft, the T-X, has officially been named the T-7A Red Hawk

Acting Secretary of the Air Force Matthew Donovan made the announcement during his speech at the 2019 Air Force Association’s Air, Space and Cyber Conference in National Harbor, September 16.

Donovan was joined on stage by one of the original Tuskegee Airmen, Colonel Charles McGee, who flew more than 400 combat missions in World War II, Korea and Vietnam. Also seated in the audience were members of the East Coast Chapter of the Tuskegee Airmen.

After a short video highlighting the aircraft’s lineage, Donovan said, «ladies and gentlemen, I present to you the newest Red Tail»! A drape was then lifted to reveal a quarter-scale model of a T-7A Red Hawk painted in a distinct, red-tailed color scheme.

«The name Red Hawk honors the legacy of Tuskegee Airmen and pays homage to their signature red-tailed aircraft from World War II», Donovan said. «The name is also a tribute to the Curtiss P-40 Warhawk, an American fighter aircraft that first flew in 1938 and was flown by the 99th Fighter Squadron, the U.S. Army Air Forces’ first African American fighter squadron».

The Tuskegee Airmen subsequently painted their Republic P-47 Thunderbolts and North American P-51 Mustangs with a red-tailed paint scheme.

The T-7A Red Hawk, manufactured by Boeing, introduces capabilities that prepare pilots for fifth generation fighters, including high-G environment, information and sensor management, high angle of attack flight characteristics, night operations and transferable air-to-air and air-to-ground skills.

«The T-7A will be the staple of a new generation of aircraft», Donovan said. «The Red Hawk offers advanced capabilities for training tomorrow’s pilots on data links, simulated radar, smart weapons, defensive management systems, as well as synthetic training capabilities».

Along with updated technology and performance capabilities, the T-7A will be accompanied by enhanced simulators and the ability to update system software faster and more seamlessly. The plane was also designed with maintainers in mind by utilizing easy-to-reach and open access panels.

The T-7A features twin tails, slats and big leading-edge root extensions that provide deft handling at low speeds, allowing it to fly in a way that better approximates real world demands and is specifically designed to prepare pilots for fifth-generation aircraft. The aircraft’s single engine generates nearly three times more thrust than the dual engines of the T-38C Talon which it is replacing.

«The distance between the T-38 and an F-35 is night and day», said Air Force Chief of Staff General David L. Goldfein. «But with the T-7A the distance is much, much smaller, and that’s important because it means the pilots trained on it will be that much better, that much faster at a time when we must be able to train to the speed of the threat».

A $9.2 billion contract awarded to Boeing in September 2018 calls for 351 T-7A aircraft, 46 simulators and associated ground equipment to be delivered and installed, replacing Air Education and Training Command’s 57-year-old fleet of T-38C Talons.

The first T-7A aircraft and simulators are scheduled to arrive at Joint Base San Antonio-Randolph, Texas, in 2023. All undergraduate pilot training bases will eventually transition from the T-38C to the T-7A. Those bases include Columbus Air Force Base (AFB), Mississippi; Laughlin AFB and Sheppard AFB, Texas; and Vance AFB, Oklahoma.

Wedgetail aircraft

Defence Secretary Gavin Williamson has signed a $1.98Bn (£1.51Bn) deal to purchase five E-7 Wedgetail aircraft. The E-7 Wedgetail fleet will replace the current E-3D Sentry aircraft and ensure the continued delivery of the UK’s Airborne Early Warning and Control (AEW&C) capability.

Wedgetail to be RAF's new early warning radar aircraft
Wedgetail to be RAF’s new early warning radar aircraft

Defence Secretary Gavin Williamson said: «The E-7 Wedgetail provides a technological edge in an increasingly complex battlespace, allowing our pilots to track and target adversaries more effectively than ever. This deal also strengthens our vital military partnership with Australia. We will operate the same state-of-the-art F-35 Lightning II jets and world-class Type-26 warships, and this announcement will help us work even more closely together to tackle the global threats we face».

The new fleet will be able to track multiple airborne and maritime targets at the same time, using the information it gathers to provide situational awareness and direct other assets such as fighter jets and warships. The E-7 Wedgetail is a proven aircraft that is currently in service with the Royal Australian Air Force and has been used on operations in the battle against Daesh in Iraq and Syria.

