Tag Archives: AMDR

AN/SPY-6(V) production

Raytheon Company is being awarded a $327,146,998 Fixed Price Incentive (firm target) modification to previously awarded contract N00024-14-C-5315 to exercise options for Air and Missile Defense Radar Program (AMDR) Low Rate Initial Production (LRIP).

AMDR is a key enabler for the capability and performance enhancements of the new DDG-51 Flight III ship
AMDR is a key enabler for the capability and performance enhancements of the new DDG-51 Flight III ship

«Progressing to production is the result of a lot of hard work and dedication from our AMDR team of experts across Raytheon, the U.S. Navy, and our world-class suppliers. In just over three years of the Engineering, Manufacturing and Development phase, we’ve gone from a technology demonstrator to a technically mature, highly advanced, functioning radar», said Raytheon’s Tad Dickenson, director of the Air and Missile Defense Radar program. «Production begins today – which brings us one day closer to delivering this needed, and unprecedented, integrated air and missile defense capability to the U.S. Navy».

Raytheon’s decades of radar development and manufacturing expertise is driven by proven infrastructure and a highly experienced workforce. The company’s 1.4 million square foot production facility in Andover, Massachusetts is a center of excellence for vertically-integrated, highly complex manufacturing with flexible work flow supporting all phases of product development from testing to full production.

 

AMDR Advantages

  • Scalable to suit any size aperture or mission requirement.
  • Over 30 times more sensitive than AN/SPY-1D(V) in the Flight III configuration.
  • Designed to counter large and complex raids.
  • Adaptive digital beamforming and radar signal/data processing functionality provides exceptional capability in adverse conditions, such as high-clutter and jamming environments. It is also reprogrammable to adapt to new missions or emerging threats.
  • All cooling, power, command logic and software are scalable.

 

Reliability and affordability

Designed for high availability and reliability, AMDR provides exceptional capability and performance compared to SPY-1 – and at a comparable price and significantly lower total ownership cost.

AMDR’s performance and reliability are a direct result of more than 10 years of investment in core technologies, leveraging development, testing and production of high-powered Gallium Nitride (GaN) semiconductors, distributed receiver exciters, and adaptive digital beamforming. AMDR’s GaN components cost 34% less than Gallium Arsenide alternatives, deliver higher power density and efficiency, and have demonstrated meantime between failures at an impressive 100 million hours.

AMDR has a fully programmable, back-end radar controller built out of commercial off-the-shelf (COTS) x86 processors. This programmability allows the system to adapt to emerging threats. The commercial nature of the x86 processors simplifies obsolescence replacement – as opposed to costly technical refresh/upgrades and associated downtime – savings that lower radar sustainment costs over each ship’s service life.

AMDR has an extremely high predicted operational availability due to the reliable GaN transmit/receive modules, the low mean-time-to-repair rate, and a very low number of Line Replaceable Units (LRU). Designed for maintainability, standard LRU replacement in the Radar Modular Assemblies (RMA) can be accomplished in under six minutes – requiring only two tools.

This new S-band radar will be coupled with:

  • X-band radar – a horizon-search radar based on existing technology;
  • The Radar Suite Controller (RSC) – a new component to manage radar resources and integrate with the ship’s combat management system.

The Air and Missile Defense Radar is the U.S. Navy’s next generation integrated air and missile defense radar. It enhances ships’ abilities to detect air, surface and ballistic missile targets

Live target testing

Raytheon Company delivered the first AN/SPY-6(V) Air and Missile Defense Radar (AMDR) array to the U.S. Navy’s Pacific Missile Range Facility in Hawaii ahead of schedule. The array is now being installed according to plan, in preparation for first radar light-off in early July. SPY-6(V) is the next-generation integrated air and ballistic missile defense radar for the U.S. Navy, filling a critical capability gap for the surface fleet.

