Tag Archives: BAE Systems

American Paladin

According to Daniel Wasserbly, Jane’s Defence Weekly correspondent, the U.S. Army has begun receiving its first production-model M109A7 Paladin Integrated Management (called PIM) Self-Propelled Howitzers (SPHs) and held a ceremony on 9 April to mark the new system’s arrival.

Extended range: 30 km/18.6 miles with High Explosive – Rocket Assisted Projectile (HE RAP) and M203 propellant
Extended range: 30 km/18.6 miles with High Explosive – Rocket Assisted Projectile (HE RAP) and M203 propellant

The army and prime contractor BAE Systems are in the process of finalising a Low-Rate Initial Production (LRIP) plan that is expected to include 66 vehicle sets (a set is one SPH and one M992A3 CAT, Carrier, Ammunition, Tracked vehicle) plus an extra SPH for testing, Mark Signorelli, BAE Systems’ vice-president and general manager of combat vehicles, told IHS Jane’s on 8 April. The army could buy as many as 580 sets, but the actual procurement quantity could be slightly lower and depends on funding.

For fiscal year 2016 (FY 2016) the service requested Paladin PIM programme funding to support final developmental testing with $152.3 million and to buy 30 PIM LRIP systems with $273.9 million. Mark Signorelli said a full-rate production decision is expected in February 2017 after qualification and reliability testing is completed, and following an operational test slated for the second half of 2016.

PIM is to replace the legacy M109A6 Paladin howitzers and M992A2 ammunition carriers with a more advanced system, while incorporating drive train and suspension components common to the M2 Bradley Infantry Fighting Vehicle (IFV). The programme was approved to begin initial production in October 2014 following an extended testing period after the first seven prototypes were delivered in 2011.

Mark Signorelli described those prototypes as «generation one» and noted that several upgrades and capabilities were added to change the configuration over time, including new armour designs for heightened protection and design changes around the gun drives and rammer. «Very few of them were individually significant», Signorelli said, although the changes took time and added testing qualifications.

The PIM retains the legacy 155-mm Paladin’s cannon, but it is fitted on a new chassis based on the Bradley. The two vehicles share a 600 hp Cummins V903 diesel engine, a suspension, and other components.

Aside from the chassis, the PIM models also have a new electric ramming system and a 600 V on-board power system that builds on technologies developed during the Non-Line-of-Sight Cannon (NLOS-C) programme and is intended to ensure the PIM will have enough space, weight, and power-cooling growth potential for future upgrades.

Max rate of fire: 4 rounds/minute for three minutes
Max rate of fire: 4 rounds/minute for three minutes

 

Paladin Integrated Management

M109A7 Self-Propelled Howitzer

The new M109A7 Self-Propelled Howitzer and its associated M992A3 Carrier, Ammunition, Tracked (CAT) vehicle enhance their combat-proven successors’ – the M109A6 Paladin and M992A2 Field Artillery Ammunition Support Vehicle’s (FAASV) – reliability, maintainability, performance, responsiveness, and lethality. Additionally, they provide increased commonality with the Bradley Fighting Vehicle (BFV) of the Armored Brigade Combat Team (ABCT) with significant built-in growth potential in terms of available space, weight and electrical power.

 

Commonality

The M109A7 chassis features a power pack, drive train, track, and suspension components common with the BFV, improving supportability and reducing the ABCT’s logistical footprint.

 

Responsiveness

The M109A7’s «shoot and scoot» capability protects the crew from counterbattery fire by means of an onboard position navigation system and fire control system capable of executing missions digitally and via secure voice command. With an upgraded, 675 hp/503 kW electronically controlled version of the BFV standard V903 engine, coupled with an improved HMPT-800 transmission, the M109A7 has faster acceleration for rapid displacement, and the ability to keep pace with the maneuver forces it supports.

From the move, the M109A7 can receive a fire mission, compute firing data, select and occupy a firing position, transition from traveling configuration to firing configuration, and point its cannon, and fire within 60 seconds – all with first round fire-for-effect accuracy. The M109A7 operates day or night, in all weather conditions, providing timely and accurate fires with a range in excess of 30 km/18.6 miles.

 

Survivability

The M109A7 offers increased survivability, because the crew remains inside the vehicle throughout the mission. Along with the «shoot and scoot» capability, the M109A7 features an Automatic Fire Extinguishing System (AFES), Common Remote Operated Weapons System (CROWS), and enhanced applique armor.

