Tag Archives: AFRL

Test Aircraft VISTA

The Air Force Research Laboratory (AFRL) Strategic Development Planning and Experimentation office has invested $15 million upgrading a decades-old workhorse to make it relevant for 21st century warfighter challenges.

X-62
Modified X-62 helps accelerate tactical autonomy development

AFRL’s Autonomous Aircraft Experimentation team is using a highly modified Air Force Test Pilot School NF-16, an aircraft recently designated the X-62, to accelerate the development of tactical autonomy for uncrewed aircraft.

Matthew Niemiec, the autonomous aircraft experiment portfolio lead, said the upgrades to the X-62, also known as the Variable In-flight Stability Test Aircraft, or VISTA, include software that allows it to mimic the performance characteristics of other platforms. He said it also could host a variety of autonomy behaviors, including those from the Skyborg Autonomy Control System and others provided by third-party industry partners.

Skyborg is a Department of the Air Force Vanguard project that has informed the transition of open, modular autonomy to enable combat mass using low-cost uncrewed aircraft. These vehicles will be equipped with autonomy systems and will assist human-piloted aircraft perform critical missions.

Since March 2021, the Autonomous Aircraft Experimentation team executed 16 live test events focused on evaluating the Skyborg Autonomy Control System on the Kratos XQ-58 Valkyrie, UTAP-22 Mako and General Atomics MQ-20 Avenger uncrewed air vehicles.

«The data generated during these tests, along with feedback provided from our user community, show that in order to rapidly develop and mature tactical autonomy on an appropriate timeline, investment in, and utilization of, a mature, tactically relevant platform is required», Niemiec said.

The X-62 uses a «safety sandbox» that allows integration and flight of modeled air vehicles, control laws and autonomy capabilities. Unlike the uncrewed aerial vehicles such as the Valkyrie, Mako and Avenger, the X-62 has room for a crew of two, including a pilot who can supervise the autonomy control system’s performance, similar to the way the automotive industry tested autonomous driving features.

«Ground and flight testing on X-62 is one of several steps we are taking to build out critical information networks and physical storage infrastructure necessary to enable rapid autonomy development», Niemiec said. «The goal by fall 2022 is to have it flying alongside an uncrewed platform, with both using tactically-relevant sensors while flying autonomy behaviors. We’re also building out a robust simulation environment to capture operator feedback and integrate their inputs into our autonomy development process».

Two systems have been modified in the X-62. One is the VISTA simulation system, which allows the aircraft to mimic the flight characteristics of a different airplane. The other is the system for the autonomous control of the simulation, which enables different autonomous behaviors to fly the airplane.

«When you stitch those two capabilities together, you get a tactically relevant aircraft that enables rapid test of autonomy capabilities while also proving out the interface requirements necessary for different vehicle platforms», Niemiec said.

He said Skyborg and other advanced autonomy development efforts like DARPA’s (Defense Advanced Research Projects Agency) Air Combat Evolution can leverage the X-62 as a surrogate for testing high-risk autonomous maneuvers, in parallel with uncrewed aircraft development efforts that are evaluating new high-risk vehicle model designs.

«Because we have a safety pilot, we can always turn it off, and improve our throughput for testing autonomy capability by 10 times», Niemiec said.

VISTA’s safety trip system also could automatically disengage the VISTA simulation system when the boundaries of its safety sandbox are violated, allowing larger and riskier steps to be taken with no impact on flight safety, he said.

Doctor M. Christopher Cotting, USAF Test Pilot School director of research, said VISTA is maintained and operated under a partnership with the Calspan Corporation and Lockheed Martin Skunkworks. The USAF Test Pilot School acts as VISTA’s prime integrator, manager and test organization.

«The USAF Test Pilot School has been the home of NF-16D VISTA since 2001», Cotting said. «It has been used to expose students to a wide range of aircraft dynamics, allowing students to experience first-hand both ‘good’ and ‘dangerous’ aircraft after they have been discussed and analyzed in the classroom».

VISTA has also been a risk mitigation platform for future USAF technologies.

«After a long track record of supporting the USAF Test Pilot School and the Air Force, the research systems on the aircraft were becoming dated and unsupportable», Cotting said.