AN/SPY-6(V) Air and Missile Defense Radar array at the U.S. Navy's Pacific Missile Range Facility in Hawaii (PRNewsFoto/Raytheon Company)
AN/SPY-6(V) Air and Missile Defense Radar array at the U.S. Navy’s Pacific Missile Range Facility in Hawaii (PRNewsFoto/Raytheon Company)

This delivery is the latest in a series of milestones achieved on time or ahead of schedule, as SPY-6(V) advances through the Engineering and Manufacturing Development (EMD) phase, which is now close to 80 percent complete. In less than 30 months, the SPY-6(V) array completed design, fabrication and initial testing. Soon to transition to Low Rate Initial Production (LRIP), SPY-6(V) remains on track for delivery in 2019 for the first DDG-51 Flight III destroyer.

«Several months of testing at our near-field range facility, where the array completed characterization and calibration, have proven the system ready for live target tracking», said Raytheon’s Tad Dickenson, AMDR program director. «The array was the last component to ship. With all other components, including the back-end processing equipment, delivered earlier and already integrated at the range, AMDR will be up and running in short order».

«The extensive testing to date has demonstrated good compliance to the radar’s key technical performance parameters», said U.S. Navy Captain Seiko Okano, major program manager, Above Water Sensors (IWS 2.0). «The technologies are proven mature and ready for testing in the far-field range, against live targets, to verify and validate the radar’s exceptional capabilities».

 

About SPY-6(V) AMDR

SPY-6(V) is the first scalable radar, built with RMAs – radar building blocks. Each RMA (Radar Modular Assembly), roughly 2′ × 2′ × 2′ in size, is a standalone radar that can be grouped to build any size radar aperture, from a single RMA to configurations larger than currently fielded radars. All cooling, power, command logic and software are scalable, allowing for new instantiations without significant radar development costs.

Providing greater capability – in range, sensitivity and discrimination accuracy – than currently deployed radars, SPY-6(V) increases battlespace, situational awareness and reaction time to effectively counter current and future threats. Designed for scalability, reliability and ease of production, SPY-6(V) incorporates innovative and proven technologies, including RMAs, digital beamforming and Gallium Nitride (GaN), to offer exceptional radar capabilities to fit any ship for any mission.

Full radar array

Raytheon Company announced its AN/SPY-6(V) Air and Missile Defense Radar (AMDR) team has completed the first full radar array, fully populated with component Line Replaceable Units (LRUs), including more than 5,000 Transmit/Receive elements, in 140 days. In less than two years, the AMDR radar has been designed, built and transitioned to test; the Engineering and Manufacturing Development (EMD) phase of the program is now more than 66 percent complete. The program remains on track to begin production and deliver on time to the FY16 authorized DDG-51 Flight III destroyer.

AMDR is a key enabler for the capability and performance enhancements of the new DDG-51 Flight III ship
AMDR is a key enabler for the capability and performance enhancements of the new DDG-51 Flight III ship

«As each milestone is completed, development of the SPY-6 radar progresses on schedule», said U.S. Navy Captain Seiko Okano, major program manager, Above Water Sensors (IWS 2.0). «With this array, now built and operational in the Near Field Range, we are proceeding to plan and commencing full-scale integration and test of AMDR’s unprecedented capability».

Subcontractor Major Tool and Machine delivered the array structure to Raytheon’s Near Field Range on July 29; and Raytheon installed all passive RF components before September 1. The first Radar Modular Assembly (RMA) was powered up in October and testing began. All RMA chassis were installed by October 16, complete with cooling, power, fiber-optic control and data interfaces. In 79 days the array infrastructure was complete – verification of the simplicity of the AMDR array design. Population of the array with Transmit Receive Integrated Multi-channel Modules and Distributed Receiver/Exciter LRUs completed on December 16.