 

Operational Availability

Hull, turret, suspension, and automotive system upgrades increase system reliability. The M109A7 incorporates an onboard computer with comprehensive diagnostics programs that rapidly pinpoint equipment issues early for ease of maintenance while improving system availability.

Sustained rate of fire: 1 round/minute (dependent on thermal warning devices)
Sustained rate of fire: 1 round/minute (dependent on thermal warning devices)

 

Specifications

Gross vehicle weight 80,000 lbs/36,288 kg
Crew 4
Engine 675 hp/503 kW
Fuel tank 143 gallons/541 liters
Speed 38 mph/61 km/h
Estimated cruising range 186 miles/300 km
Slope 60%
Side slope 40%
Trench crossing 72 inches/1.8 m
Maximum fording depth 42 inches/1.0 m
Overall length 382 inches/9.7 m
Width 154 inches/3.9 m
Height 129 inches/3.3 m
Howitzer/gun mount M284 cannon/M182A1 mount
Main generator 70 kW; 600 vdc/28 vdc
Reserve power >50%

 

Cummins VTA903

A key design consideration is the ability to operate with rapid, easy movement across almost any terrain, displaying much of the mobility of a main battle tank.

While the engine needs to be powerful and compact to meet this requirement, it also needs to offer exceptional reliability to ensure maximum availability of these high-value battlefield assets. The heavy-duty V903 engine is purpose developed by Cummins for these highly demanding applications – and during combat situations the outstanding abilities of this unique engine have been fully proven.

The V903 has also proved an ideal power solution for one of the most important elements on the battlefield – the tracked Infantry Fighting Vehicle (IFV), typified by the M2 Bradley together with derivatives such as the M3 Bradley Cavalry Fighting Vehicle (CVF).

Equipped with 600 hp (447 kW) of Cummins heavy-duty power, the Bradley can maintain progress with main battle tanks right at the forefront of the action. Very high power-toweight ratio enables these vehicles to incorporate heavier armour and more firepower, while the inherent reliability of the engine is a major advantage during high intensity operations.

 

Engine Specifications

Model V903
Cylinders V8
Capacity 14.8 L
Valves 32
Maximum Power 800 hp @ 2800 rpm/597 kW
Max Torque 2362 Nm @ 2200 rpm
Weight (dry) 1,271kg
Engine Cummins VTA903
Engine Cummins VTA903

Tactical Mobility

BAE Systems has handed over the first CV9030 Infantry Fighting Vehicle (IFV) in serial production to the Norwegian Defence Logistics Organisation (FLO) on time and on budget. A rollout ceremony was held in Moelv, Norway, at the facilities of BAE Systems Hägglunds’ business partner CHSnor AS. More than 200 guests attended, representing FLO and the Norwegian Armed Forces, as well as BAE Systems Hägglunds and its Norwegian industrial partners.

The CV90 platform is engineered to provide optimum mobility and agility
The CV90 platform is engineered to provide optimum mobility and agility

BAE Systems Hägglunds’ contract, signed in 2012, includes the upgrade of the Norwegian Army’s existing fleet of 103 CV9030s and 41 new-build vehicles, giving the Army a total of 144 state-of-the-art CV90s in varying configurations. They will all include enhanced capabilities for future battlefield and conflict scenarios, such as in the areas of protection, survivability, situational awareness, intelligence, and interoperability.

«I’m really pleased that we are able to reach this key milestone», said Colonel Ragnar Wennevik, Norwegian Army CV90 project leader. «BAE Systems Hägglunds is an impressive supplier, and with the new CV9030, we are buying the world’s most advanced armored combat vehicle family. Already proven in combat, we are now taking it to the next generation with state-of-the-art survivability, lethality, digitalization, and mobility».

This program is a key element of the modernization of the Norwegian Army, providing them with the next-generation CV90, one of the world’s most advanced IFV and a low-risk proven solution. The Norwegian Army will incorporate five different configurations of the CV90 from 2015 onwards: 74 infantry fighting, 21 reconnaissance, 15 command, 16 engineering, and 16 multi-role and tow driver-training vehicles. The multi-role vehicles can fulfill different functions, including mortar carrier and logistics roles.

In 2014, BAE Systems rolled out three variants of the Norwegian vehicles in Sweden, which were subsequently handed over to Norwegian industry for completion, as part of in-country partnerships.