As part of the transformation into the X-62 VISTA, Lockheed Martin Skunkworks designed the system for Autonomous Control of the Simulation, a new system for VISTA. This highly flexible computer architecture enables VISTA to test a wide range of autonomous systems.

Another integral part of the transformation was the new VISTA simulation system Calspan Corporation designed and installed. Lockheed Martin Skunkworks contributed the model following algorithm, an enhanced modeling framework capability to the simulation system. The improvements allow VISTA to support a wider range of aircraft simulation and multiple research control laws.

Cotting said the model following algorithm supports a modeling framework that can be openly distributed to researchers.

«Once researchers have integrated their simulation models, the new VISTA simulation system can take those models and easily implement them into the X-62», he said.

«Normally a new control system for an aircraft can take years to implement on an aircraft», Cotting said. «With VISTA, a new control system can be installed and flown in just a few months. Once installed, changes can be made overnight to modify the control system based on information learned during that day’s flight test».

The X-62 VISTA is built to be a technology demonstrator and risk reduction platform. For example, the control laws used to fly the Joint Strike Fighter were first flown on VISTA before the strike fighter’s first flight, reducing significant technical and safety risk.

«VISTA’s simulation framework is flexible enough to allow aircraft designers a chance to fly their aircraft before it ever leaves the ground», Cotting said. «While modern simulation laboratories are getting much better at simulating aircraft, they still cannot replicate some of the unknowns of operating an aircraft in a relevant flight environment. VISTA and its simulation system allow digital aircraft designs to be ‘flight tested’ before the aircraft is ever built».

Niemiec said AFRL is working with multiple industry partners to integrate advanced, tactical performance vehicle designs along with cutting edge autonomy capabilities onto the X-62.

«VISTA will allow us to parallelize the development and test of cutting edge artificial intelligence techniques with new uncrewed vehicle designs», he said. «This approach, combined with focused testing on new vehicle systems as they are produced, will rapidly mature autonomy for uncrewed platforms and allow us to deliver tactically relevant capability to our warfighter».

Integration and Validation

Northrop Grumman Corporation delivered the Arrays at Commercial Timescales Integration and Validation (ACT-IV) system to the Air Force Research Laboratory (AFRL) and Defense Advanced Research Projects Agency (DARPA). The system is based on an advanced digital Active Electronically Scanned Array (AESA) that completed multiple successful demonstrations and acceptance testing at Northrop Grumman test facilities.

ACT-IV
Northrop Grumman tests its Arrays at Commercial Timescales Integration and Validation (ACT-IV) digital AESA system for the AFRL and DARPA at the company radar range in Linthicum, Maryland (Source: Northrop Grumman)

«The development of the ACT-IV system is a breakthrough in AESA performance and marks an important milestone in the nation’s transition to digitally reprogrammable multifunction Radio Frequency (RF) systems», said William Phillips, director, multifunction systems, Northrop Grumman. «The new ACT-IV capabilities have the agility to defeat complex emerging threats and will be used to enhance the next generation of integrated circuits and AESAs that are currently in our digital AESA product pipeline».

ACT-IV is one of the first multifunction systems based on a digital AESA using the semiconductor devices developed on the DARPA Arrays at Commercial Timescales (ACT) program. By applying the flexibility of the digital AESA, the ACT-IV system can perform radar, electronic warfare and communication functions simultaneously by controlling a large number of independent digital transmit/receive channels. The agility of the digital AESA was demonstrated during multiple demonstrations at the Northrop Grumman test range and will enable future warfighters to quickly adapt to new threats, control the electromagnetic spectrum, and connect to tactical networks in support of distributed operations.

The ACT-IV system will be a foundational research asset for the Department of Defense’s multi-service research initiative for digital radars and multifunction systems. This initiative will support a community of researchers that are developing new algorithms and software to explore the possibilities of next generation digital AESAs for national security missions.

The algorithms, software and capabilities developed on ACT-IV will transition into next generation multifunction RF systems to support advanced development programs throughout the Department of Defense.

«This delivery is the culmination of the close collaboration between the teams at AFRL, DARPA and Northrop Grumman», said Doctor Bae-Ian Wu, ACT-IV project lead, Sensors Directorate, AFRL. «The ACT-IV system is being prepared for initial testing by the AFRL Sensors Directorate as part of a strategic investment to develop and test the technologies for multifunction digital phased array systems in an open-architecture environment for the larger DoD community».