These recent achievements are among the many successes and milestones realized to date, including:

  • Nine of nine major program milestones completed on schedule, including hardware and software Critical Design Reviews and the Development Test Event 2 (DT-2) Readiness Review;
  • Transition to DT-2 – currently in process, culminating in 2016 with verification of hardware level specifications to requirements and shipment of the array to the Pacific Missile Range Facility in Hawaii for system validation testing (DT-3);
  • Completed Build 2 software early, with all planned functionality (30 capabilities), formally qualified in July 2016; Build 3 is more than 75% percent complete;
  • 95% of EMD hardware production is complete; awaiting final power systems delivery in early 2016.

«Our solid performance leverages our high-power AESA radar and digital beam-forming expertise and our collaborative partnerships with the U.S. Navy and a network of dedicated suppliers», said Tad Dickenson, Raytheon’s AMDR program director. «Benefits in productivity, quality and affordability continue to be realized as a result of our mature Agile development methodology. In fact, the AMDR software development team achieved a greater than 99 percent pass rate at system test, all driven by Agile processes for early and incremental testing and defect identification».

 

SPY-6(V) AMDR

SPY-6(V) is the next-generation integrated air and ballistic missile defense radar for the U.S. Navy, filling a critical capability gap for the surface fleet. It is the first scalable radar, built with RMAs – radar building blocks. Each RMA, roughly 2′ × 2′ × 2′ in size, is a standalone radar that can be grouped to build any size radar aperture, from a single RMA to configurations larger than currently fielded radars. All cooling, power, command logic and software are scalable, allowing for new instantiations without significant radar development costs.

The Air and Missile Defense Radar is the U.S. Navy’s next generation integrated air and missile defense radar. It enhances ships’ abilities to detect air, surface and ballistic missile targets

 

Flight III Final

The Department of the Navy (DoN) is committed to the acquisition of the DDG 51 Flight III destroyers with an integrated Air and Missile Defense Radar (AMDR) to meet the requirements for Integrated Air and Missile Defense (IAMD) capabilities. After several years of study, analysis, requirements validation, and prototype testing, the AMDR S-Band system is poised for successful integration into the DDG 51 Class ships as the Flight III upgrade. (Prepared by: Assistant Secretary of the Navy Research, Development, and Acquisition 1000 Navy Pentagon Washington, DC 20350-1000)

Flight III Operational View
Flight III Operational View

The AMDR has successfully completed Milestone B, a full system Preliminary Design Review, a hardware Critical Design Review, and will deliver its first full ship set of production equipment by early FY 2020. The remaining equipment required to provide power and cooling to the AMDR are all based on currently existing equipment and therefore induce low technical risk to the program. Given the tremendous capability improvement AMDR provides to defeat emerging air and ballistic missile threats over current radars, the low to moderate technical risk associated with implementing this radar on an FY 2016 DDG 51 justifies execution of the ECP during the FY 2013-2017 multiyear procurement contract.

The DDG 51 Class Program has awarded a total of 76 ships from 1985 to 2017 between two shipbuilders, General Dynamics Bath Iron Works (BIW) and Huntington Ingalls Industries (HII). Most recently, 10 were awarded in June 2013 under Multi-Year Procurement (MYP) authority for FY13-17. Sixty-two ships have been delivered. Of the remaining 14, six are in various stages of construction and will deliver in 2016 and beyond. The Flight III configuration will be integrated via the Engineering Change Proposal (ECP) process onto the last three ships of the FY13-17 MYP: one ship in FY16 and both FY17 ships. A follow-on FY18 MYP will continue the production line.

Prior to Flight III, the program has produced three flights (I, II and IIA). Flights II and IIA included important modifications for changing mission requirements and technology updates, thus demonstrating the substantial capacity and flexibility of the base DDG 51 hull form. Flight II introduced enhanced capability in Combat Systems and Electronic Warfare. Flight IIA constituted a more significant change to the ship by incorporation of an organic dual hangar/dual helicopter aviation facility, extended transom, Zonal Electrical Power Distribution (ZEDS), enhanced missile capacity, and reconfigured primary radar arrays.