Both the Norwegian customer and BAE Systems Hägglunds have been extremely focused on meeting every milestone in the contract from the outset. This focus has ensured that the two parties have developed a strong relationship based on mutual respect and openness, which has ensured project success.

BAE Systems Hägglunds is working closely with Norwegian industry in a comprehensive industrial cooperation contract, which is part of the main vehicle contract. Companies such as Kongsberg Defence & Aerospace, Nammo Raufoss AS, CHSnor AS, Moelv, and Ritek AS Levanger are key parties to the contract. The turret upgrade work, for example, takes place at CHSnor AS, and yesterday’s handover was the first in a series of vehicle deliveries from CHSnor AS and Ritek through 2018.

«The Norwegian industrial cooperation is extensive and important to us, especially when industrial cooperation is one of the major factors for international success», said Tommy Gustafsson-Rask, managing director for BAE Systems Hägglunds. «We want to thank all industry partners for their commitment and dedication, and also our professional and supportive customer».

With a full range of armament options, the CV90 can be developed or configured to match any situation, from patrol to combat
With a full range of armament options, the CV90 can be developed or configured to match any situation, from patrol to combat

 

CV9030 Infantry Fighting Vehicle

Protection

The CV9030 has the most advanced protection kits available in the world, providing flexible solutions for any mission requirements. The platform utilises a modular approach to armour. Its base structure is designed to carry any add-on armour without adding parasitic weight to the overall vehicle.

It provides crew protection from the latest heavy weaponry including:

  • Improvised Explosive Devices (IEDs);
  • Anti-tank mines.

It also protects occupants from Chemical, Biological, Radiological, and Nuclear (CBRN) threats with a specialised filter system.

To meet modern day battlefield threats, the vehicle can be fitted with further protection including:

  • Different types of armour to protect against diverse threats, such as shaped charge warheads and RPG-7s;
  • A Defensive Aid Suite (DAS) that classifies targets, gives threat warnings via the Vehicle Information System (VIS) and supports the driver with speed corrections to reduce the risk of being hit;
  • Adaptive camouflage, which offers an active multi-spectral defence system, rendering the vehicle appearance to match its environment.

The technology also takes on the textures of other objects, minimising the vehicle’s radar and IR signature and further increasing crew survivability.

The CV90120 is also equipped with a modern 120-mm anti-tank gun and adaptive armour
The CV90120 is also equipped with a modern 120-mm anti-tank gun and adaptive armour

 

Mobility

Powered by a high torque V8 diesel engine, the CV9030 can reach speeds of 70 km/h/43.5 mph. The vehicle’s road range is also constantly improving, with new variants capable of travelling up to 900 km/559 miles.

While upgrades to the CV90’s armour have seen the platform’s curb weight rise from 23 to 35 tonnes, power-to-weight ratio has remained approximately the same thanks to stronger diesel engines.

The CV90’s track suspension has also been improved. The new track system allows the vehicle to travel effortlessly through both snow and sand, enabling:

  • Quieter movement and improved stealth;
  • Greater speed over rough terrain;
  • Higher ground clearance for protection against mines and improvised explosive devices.

The platform’s semi-active damping reduces the pitch accelerations of the vehicle by approximately 40 percent. For the crew this means:

  • A smoother ride for reduced fatigue;
  • Reduced vertical motion (increasing the gunner’s hit probability and ability to find targets);
  • Higher all-terrain speeds;
  • Increased life expectancy for components in the drive line.
The CV90’s C4I capability provides the crew with decision superiority, enabling your forces to stay one step ahead of the enemy
The CV90’s C4I capability provides the crew with decision superiority, enabling your forces to stay one step ahead of the enemy

 

Armament

As a first class combat vehicle, the CV9030 is compatible with a range of armaments to suit any mission requirements.

The vehicle is normally fitted with a two-man turret, which is equipped with the well-proven 30-mm Bushmaster II cannon. This can be supplied in different configurations, including unmanned and uses programmable ammunition to meet precise lethality performance needs.

The CV90 Mk-III incorporates a Munition Programmer for Air Burst Munition (ABM) and has a target-driven gunner Man Machine Interface (MMI). The Fire Control System also has the ability to choose:

  • The type of ammunition;
  • Offset;
  • Fuse setting;
  • Burst pattern.