Northrop Grumman is the industry leader in developing mission-capable, cost-efficient, open-architecture and multi-function radar and sensor systems to observe, orient and act across all domains – land, sea, air and space. They provide the joint forces with the intelligence they need to operate safely in today’s multi-domain operational environment.

Northrop Grumman solves the toughest problems in space, aeronautics, defense and cyberspace to meet the ever evolving needs of our customers worldwide. Our 90,000 employees define possible every day using science, technology and engineering to create and deliver advanced systems, products and services.

Quantum Laboratory

The Air Force Research Laboratory (AFRL) is now designated as the Quantum Information Science (QIS) Research Center for the U.S. Air Force and U.S. Space Force.

QIS (Quantum Information Science)
Shown is a cryogenic refrigerator installed in the Quantum Information and Sciences Laboratory at the Air Force Research Laboratory’s Information Directorate in Rome, New York. The device is used by AFRL researchers to measure the energy and coherence times of superconducting quantum bits, known as qubits, two important characteristics that determine how long qubits can retain quantum information (Courtesy photo)

This designation, signed by then Acting Secretary of the Air Force John P. Roth in an April 23 memorandum, gives AFRL the authority to achieve faster military capability based on quantum information science, said AFRL commander Major General Heather Pringle.

«AFRL is extremely proud, and has been long-recognized at the national level for its deep technical expertise in QIS with far-ranging applications including clocks and sensors for quantum-enhanced positioning, navigation and timing, quantum communications and networks, and quantum computing», Pringle said. «This designation allows AFRL to expand its collaborations across government, industry and academia, further accelerating the research, development and deployment of quantum technologies».

To support these efforts, AFRL’s Information Directorate, located at Rome, New York, will receive fiscal year 2020 funds, granted under the Defense Quantum Information Science Research and Development Program and in accordance with the National Defense Authorization Act. The funds help the Rome Lab obtain partnerships to gain further knowledge from worldwide leaders in quantum science application, said Doctor Michael Hayduk, Information Directorate deputy director.

«With this designation, AFRL fully intends to further advance the application of quantum technologies across the Department of the Air Force», Hayduk said. «AFRL will expand its global network of QIS collaborators by tapping into both industrial and university expertise. These partnerships are critical in not only accelerating the deployment of QIS technologies but also in developing the future workforce needed to meet emerging national security challenges».

Skyborg Vanguard

The Skyborg leadership team conducted a two-hours and ten-minute flight test April 29 of the Skyborg Autonomy Core System (ACS) aboard a Kratos UTAP-22 tactical unmanned vehicle at Tyndall Air Force Base (AFB), Florida.

Kratos UTAP-22
The Skyborg autonomy core system launches aboard a Kratos UTAP-22 tactical unmanned vehicle at Tyndall AFB, Florida on April 29 (U.S. Air Force photo)

Termed Milestone 1 of the Autonomous Attritable Aircraft Experimentation (AAAx) campaign, the ACS performed a series of foundational behaviors necessary to characterize safe system operation. The ACS demonstrated basic aviation capabilities and responded to navigational commands, while reacting to geo-fences, adhering to aircraft flight envelopes, and demonstrating coordinated maneuvering. It was monitored from both airborne and ground command and control stations.

The Skyborg Vanguard team is a unique relationship that pairs Brigadier General Dale White, Program Executive Officer (PEO) for Fighters and Advanced Aircraft as the Skyborg PEO, and Brigadier General Heather Pringle, Commander of the Air Force Research Laboratory (AFRL) as the Skyborg Technology Executive Officer (TEO). The 96th Test Wing, under the leadership of Brigadier General Scott Cain, serves as the executing agent for these test missions.

«We’re extremely excited for the successful flight of an early version of the “brain” of the Skyborg system. It is the first step in a marathon of progressive growth for Skyborg technology», said White. «These initial flights kickoff the experimentation campaign that will continue to mature the ACS and build trust in the system».

Milestone 1 is the first step in testing the ACS and begins a sequence of experimentation events planned over the next several months.