The combined scope and means for integrating the changes for Flight III is similar to the approach used in the Flight IIA upgrade. Additionally, during Flight IIA production in the middle of the FY98-01 MYP, the class was significantly upgraded with a new radar, the AN/SPY-1D(V), and an improved combat management computing plant, AEGIS Baseline 7.1. The previous ship system changes were successfully executed by ECPs introduced via the existing systems engineering processes on both Flight II and IIA in support of the ongoing construction program. This methodology takes advantage of the U.S. Navy and prime contractor experience with the proven processes while offering effective and efficient introduction of the desired configuration changes. It also provides the more affordable and effective approach toward producing this enhanced ship capability in lieu of starting a new ship design to incorporate the same capabilities into a new production line for ship construction.

DDG 51 Flight III will be the third evolution of the original DDG 51 Class and will achieve the U.S. Navy’s critical need for an enhanced surface combatant integrated IAMD capability. Flight III will build on the warfighting capabilities of DDG 51 Flight IIA ships, providing this capability at the earliest feasible time. Its defining characteristics include integration of the AMDR, associated Combat Systems elements, and related Hull, Mechanical, and Electrical (HM&E) changes into a modified repeat Flight IIA design. AMDR will give Flight III ships the ability to conduct simultaneous Anti-Air Warfare (AAW) and Ballistic Missile Defense (BMD) operations. Flight III will contribute to mitigating the capability gaps identified in the Maritime Air and Missile Defense of the Joint Force (MAMDJF) Initial Capabilities Document (ICD). The integrated Flight III ship system as delivered will meet the program requirements as stated in the DDG 51 Class Flight III Capabilities Development Document (CDD).

DDG 51 Flight III will execute four primary missions:

  • Integrated Air and Missile Defense,
  • Anti-Surface Warfare,
  • Anti-Submarine Warfare,
  • Strike Warfare,

and will have the ability to plan, coordinate and execute alternate warfare commander responsibilities for either anti-air warfare or ballistic missile defense.

In addition to the incorporation of AMDR-S and HM&E upgrades, the AMDR system will be integrated into the AEGIS Combat System
In addition to the incorporation of AMDR-S and HM&E upgrades, the AMDR system will be integrated into the AEGIS Combat System
Flight III Systems Technological Maturity
AMDR In Engineering & Manufacturing Development, LRIP scheduled for FY 2017
MT-5 Gas Turbine Generator Fielded on DDG 1000 class
4160VAC Electric Plant Fielded on LHA 6 Class
300 Ton A/C Plant In operation at vendor plant, environmental qualification in progress
4160VAC to 1000VDC Power Conversion Module Fielded on DDG 1000 Class

Throughout the five-year span of evaluation and refinement as the ship concept was being matured, the Flight III ship capability requirements were also being clarified and validated. A meticulous and concerted effort was applied in considering the secondary effects of ship impacts created from the Flight III changes to avoid degrading or compromising the existing DDG 51 Flight IIA requirements. A substantial milestone achievement was reached on 28 October 2014 when the Flight III CDD was validated and approved by the Joint Requirements Oversight Council (JROC). The Flight III CDD requirements reflect an achievable set of goals for upgrading the DDG 51 Class with the AMDR S-Band. The new requirements that could only be met by modifying the ship include the IAMD, Space, Weight, Power, and Cooling Service Life Allowance (SWaP-C SLA), Manpower, and Alternate Warfare Commander requirements. The majority of the remaining CDD requirements are met by the current DDG 51 Class design.

Most Recent AEGIS Baselines
Most Recent AEGIS Baselines

ECP development is a fundamental systems engineering approach; an approach currently implemented in the DDG 51 program that has been continuously updated and improved since the program’s inception in the early 1980s and has resulted in the successful delivery of 62 DDG 51 Class destroyers. The last three ships of the FY13-17 MYP are designated as Flight III beginning with one of the FY16 ship. The Flight III is a modified repeat of the existing baseline and will be centered on the addition of an IAMD capability in the form of the AMDR-S, associated enhanced combat systems elements and requisite supporting HM&E changes. These changes will be incorporated via discrete ECPs with the same proven processes and rigor that produced successful Flight II and IIA upgrades to the class.