This significantly decreases operator workload allowing the gunner to focus on the type of target that he wants to engage.

The vehicle’s hunter-killer function features an independent sight system for the commander, enabling him to search, engage or hand over targets to the gunner. The CV90’s state-of-the-art systems allow the crew to rapidly discover and identify targets in minimal time. This enables them to be the first to shoot, whether the target is on the ground or in the air.

Its advanced Human Machine Interfaces and ergonomics make the vehicle’s operation as easy and efficient as possible
Its advanced Human Machine Interfaces and ergonomics make the vehicle’s operation as easy and efficient as possible

 

Specifications

Top speed:                                        70 km/h/43.5 mph

Range:                                                 900 km/559 miles

Payload:                                             16 tonnes

Protection level:                            Standardization Agreement (STANAG)

Ballistic:                                              > 5

Mine:                                                    > 4a/4b

Trench crossing:                            2.6 m/8.5 feet

Step climbing:                                 1.1 m/3.6 feet

Fording:                                              1.5 m/4.9 feet

Remote Weapon Station (RWS):      7.62 – 40 mm Automatic Grenade Launcher (AGL)

Turret:                                                  25-120 mm/0.98-4.72 inch

No. of operators:                            3 + 7

Gradient:                                            60 %

Power to weight ratio:                17.1-24.2 kW/ton

Electrical power:                            570 A

Engine:                                                 Scania V8

Operating temperature:           C2-A1

Driveline

Steel or rubber tracks:     ≤ 28 tonnes

Steel:                                           > 28 tonnes

Semi active dampening

 

BAE Systems designed the CV9030 with a clear vision: to create a vehicle that provides high tactical and strategic mobility, air defense, anti-tank capability, high survivability and protection in any terrain or tactical environment

 

The Vietnam Era ended

BAE Systems was awarded a contract worth up to $1.2 billion from the U.S. Army for the Engineering, Manufacturing, and Development (EMD) and Low-Rate Initial Production (LRIP) of the Armored Multi-Purpose Vehicle (AMPV). The program aims to provide the U.S. Army with a highly survivable and mobile fleet of vehicles that addresses a critical need to replace the Vietnam-era M113s.

Armored Multi-Purpose Vehicle (AMPV)
Armored Multi-Purpose Vehicle (AMPV)

«This award represents a significant milestone for the United States Army and BAE Systems», said Mark Signorelli, vice president and general manager of Combat Vehicles at BAE Systems. «The Armored Multi-Purpose Vehicle will provide a substantial upgrade over the Army’s current personnel carrier fleet, increasing the service’s survivability, force protection, and mobility while providing for future growth potential. It also confirms BAE Systems’ role as a leading provider of combat vehicles».

The initial award is for a 52-month base term, valued at approximately $383 million, during which BAE Systems will produce 29 vehicles across each of the variants. The award also provides an option to begin the LRIP phase immediately following the current EMD phase, at which time the company would produce an additional 289 vehicles for a total contract value of $1.2 billion.

The AMPV capitalizes on proven Bradley and M109A7 designs, meeting the Army’s force protection and all-terrain mobility requirements while enabling the AMPV to maneuver with the rest of the Armored Brigade Combat Team (ABCT). The maximized commonality within the AMPV family of vehicles and the ABCT will reduce risk and provide significant cost savings to the Army.

BAE Systems’ AMPV capitalizes on the proven Bradley and Paladin designs
BAE Systems’ AMPV capitalizes on the proven Bradley and Paladin designs

«BAE Systems built and demonstrated prototypes for each of the five variants in order to provide the best solution for the Army», said Greg Mole, AMPV capture director at BAE Systems. «Given the maturity of our design and the commonality both within the AMPV and ABCT fleets, we feel this offers significant opportunity to accelerate the program’s schedule».

The program is essential to the future of the ABCT and will fulfill the Army’s strategy of protection, mobility, reliability, and interoperability. The AMPV, which will be integrated with the ABCT, is required to operate alongside the M1 Abrams tank and the M2 Bradley. AMPV has been identified by the Army as its top priority for the safety and survivability of our soldiers, and therefore, must meet tough protection requirements. Compromising or reducing the survivability requirements would put soldiers’ lives at risk. This is where BAE Systems’ Bradley-based AMPV solution comes in.