«Through this operational experimentation campaign, AFRL is leaning forward to get early engagement with the warfighter to deliver a suite of full-mission autonomy on a relevant timeline», said Pringle. «AFRL is proud to be developing this force multiplier for the U.S. Air Force with our partners at PEO Fighters and Advanced Aircraft and the 96th Test Wing».

The 96th Test Wing is well-positioned to integrate and test emerging technologies like autonomy on various platforms (aircraft and weapons) and has provided critical infrastructure support and test expertise to Skyborg. Milestone 1 was the first time an active autonomy capability was demonstrated on an Air Force test range, and is a first step to integrating these aircraft into a complex operational environment.

«As we have throughout our history, the Test enterprise is adapting our people and capabilities to support this rapidly maturing technology, and the execution of this flight test is a great milestone for our closely integrated development and acquisition team. Safely executing this test and providing the knowledge needed to advance the technology is at the heart of what we do. And as always, we’re highly motivated to help bring war-winning technology to the next fight», said Cain.

Follow on events will demonstrate direct manned-unmanned teaming between manned aircraft and multiple ACS-controlled unmanned aircraft.

The aim of the Skyborg Vanguard program is to integrate full-mission autonomy with low-cost, attritable unmanned air vehicle technology to enable manned-unmanned teaming. Skyborg will provide the foundation on which the Air Force can build an airborne autonomous “best of breed” system of systems that adapts, orients, and decides at machine speed for a wide variety of increasingly complex mission sets.

Payload release test

The Air Force Research Laboratory (AFRL) successfully completed the XQ-58A Valkyrie’s sixth flight test and first release from its internal weapons bay, March 26, 2021 at Yuma Proving Ground, Arizona.

XQ-58A Valkyrie
The XQ-58A Valkyrie demonstrates the separation of the ALTIUS-600 small UAS in a test at the U.S. Army Yuma Proving Ground test range, Arizona on March 26, 2021. This test was the first time the weapons bay doors have been opened in flight (Courtesy photo)

This test, conducted in partnership with Kratos UAS and Area-I, demonstrated the ability to launch an ALTIUS-600 Small, Unmanned Aircraft System (SUAS) from the internal weapons bay of the XQ-58A Valkyrie. Kratos, Area-I and AFRL designed and fabricated the SUAS carriage and developed software to enable release. After successful release of the SUAS, the XQ-58A Valkyrie completed additional test points to expand its demonstrated operating envelope.

«This is the sixth flight of the XQ-58A Valkyrie and the first time the payload bay doors have been opened in flight», said Alyson Turri, demonstration program manager. «In addition to this first SUAS separation demonstration, the XQ-58A Valkyrie flew higher and faster than previous flights».

This test further demonstrates the utility of affordable, high performance unmanned air vehicles.

 

About AFRL

The Air Force Research Laboratory is the primary scientific research and development center for the Department of the Air Force. AFRL plays an integral role in leading the discovery, development, and integration of affordable warfighting technologies for our air, space, and cyberspace force. With a workforce of more than 11,000 across nine technology areas and 40 other operations across the globe, AFRL provides a diverse portfolio of science and technology ranging from fundamental to advanced research and technology development.

Strike Weapon Platform

The U.S. Air Force Strategic Development Planning and Experimentation (SDPE) Office awarded Lockheed Martin a $25 million contract to support the next phase of the service’s Palletized Munitions Experimentation Campaign.

MC-130J Super Hercules
Airlifters like the MC-130J Super Hercules have the potential to deploy large quantities of JASSM-ERs, providing a significant increase in long-range standoff scale (Photo by Lockheed Martin)

The fourth phase includes a system-level demonstration in 2021 and continues to assess the potential to deliver large volumes of air-launched weapons via airlifters.

«Despite the Palletized Munitions program being relatively new, it’s moving very quickly», said Scott Callaway, Lockheed Martin Advanced Strike Systems director. «The U.S. Air Force Research Laboratory (AFRL) contracting and Strategic Development Planning and Experimentation (SDPE) offices, and Lockheed Martin teams established this new contract in a record time of 30 days, supporting faster prototyping and a shorter timeline to bring this advanced capability to the warfighter in the field».