Flight III CDD Requirements Summary
Flight III CDD Requirements Summary

The AMDR suite consists of an S-Band radar (AMDR-S), X-Band radar (SPQ-9B), and a Radar Suite Controller (RSC). AMDR-S is a new development IAMD radar providing sensitivity for long-range detection and engagement of advanced threats. The X-Band radar is a horizon-search radar based on existing technology. The RSC provides radar resource management and coordination for both S and X-Band, and interface to the combat system. The SPQ-9B, radar is already slated for installation on the FY14 Flight IIA ships.

AMDR System Overview
AMDR System Overview

AIU – Array Interface Unit

APDU – Array Power Distribution Unit

CEU – Cooling Electronics Unit

DBFS – Digital Beamforming System

DSPS – Digital Signal Processing System

FTS – Frequency Time System

MPDU – Main Power Distribution Unit

RCPS – Radar Control Processing Subsystem

RSC – Radar Suite Controller

RTSS – Real-Time Simulation Subsystem

UPS – Uninterruptible Power Supply

 

Eye of Sauron

According to Kris Osborn, Military.com Daily News correspondent, the U.S. Navy is making progress developing a more sensitive, next-generation radar system engineered to integrate onto new Arleigh Burke-class guided missile destroyers by 2023.

AMDR provides greater detection ranges and increased discrimination accuracy compared to the AN/SPY-1D(V) radar onboard today’s destroyers
AMDR provides greater detection ranges and increased discrimination accuracy compared to the AN/SPY-1D(V) radar onboard today’s destroyers

The Air and Missile Defense Radar, or AMDR, is said to be at least 30-times more sensitive than radars configured on existing DDG 51 Arleigh Burke-class destroyers. «Among other things, the additional power and sensitivity will allow the ship to detect a much wider range of threats at much greater distances», said Capt. Mark Vandroff, program manager DDG 51 Shipbuilding.

«I can see a target that is half the size, twice as far away. What this means is an individual destroyer will be able to engage more ballistic missiles at the same time versus what you have today – and it will be able to engage more advanced threats because it can see them farther away», Vandroff said. «It can see smaller objects farther away so it will be better at picking out what is a threat versus what is not a threat».

«The AMDR platform, being developed by Raytheon Co. under an EMD (Engineering and Manufacturing Development) contract awarded in October 2013, will enable next-generation Flight III DDG 51s to defend much larger areas compared with the AN/SPY-1D radar on existing destroyers», Vandroff said.

The Air and Missile Defense Radar (AMDR) Program successfully completed a Hardware Critical Design Review (CDR) in conjunction with prime contractor, Raytheon, in Sudbury, Massachusetts, December 3, 2014.

AMDR provides greater detection ranges and increased discrimination accuracy compared to the AN/SPY-1D(V) radar onboard today’s destroyers. The system is built with individual «building blocks» called RMAs (Radar Modular Assemblies). Each RMA is a self-contained radar transmitter and receiver in a 2’x2’x2’ box. These RMAs stack together to fit the required array size of any ship, making AMDR the Navy’s first truly scalable radar.

A partially-populated, full-sized AMDR array
A partially-populated, full-sized AMDR array

 

This advanced radar comprises:

  • S-band radar – a new, integrated air and missile defense radar;
  • X-band radar – a horizon-search radar based on existing technology;
  • The Radar Suite Controller (RSC) – a new component to manage radar resources and integrate with the ship’s combat management system.

AMDR Advantages:

  • Scalable to suit any size aperture or mission requirement;
  • Over 30 times more sensitive than AN/SPY-1D(V);
  • Can simultaneously handle over 30 times the targets than AN/SPY-1D(V) to counter large and complex raids;
  • Adaptive digital beamforming and radar signal/data processing functionality is reprogrammable to adapt to new missions or emerging threats.