BAE Systems’ Bradley-based AMPV is a mature, low-risk and cost-effective solution that rapidly delivers continued combat overmatch capability for the Army. The Bradley platform delivers combat proven mobility, survivability and force protection to fight with the ABCT formation. In June 2013, during testing by the Office of the Secretary of Defense’s Directorate of Test and Evaluation (DOT&E) their report identified that «the Armored Multi-Purpose Vehicle survivability requirement is achievable with a Bradley-like platform».

By the way, General Dynamics has argued that the Army’s request for proposals for the new armored vehicle favors BAE’s tracked Bradley Fighting Vehicle while putting General Dynamics wheeled Stryker vehicles at a disadvantage; nonetheless, the U.S. Army rejected all of General Dynamics’ protests on AMPV program.

Armored Medical Evacuation Vehicle (AMEV)
Armored Medical Evacuation Vehicle (AMEV)

Upgrading the Spearfish

The UK’s Ministry of Defence has awarded BAE Systems a £270 million ($424 million) contract to upgrade the Spearfish Heavyweight Torpedo for the Royal Navy’s submarines. Following the completion of the design phase, existing torpedoes will be upgraded by BAE Systems at its Broad Oak facility in Portsmouth to the new design with initial deliveries in 2020 continuing until 2024, said BAE Systems’ representatives. Key subcontractors for the Spearfish Upgrade programme include MBDA TDW (responsible for an Insensitive Munitions warhead), Atlas Elektronik UK (fibre-optic guidance link and signal processing in the digital homing head), GE Intelligent Platforms (processing boards), and Altran (safety electronic unit).

Spearfish Heavyweight Torpedo Mod 1
Spearfish Heavyweight Torpedo Mod 1

The upgrade, known as Spearfish Mod 1 extends the life of the torpedo, improves safety through the introduction of an Insensitive Munitions warhead and by utilizing a single fuel propulsion system that will offer cost and safety benefits over the current dual-fuel (using Otto fuel II and HAP, Hydroxyl Ammonium Perchlorate) system and provides more capable data links between the weapon system and the launching vessel (replacement of the current copper/cadmium wire guidance link with a fibre-optic system). This results in capability improvements for the Royal Navy as well as significant reduction in through-life operating costs.

The anti-submarine and anti-surface Spearfish Mod 0 torpedoes are currently deployed the BAE Systems designed and built Trafalgar and Vanguard submarines, as well as the Astute Class submarines. Spearfish can be used in defensive and offensive situations and its advanced design delivers maximum warhead effectiveness at high speed with outstanding maneuverability, low radiated noise, advanced homing and sophisticated tactical intelligence.

The torpedo can operate autonomously from the time of launch and is capable of variable speeds across the entire performance envelope. Its high power density bespoke engine allows it to attain exceptional sprint speed in the terminal stage of an attack. The result is an underwater weapon that provides decisive advantage against the full range of submarine and surface threats in all operational environments. Extensive in-water testing will demonstrate consistently high performance and outstanding reliability.

Spearfish Heavyweight Torpedo Tail
Spearfish Heavyweight Torpedo Tail

John Hudson, Managing Director for BAE Systems’ UK Maritime Sector, said: «Upgrading the Spearfish Heavyweight Torpedo Mod 0 will provide sophisticated advances for the Royal Navy with increased operational advantage in the underwater domain». He continued: «As well as sustaining and creating jobs in the Solent region, the contract allows the opportunity to work on one of the most exciting development programmes in the country, underpinning BAE Systems’ position at the forefront of underwater systems development over the last 40 years».

The contract also ensures the sustainment of the UK’s torpedo manufacturing capability at BAE Systems’ Broad Oak facility in Portsmouth through to the mid-2020s, and underpins plans to maintain Spearfish in Royal Navy service beyond 2050.

MAIN CHARACTERISTICS

Length:                                              5 m

Weight:                                             <2.000 tonnes

Speed:                                                70 mph/61 Knots/113 km/h

Materials:                                        Aluminium and Titanium

The Apocalypse Machine

As is known, the Vanguard-class is a British class of nuclear-powered ballistic missile submarines (SSBN) in service with the Royal Navy. Commissioned into service between 1993 and 1999, HMS Vanguard, Victorious, Vigilant, and Vengeance were originally designed for a 25-year lifespan. However, this has been extended by up to 13 years, postponing the requirement for a new class of SSBN and bringing the procurement timeframe into line with the Ohio-class replacement program (U.S. Navy).