Initial studies show that airlifters have the potential to deploy large quantities of Joint Air-to-Surface Standoff Missile Extended Range (JASSM-ER) missiles, providing a significant increase in long-range standoff scale and complementing traditional strike and bomber aircrafts. This innovative approach enables warfighters to launch offensive operations from a greater number of airfields and engage a larger number of near-peer adversarial targets.

The overall goal of the experimentation is to develop a modular system to deliver air-launched weapons, leveraging standard airdrop procedures and operations. The system will have the ability to be rolled on and off multiple types of aircraft, including the C-17 Globemaster III and C-130.

Phase I successfully accomplished five high-altitude airdrops from an MC-130J Super Hercules (manufactured by Lockheed Martin) and a C-17 Globemaster III earlier this year using simulated weapons. During this effort, the U.S. Air Force tested the suitability of launching JASSM-ERs from an airlifter. JASSM is a long-range, conventional, air-to-ground, precision standoff missile for the U.S. and allied forces designed to destroy high-value, well-defended, fixed and relocatable targets.

Gray Wolf

The 416th Flight Test Squadron recently completed a round of tests of the Air Force Research Laboratory’s «Gray Wolf» prototype cruise missile at Edwards Air Force Base, California.

Members from the Gray Wolf test team and 416th Flight Test Squadron, pose for a photo following a captive-carry flight test of the Gray Wolf cruise missile prototype at Edwards Air Force Base, California, June 9 (Air Force photo by Kyle Brazier)

Gray Wolf is a DoD-directed prototype production and demonstration of low-cost, subsonic and networked collaborative cruise missiles. The missiles are designed to launch in a swarm to target enemy integrated air defense threats.

«Gray Wolf is a science & technology demonstration effort, intended as a proof of concept program», said Conor Most, 416th FLTS Flight Test Engineer. «AFRL serves as the System Program Office (SPO) for the weapon and developed the original request for proposal».

The missiles offer a stand-off solution for the warfighter through its variable payload capability. Earlier this year, the Gray Wolf’s TDI-J85 engine completed a successful flight test campaign culminating in multiple inflight windmill starts and operation at high altitude.

The program has already reached certain test milestones: Electromagnetic Interference & Compatibility (EMIC) and a «captive carry» flight. A live release test at the Naval Air Station Point Mugu Sea Test Range is scheduled later this summer.

«The EMIC check is ground check to confirm the missile is okay to fly on our specific test aircraft», Most explained. «A captive-carry flight is the first flight with the weapon; the goal is to rehearse the weapon flight profile and gather critical state/environmental data about the weapon».

Most added that the importance of successfully conducting physical tests, as opposed to laboratory-simulated, provides the Gray Wolf team with invaluable critical data.

«Getting the weapon airborne and gathering data is crucial to the development for a new weapon system like this», Most said. «With just one captive carry flight, the team learned more than in weeks or months of laboratory testing. Modeling and simulation go a long way to helping you predict how a new weapon will behave, but they will never replace actually putting the weapon on an aircraft and observing how it actually behaves in a real-world environment».

Conducting physical flight tests is critical to mission success, and the Gray Wolf test team faced challenges amidst COVID-19 restrictions as different portions of the test team were located throughout the country. Besides the test team at Edwards, the Gray Wolf tests included personnel from AFRL, Point Mugu, and others throughout the Air Force Test Center enterprise, namely at Eglin Air Force Base, Florida.

«Key support from AFRL and AFTC leadership enabled the missions to take place», said Captain Adam Corley, AFRL Gray Wolf Program Manager. «These tests overcame, and were accomplished, during the COVID-19 posture. Collaboration between Eglin, Edwards, and the Point Mugu Sea Range made these flight tests possible. Through close partnership, we were able to fly on the sea range and stream live feeds to Edwards and Eglin control rooms overcoming the travel ban issue and allowing key personnel to participate in the flight tests».

The sixth flight

A United Launch Alliance (ULA) Atlas V 501 rocket carrying the United States Space Force-7 (USSF-7) mission for the U.S. Space Force lifted off on May 17, 9:14 a.m. EDT, from Space Launch Complex-41. This marks the 84th successful launch of an Atlas V rocket, 139th launch for ULA, the second launch for the U.S. Space Force and the sixth flight of the X-37B Orbital Test Vehicle (OTV-6).