As part of the plan for a managed transition to E-7 Wedgetail, it has been decided to reduce the existing E-3D Sentry fleet from six to four aircraft by removing the two long-term unserviceable assets from the active fleet. Doing this now will enable the Sentry Force to focus resources on providing better availability from the remaining four aircraft, to better assure the future Sentry Fleet output, including our commitments to the NATO Airborne Early Warning and Control Force and the provision of NATO Assurance Measures missions.

Speaking following the announcement, Chief of the Air Staff, Air Chief Marshal Sir Stephen Hillier, said: «Today’s announcement about the procurement of five E-7 ‘Wedgetail’ Airborne Early Warning and Control aircraft is excellent news for both the Royal Air Force (RAF) and wider Defence. This world-class capability, already proven with our Royal Australian Air Force partners, will significantly enhance our ability to deliver decisive airborne command and control and builds on the reputation of our E-3D Sentry Force. Along with Defence’s investment in other cutting-edge aircraft, E-7 Wedgetail will form a core element of the Next Generation Air Force, able to overcome both current and future complex threats».

The E-7 Wedgetail is based on a standard Boeing 737 airliner modified to carry a sophisticated Northrop Grumman active electronically-scanned radar. This can cover four million square kilometres over a 10-hour period.

Boeing E-7 Airborne Early Warning and Control (AEW&C)
Boeing E-7 Airborne Early Warning and Control (AEW&C)

First Flight

The Sikorsky-Boeing SB>1 Defiant helicopter achieved first flight on March 21, 2019, at Sikorsky’s West Palm Beach, Florida site. This revolutionary aircraft, developed by Sikorsky, a Lockheed Martin Company, and Boeing, will help inform the next generation of military helicopters as part of the U.S. Army’s Future Vertical Lift program.

Sikorsky-Boeing SB>1 Defiant Helicopter Achieves First Flight
Sikorsky-Boeing SB>1 Defiant Helicopter Achieves First Flight

«Defiant is designed to fly at nearly twice the speed and has twice the range of conventional helicopters while retaining the very best, if not better low-speed and hover performance of conventional helicopters», said Dan Spoor, vice president, Sikorsky Future Vertical Lift. «This design provides for exceptional performance in the objective area, where potential enemy activity places a premium on maneuverability, survivability and flexibility. We are thrilled with the results of today’s flight and look forward to an exciting flight test program».

With its two coaxial main rotors and rear-mounted pusher propulsor, SB>1 Defiant is unlike production rotorcraft available today. It represents a leap forward in technology to achieve the U.S. government’s desire for vast increases in speed and range, while improving maneuverability and survivability in a cost-effective way. SB>1 Defiant aircraft’s use of X2 Technology will allow the Army to penetrate from strategic standoff and exploit gaps created in complex Anti-Access Area Denial systems against near-peer adversaries.

«The design and development of Defiant has revealed the capability advancement that is truly possible for Future Vertical Lift», said David Koopersmith, vice president and general manager, Boeing Vertical Lift. «Clearly, the performance, speed, and agility of Defiant will be a game changer on the battlefield and we look forward to demonstrating for the U.S. Army the tremendous capabilities of this aircraft».

The helicopter is participating in the Army’s Joint Multi-Role-Medium Technology Demonstrator program. Data from SB>1 Defiant will help the Army develop requirements for new utility helicopters expected to enter service in the early 2030s. This flight marks a key milestone for the Sikorsky-Boeing team, and is the culmination of significant design, simulation and test activity to further demonstrate the capability of the X2 Technology.

X2 Technology is scalable to a variety of military missions such as attack and assault, long-range transportation, infiltration and resupply. SB>1 Defiant is the third X2 aircraft in less than 10 years.

The Sikorsky-Boeing SB>1 Defiant helicopter completed its first flight on March 21, 2019

Teaming System

Boeing has introduced its newest unmanned platform, the Boeing Airpower Teaming System.

