Tag Archives: AESA

Next Generation Sensor

Lockheed Martin will unveil its next generation air and missile defense radar demonstrator at the annual Space & Missile Defense Symposium this week in Huntsville, Alabama. The Active Electronically Scanned Array (AESA) Radar for Engagement and Surveillance (ARES) is a representative full-scale prototype of the technology to support a modern, 360-degree capable sensor that the U.S. Army will use to address current and emerging air and ballistic missile threats.

Lockheed Martin’s radar technology demonstrator is being developed to serve as the next generation sensor specifically designed to operate within the U.S. Army Integrated Air & Missile Defense (IAMD) framework (Photo courtesy Lockheed Martin)
Lockheed Martin’s radar technology demonstrator is being developed to serve as the next generation sensor specifically designed to operate within the U.S. Army Integrated Air & Missile Defense (IAMD) framework (Photo courtesy Lockheed Martin)

This fractional array is representative of Lockheed Martin’s potential Lower Tier Air & Missile Defense Sensor (LTAMDS) solution, built on a modular and scalable architecture to scale to the Army’s requirements, once finalized, to replace the aging Patriot MPQ-65 radar. The array on display in Huntsville will be used to mature technology and verify performance to ensure uniform 360-degree threat detection and system performance.

«Incremental upgrades to the existing Patriot radar no longer address current sustainment issues, current threat performance shortcomings, or provide growth for future and evolving threats», said Mark Mekker, director of next generation radar systems at Lockheed Martin. «Lockheed Martin is prepared to offer a next generation missile defense system that will leverage advances in radar technology to provide a modular, scalable architecture and reduce the total cost of ownership well over its 30-year lifecycle».

Lockheed Martin’s active electronically scanned array (AESA) technology incorporates Gallium Nitride (GaN) transmitter technology and advanced signal processing techniques including recently developed and proven 360-degree sensor/fire control algorithms based on advanced threat sets. These technologies and concepts have been fully integrated into both demonstration and production systems resulting in the industry’s first fielded ground based radars with GaN technology.

The AESA technology is also in use in the AN/TP/Q-53 radar system, which Lockheed Martin designed, developed and delivered to the Army on an urgent need timeline in under 36 months, and which continues to be scaled to address emerging threats.

«Our solution for the U.S. Army’s new air and missile defense sensor is not a new-start program. It’s a combination of technology maturation over several years and includes capability leveraged from our current development programs and battlefield-proven radars. We rely heavily on our modern radar systems such as the Q-53 and the Long Range Discrimination Radar (LRDR) to rapidly bring low-risk, proven technology to the warfighter», Mekker said. «We look forward to the opportunity to participate in this competition that will ultimately drive up performance and reduce costs for the U.S. Army».

As a proven world leader in systems integration and development of air and missile defense systems and technologies, Lockheed Martin delivers high-quality missile defense solutions that protect citizens, critical assets and deployed forces from current and future threats. The company’s experience spans radar and signal processing, missile design and production, hit-to-kill capabilities, infrared seekers, command and control/battle management, precision pointing and tracking optics, as well as threat-representative targets for missile defense tests.

Missile Defense Radar Technology

C-RAM Test

The U.S. Army selected Northrop Grumman Corporation’s Highly Adaptable Multi-Mission Radar (HAMMR) to demonstrate its multi-mission capability at the 2017 counter-rocket, artillery and mortar (C-RAM) test at Yuma Proving Ground earlier this year.

HAMMR incorporates an Active Electronically Scanned Array fighter radar mounted on a ground vehicle or towable trailer to provide continuous 360-degree protection against multiple ground and airborne targets – all while operating on-the-move so soldiers on the ground can maintain their operational pace without sacrificing protection
HAMMR incorporates an Active Electronically Scanned Array fighter radar mounted on a ground vehicle or towable trailer to provide continuous 360-degree protection against multiple ground and airborne targets – all while operating on-the-move so soldiers on the ground can maintain their operational pace without sacrificing protection

HAMMR is a multi-mission sensor that provides the warfighter with situational awareness, counter-fire operations, air defense, early warning and airspace management capabilities. During this test, the system successfully detected and identified Groups I and II unmanned aerial systems, providing real-time situational awareness to the operator. HAMMR also validated its ability to connect to the Army’s Forward Area Air Defense command and control system, which enables the communication of information from the system back to the force.

HAMMR incorporates an Active Electronically Scanned Array (AESA) fighter radar mounted on a ground vehicle or towable trailer to provide continuous 360-degree protection against multiple ground and airborne targets – all while operating on-the-move so soldiers on the ground can maintain their operational pace without sacrificing protection. The modular self-contained system includes on-board prime power and cooling, AESA and radar electronics, and operator/maintainer display modules. These modules support multiple packaging concepts, making HAMMR easily adaptable to multiple vehicle types, fixed installations and C2 interfaces.

«HAMMR is the only AESA radar out there today that can support our maneuver forces’ on-the-move multi-mission operation», said Roshan Roeder, vice president, mission solutions, Northrop Grumman. «Since HAMMR shares common hardware with our fighter aircraft radars, our customers realize the cost advantages of high-volume AESA production and benefit from the inherent reliability of this mature, proven technology».

A look into the future

Raytheon Company has given the U.S. Army a look into the future of missile defense technology, as the company provided its comprehensive vision for the next generation of air and missile defense radar. The information was supplied to the U.S. Army as part of its process to define the requirements for a future Lower Tier Air and Missile Defense Sensor (LTAMDS).

Raytheon's re-engineered Patriot radar prototype uses two key technologies – active electronically scanned array, which changes the way the radar searches the sky; and gallium nitride circuitry, which uses energy efficiently to amplify the radar's high-power radio frequencies
Raytheon’s re-engineered Patriot radar prototype uses two key technologies – active electronically scanned array, which changes the way the radar searches the sky; and gallium nitride circuitry, which uses energy efficiently to amplify the radar’s high-power radio frequencies

«Raytheon’s solution for the LTAMDS is based on the more than $200 million that the company has invested in Gallium Nitride (GaN) powered Active Electronically Scanned Array (AESA) technology», said Ralph Acaba, vice president of Integrated Air and Missile Defense at Raytheon’s Integrated Defense Systems business. «Raytheon showed it can quickly and affordably design, build, test and field a GaN-based AESA radar capable of defeating all threats when we exhibited a potential LTAMDS solution at the winter AUSA tradeshow this past March».

Raytheon’s GaN-based AESA LTAMDS radar is designed to serve as a sensor on the Integrated Air and Missile Defense Battle Command System (IBCS) network. It will be fully interoperable with NATO, and also retains backwards compatibility with both the current Patriot system and any future system upgrades fielded by any of the 13-nations that currently own Patriot.

«Others may draw on lesson learned from the terminated Medium Extended Air Defense System (MEADS) air and missile defense project or repeatedly re-baselined naval radars; Raytheon’s LTAMDS solution builds on successful programs such as the U.S. Navy’s Next Generation Jammer (NGJ) and the Air and Missile Defense Radar (AMDR)», said Doug Burgess, director of Integrated Air and Missile defense AESA programs. «Our response, and our AESA GaN radar rollout at AUSA show there doesn’t need to be a wait of a decade or longer to get the sensor of the future. It will be available much, much sooner».

 

About GaN

Raytheon has been leading the innovation and development of GaN for 17 years and has invested more than $200 million to get this latest technology into the hands of the military faster and at lower cost and risk. Raytheon has demonstrated the maturity of the technology in a number of ways, including exceeding the reliability requirement for insertion into the production of military systems.