United Launch Alliance Successfully Launches the Sixth Orbital Test Vehicle for the U.S. Space Force

«The success of this mission resulted from collaboration with our customer while working through challenging, and ever changing, health and safety conditions», said Gary Wentz, ULA vice president of Government and Commercial Programs. «We were honored to partner with the U.S. Space Force to dedicate this mission to first responders, front-line workers, and those affected by COVID-19. It is truly a unique time in our history and I want to thank the entire team for their continued dedication and focus on mission success».

Along with OTV-6, this mission deployed FalconSat-8, a small satellite developed by the U.S. Air Force Academy and sponsored by the Air Force Research Laboratory (AFRL) to conduct experiments on orbit. The mission also carried two NASA experiments, including a material sample plate to determine the results of radiation and other space effects on various materials, and an experiment which will assess space effects on seeds used to grow food. Another experiment sponsored by the Naval Research Laboratory will examine the ability to transform solar power into radio frequency microwave energy which could be transmitted to the ground.

This mission launched aboard an Atlas V 501 configuration rocket that included a 5-meter-diameter payload fairing. The Atlas booster was powered by the RD AMROSS RD-180 engine, and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10C-1 engine.

ULA’s next launch is NASA’s Mars 2020 mission carrying the Perseverance rover on an Atlas V rocket. The launch is scheduled for July 17 from Space Launch Complex-41 at Cape Canaveral Air Force Station, Florida.

To date ULA has a track record of 100% mission success with 139 successful launches.

With more than a century of combined heritage, ULA is the world’s most experienced and reliable launch service provider. ULA has successfully launched more than 135 missions to orbit that provide Earth observation capabilities, enable global communications, unlock the mysteries of our solar system, and support life-saving technology.

Flight Tests

The Emerging Technology Combined Test Force (ET-CTF) successfully completed flight tests on its newest autonomous aircraft test bed last month at Edwards Air Force Base, California.

A Bob Violett Models ‘Renegade’ commercial, off-the-shelf, turbine-powered jet aircraft, is parked at a dry lake bed prior to a test flight at Edwards Air Force Base, March 4. The aircraft will be used as an autonomous software test bed by the 412th Test Wing’s Emerging Technology Combined Test Force (Air Force photo by Chris Dyer)

The flight tests are in support of the Skyborg project with the goal to ultimately provide an autonomous software testing package.

«We are doing function check flights of the BVM (Bob Violett Models) ‘Renegade’ commercial, off-the-shelf, turbine-powered jet aircraft», said Captain Steve DiMaio, ET-CTF, 412th Test Wing. «It is in support of the Skyborg test program testing autonomy. Currently, today we are just doing a build-up approach of expanding the envelope of the airplane, making sure all of our tunes on our autopilot are correct».

The Skyborg program is a developing software tool spearheaded by the Air Force Research Laboratory (AFRL) that will allow engineers and researchers to develop autonomous capabilities. AFRL plans to have Skyborg as an Early Operational Capability as early as 2023. The ET-CTF is producing software for testing autonomous aircraft and to make them safer.

Variations of artificial intelligence such as the Automatic Ground and Air Collision Avoidance Systems have been proven to have save lives and aircraft.

The Renegade aircraft falls under the Group 3 classification of unmanned aerial systems as prescribed by the Department of Defense. This classification is for Unmanned Aircraft System (UAS) jets weighing more than 55 lbs./25 kg but less than 1,320 lbs./599 kg. The jet can also fly at speeds of 200 knots, or around 230 mph/370 km/h.

«It’s very similar to the previous aircraft that we used, which was called a Shockwave», DiMaio said. «This is slightly bigger; carry a little more gas (with) a bigger engine, not necessarily faster, but it is a great test bed because we have a larger payload capacity. We also have longer flight time and added capability just by that larger capacity inside».

The ET-CTF team, along with their mission partners, produce software for their test beds that push flight safety envelopes to help develop test safety procedures and requirements in the development of the Skyborg program. Engineers are able to install software updates to the aircraft and then study its flight characteristics and behavior to ensure the computer codes produce no harm to the jet and does as it is intended.