The first computer generated image of the replacement to the Vanguard class
The first computer generated image of the replacement to the Vanguard class

According to Jon Rosamond, USNI News, the concept work on Britain’s so-called Successor SSBN began in 2007, with the Ministry of Defense appointing an industry team consisting of shipbuilder and design lead BAE Systems plus Babcock (providing the torpedo handling/launch system, signal ejector system, and through-life support expertise) and Rolls-Royce (responsible for the nuclear steam-raising plant). The MOD approved the so-called «Initial Gate» business case for the new submarines in 2011, releasing funds for a five-year assessment phase intended to bring the design to 70 percent maturity.

In 2013, BAE Systems has been awarded contracts totaling £79 million by the UK Ministry of Defence to begin procuring its first long lead items for the Vanguard Successor programme, which will carry the nation’s nuclear deterrent capability from 2028. The MOD released a concept image depicting an aggressively raked sail, X-shaped stern, and bowplanes located below the waterline when the boat is surfaced. Displacing about 17,000 tons, Successor will be slightly larger than the UK’s current SSBNs (15,900 tons).

Propulsion system components, high-grade steel for the pressure hull and other critical long-lead items for the first ship have now been ordered and some manufacturing activities have started. Tony Johns, Managing Director of BAE Systems Maritime – Submarines, said: «Following the Government’s announcement in May 2011 that the programme had passed its «Initial Gate», it is now well into its third year of a five-year design and development phase, during which the submarine’s concept design and operational requirements are being matured into a detailed design. The «Main Gate» procurement decision – giving permission to proceed for full production – is due in 2016».

By aligning the procurement of the Vanguard and Ohio replacements, the U.K. opened up opportunities for collaborative work with the United States in several areas, notably the design of the Common Missile Compartment (CMC) and the nuclear powerplant, and the integration of sonar arrays and associated combat systems.

HMS Victorious is pictured near Faslane in Scotland
HMS Victorious is pictured near Faslane in Scotland

Although Successor will be fitted with three quad-pack CMC modules, providing 12 launch tubes for Trident D5 ballistic missiles (down from Vanguard‘s 16 tubes), the British government has decided that just 8 operational missiles will be routinely carried on patrol. Meanwhile, General Dynamics Electric Boat will supply outfitted tubes – 87 inches (2.21 m) in diameter and 45 feet (13.72 m) high – for CMC assembly in the U.K.

In October 2014, the U.S. Navy awarded Electric Boat $84 million to start CMC missile tube manufacturing: 12 for the Successor lead ship, 4 for the Ohio replacement program and 1 for the Strategic Weapons System-Ashore test facility at Cape Canaveral. Meanwhile Rolls-Royce is developing the RN’s third-generation pressurized water reactor (PWR3) with technological support from the United States, under the terms of a 1958 intergovernmental agreement to share atomic energy technology for defense purposes. The PWR3 design has benefitted in particular from lessons learned with the S9G reactor that powers the Virginia-class submarines.

Compared with the Vanguards’ PWR2 system (27,500 shp, 20.5 MW), the PWR3 has a simpler circulation design and should be easier to operate. According to Rolls-Royce representatives, it promises a «huge improvement in terms of safety, integrity and availability, while at the same time reducing the through-life costs».

Vanguards’ PWR2 system (27,500 shp, 20.5 MW)
Vanguards’ PWR2 system (27,500 shp, 20.5 MW)

Meanwhile, the U.K. is also participating in the U.S.-led Trident missile life-extension program, which will keep the D5 ballistic vehicle – capable of delivering up to 12 independently targetable nuclear warheads – in service into the 2040s.

One major decision remains outstanding: Whether to replace the Vanguards on a one-for-one basis, at an estimated cost of $17.28-$22 billion (at 2006/07 prices), or attempt to benefit from improved reliability and maintainability by ordering just three SSBN submarines. However, the cost savings inherent in a three-boat solution would be too small compared with total program expenditure, and the RN believes that 4 SSBNs is the minimum required to maintain a credible and continuous at-sea deterrent.

«We have a proud history of collaboration with the United States on submarine programs and I’m pleased to say that continues today», Will Blamey, the Successor program director at BAE Systems Submarines said. «We’re more than halfway through the five-year assessment phase and are making good progress with the submarine design. We’re fully focused on achieving our program objectives and remain confident the first submarine will be in service by 2028».