A model of the unmanned Boeing Airpower Teaming System was unveiled at the Australian International Airshow February 27. The Boeing Airpower Teaming System will provide multi-mission support for air control missions (Boeing photo)
A model of the unmanned Boeing Airpower Teaming System was unveiled at the Australian International Airshow February 27. The Boeing Airpower Teaming System will provide multi-mission support for air control missions (Boeing photo)

Designed for global defense customers by Boeing Australia, it is the company’s largest investment in a new unmanned aircraft program outside the United States.

The aircraft will complement and extend airborne missions through smart teaming with existing military aircraft.

A model of the Boeing Airpower Teaming System was unveiled at the Australian International Airshow by the Australian Minister for Defence, the Honourable Christopher Pyne Members of Parliament (MP). As a research and development activity, the Australian Government and Boeing will produce a concept demonstrator called the Loyal Wingman – Advanced Development Program that will provide key learnings toward the production of the Boeing Airpower Teaming System.

«The Boeing Airpower Teaming System will provide a disruptive advantage for allied forces’ manned/unmanned missions», said Kristin Robertson, vice president and general manager of Boeing Autonomous Systems. «With its ability to reconfigure quickly and perform different types of missions in tandem with other aircraft, our newest addition to Boeing’s portfolio will truly be a force multiplier as it protects and projects air power».

The Boeing Airpower Teaming System will:

  • provide fighter-like performance, measuring 38 feet long (11.7 metres) and able to fly more than 2,000 nautical miles/2,302 miles/3704 km;
  • integrate sensor packages onboard to support intelligence, surveillance and reconnaissance missions and electronic warfare;
  • use artificial intelligence to fly independently or in support of manned aircraft while maintaining safe distance between other aircraft.

«This aircraft is a historic endeavor for Boeing. Not only is it developed outside the United States, it is also designed so that our global customers can integrate local content to meet their country-specific requirements», said Marc Allen, president, Boeing International. «The Boeing Airpower Teaming System provides a transformational capability in terms of defense, and our customers – led by Australia – effectively become partners on the program with the ability to grow their own sovereign capabilities to support it, including a high-tech workforce».

First flight is planned for 2020.

Next group of P-8A

The U.S. Navy has awarded Boeing a $2.4 billion production contract for the next 19 P-8A Poseidon aircraft. The contract includes 10 aircraft to add to the current inventory of P-8As in the U.S. Navy fleet, all five jets currently under contract for Norway and the four aircraft remaining for the existing United Kingdom contract, bringing the total United Kingdom acquisition to nine aircraft.

The U.S. Navy has awarded Boeing a $2.4 billion production contract for the next 19 P-8A Poseidon aircraft (Boeing photo)
The U.S. Navy has awarded Boeing a $2.4 billion production contract for the next 19 P-8A Poseidon aircraft (Boeing photo)

The United Kingdom and Norway are acquiring the Boeing aircraft through the Foreign Military Sales process and will receive a variant designed and produced for the U.S. Navy called the P-8A Poseidon. The United Kingdom will receive their first aircraft in 2019 and Norway will begin receiving aircraft in 2021.

The P-8 is a long-range multi-mission maritime patrol aircraft capable of broad-area, maritime and littoral operations. A military derivative of the Boeing Commercial Next-Generation 737 airplane, the P-8 combines superior performance and reliability with an advanced mission system that ensures maximum interoperability in the battle space.

The P-8 is militarized with maritime weapons, a modern open mission system architecture, and commercial-like support for affordability. The aircraft has been modified to include a bomb bay and pylons for weapons – two weapons stations on each wing – and can carry 129 sonobuoys. The aircraft is also fitted with an in-flight refueling system. With more than 180,000 flight hours to date, P-8 variants, the P-8A Poseidon and the P-8I, patrol the globe performing anti-submarine and anti-surface warfare; intelligence, surveillance and reconnaissance; humanitarian; and search and rescue missions.

 

Technical Specifications

Wing Span 123.6 feet/37.64 m
Height 42.1 feet/12.83 m
Length 129.5 feet/39.47 m
Propulsion 2 × CFM56-7B engines
27,000 lbs./12,237 kgf/120 kN thrust
Speed 490 knots/564 mph/908 km/h
Range 1,200 NM/1,381 miles/2,222 km with 4 hours on station
Ceiling 41,000 feet/12,496 m
Crew 9
Maximum Take-Off Gross Weight 189,200 lbs./85,820 kg