The ET-CTF team completed at total of five test flight missions with the Renegade in March, however because of recent minimum manning postures due to the COVID-19 coronavirus outbreak, the team has had to rework their upcoming test missions, said John Wilson, ET-CTF Deputy Director.

«The COVID HPCON (Health Protection Condtion) limitations are impacting the next flight of the Renegade», Wilson said. «There are plans to continue to fly the Renegade in the future, but the flights are on hold due to COVID and our current minimum manning posture».

Wilson explained that while the ET-CTF’s mission partners may have travel limitations, ET-CTF is working with them for future flight tests, and in the meantime, the unit is working on furthering their own skill sets.

«There may be opportunity for continued training as ET CTF works to maintain pilot currency», he said.

The recently completed flight testing in March was a success for the ET-CTF and the Skyborg program according to Lieutenant Colonel David Aparicio, ET-CTF Director. It proved the viability of a surrogate small UAS aircraft at a higher speed regime, greater endurance, and a larger payload capacity than previous test campaigns.

«As the 412th Test Wing continues to seek ways to support the 2018 National Defense Strategy, affordable high-speed surrogate aircraft like the Renegade are invaluable to lowering the risk to future autonomy research and development programs», he said.

Despite the current travel restrictions and COVID-19 health protection conditions, ET-CTF and its mission partners are continuing to make advances in autonomy flight test. ET-CTF continues to develop test plans and procedures remotely with its team of operators and engineers. Additionally, ET-CTF developed some innovative procedures to protect its team while providing an ever-ready test capability to support the Warfighter, Aparicio added.

Valkyrie

The Air Force Research Laboratory (AFRL), along with partner Kratos Defense & Security Solutions, Inc., completed the successful fourth flight test of the XQ-58A Valkyrie low-cost Unmanned Air Vehicle (UAV) demonstrator January 23, 2020, at Yuma Proving Ground, Arizona.

The Air Force Research Laboratory and Kratos Defense & Security Solutions, Inc., completed the successful fourth flight of the XQ-58A Valkyrie demonstrator, a long-range, high subsonic unmanned air vehicle, at Yuma Proving Grounds, Arizona, on January 23, 2020. The vehicle is pictured here during a 2019 flight (U.S. Air Force photo/2nd Lieutenant Randolph Abaya, 586 Flight Test Squadron)

During the test event, the Valkyrie demonstrator’s flight successfully met all of the test objectives, and the envelope was expanded beyond prior tests before safely landing in the Arizona desert. According to AFRL XQ-58A Valkyrie Program Manager Michael Wipperman, flying at higher altitude allowed researchers to gather data in an operational environment more representative of real-world flight conditions.

«Flying at this altitude helped us gather important data such as vehicle response to temperature and vibration, which will prepare us as we move toward our next flight test», said Wipperman.

This test event represents a return-to-flight for the XQ-58A Valkyrie, which experienced a mishap upon landing after a successful 90-minute flight in October 2019. Following a Safety Investigation Board probe into the mishap, Wipperman says the resulting information was outbriefed to the convening authority, and the recommendations were taken and approved to ensure the success of this latest test.

«We’re very pleased with the outcome of this fourth flight test», said Wipperman. «We were able to show recovery for a successful flight at even higher altitudes. Given that we have overcome these challenges, we have confidence that the aircraft can continue its progression into flying in more representative conditions».

Developed as part of AFRL’s Low Cost Attritable Aircraft Technology portfolio, the XQ-58A Valkyrie is designed to be a runway-independent, reusable unmanned air vehicle capable of a broad range of operational missions. The XQ-58A Valkyrie was developed through low cost procurement and is designed to be significantly less expensive to operate than traditional piloted or unpiloted vehicles, while capable of achieving the same critical missions. Taking only 2.5 years from contract award to first flight, it is the first example of a class of unmanned air vehicles developed through this time-saving process, which seeks to break the escalating cost trajectory of tactically relevant aircraft.

A total of five flights are planned for the XQ-58A Valkyrie, with objectives that include evaluating system functionality, aerodynamic performance, and launch and recovery systems. The fifth flight, scheduled for later this year, will be a capability demonstration showcasing the ability of the vehicle to support operational needs.