Vertical Take-Off

A UK test team including personnel from BAE Systems, has successfully completed initial aircraft handling trials for ASRAAM (Advanced Short Range Air-to-Air Missile) and Paveway IV weapons on the Lockheed Martin F-35B Lightning II aircraft at Patuxent River Naval Air Station in Maryland, United States.

A US Marine Corps F-35B is shown here carrying two Asraam air-to-air missiles and four Paveway IV laser-guided bombs during initial weapon trials in the US
A US Marine Corps F-35B is shown here carrying two Asraam air-to-air missiles and four Paveway IV laser-guided bombs during initial weapon trials in the US

The trial or «dummy» weapons rounds, which are identical in fit and form to the operational weapons, were tested on the Short Take-off Vertical Landing (STOVL) F-35B for the first time during a series of flights from the U.S. Navy’s test facility at Patuxent River Naval Air Station. The initial tests are an important step in integrating weapons onto the F-35B, allowing test pilots to understand how they affect the way the aircraft performs and handles.

The UK’s Royal Air Force (RAF) already uses ASRAAM and Paveway IV on its existing combat air fleet. The successful tests are a step towards full interoperability between the current and future fast jets that will be used by the RAF and the UK’s Royal Navy from 2018.

Two F-35B STOVL aircraft, flown by Billie Flynn, Lockheed Martin’s F-35 test pilot and Squadron Leader Andy Edgell from the RAF, completed nine flights with MBDA’s ASRAAM missiles and Raytheon’s Paveway IV laser guided bombs. The flights involved different configurations of both weapons types on the aircraft.

A United Kingdom Royal Air Force test pilot takes off from the USS Wasp on Aug. 13, 2013. The flight marked the first time a U.K. military pilot flew an F-35B short takeoff mission at sea
A United Kingdom Royal Air Force test pilot takes off from the USS Wasp on Aug. 13, 2013. The flight marked the first time a U.K. military pilot flew an F-35B short takeoff mission at sea

The successful tests will be followed by the next stage of weapons testing due to take place in early 2015. These tests will involve weapon separation and then guided releases of both ASRAAM and Paveway IV from the aircraft.

BAE Systems’ lead test pilot for F-35, Pete Wilson, said: «The team at Patuxent River has got over two thousand hours of flying under their belts for the F-35B variant and the handling and performance of the aircraft has shone through throughout. These latest trials were no exception and help us to move confidently into the next phase of weapons testing».

J.D. McFarlan, Lockheed Martin’s Vice President for F-35 Test & Verification from the Joint Strike Fighter programme added: «These trials show the truly international nature of the F-35 enterprise – being led out of a U.S. Navy facility, involving a joint U.K. Ministry of Defence and industry team, working alongside the U.S. Department of Defence and Lockheed Martin. And the test results for one partner will benefit all, further demonstrating the versatility and capability of the F-35 as a multi-role platform».

An F-35B test aircraft flies in short takeoff/vertical landing mode in November 2013
An F-35B test aircraft flies in short takeoff/vertical landing mode in November 2013

Modern security challenges require a wide distribution of forces and the ability to operate successfully in a broad range of scenarios. Protecting freedom and ensuring security in today’s battlespace calls for an unprecedented aircraft.

For the first time in aviation history, the most lethal fighter characteristics – supersonic speed, radar-evading stealth, extreme agility and Short Take-off Vertical Landing – have been combined in a single platform; the F-35B.

With the F-35B Lightning II in their fleet, expeditionary forces, like the U.S. Marine Corps, have a decisive advantage over their adversaries. The F-35B’s versatility, as demonstrated onboard the USS Wasp (LHD-1), will revolutionize expeditionary combat power in all threat environments by allowing operations from major bases, damaged airstrips, remote locations and a wide range of air-capable ships. The F-35B gives warfighters the ability to accomplish their mission, wherever and whenever duty calls.

F-35B test aircraft BF-1 lands aboard the USS Wasp for the first time on Aug. 12, 2013. The landing marked the beginning of Developmental Test Phase Two for the F-35’s short takeoff/vertical landing variant
F-35B test aircraft BF-1 lands aboard the USS Wasp for the first time on Aug. 12, 2013. The landing marked the beginning of Developmental Test Phase Two for the F-35’s short takeoff/vertical landing variant

 

F-35B SPECIFICATIONS

Length:                                                            51.2 ft/15.6 m

Height:                                                            14.3 ft/4.36 m

Wingspan:                                                     35 ft/10.7 m

Wing area:                                                     460 ft2/42.7 m2

Horizontal tail span:                                21.8 ft/6.65 m

Weight empty:                                            32,300 lb/14,651 kg

Internal fuel capacity:                             13,500 lb/6,125 kg

Weapons payload:                                    15,000 lb/6,800 kg

Maximum weight:                                     60,000 lb class/27,215 kg

Standard internal weapons load:     Two AIM-120C air-to-air missiles

Two 2,000-pound (907 kg) GBU-31 JDAM (Joint Direct Attack Munition) guided bombs

F135-PW-600 engine for F-35B Short Take Off and Vertical Landing (STOVL)
F135-PW-600 engine for F-35B Short Take Off and Vertical Landing (STOVL)

Propulsion (uninstalled thrust ratings):                F135-PW-600

Maximum Power (with afterburner):                     41,000 lbs/182,4 kN/ 18,597 kgf

Military Power (without afterburner):                  27,000 lbs/120,1 kN/ 12,247 kgf

Short Take Off Thrust:                             40,740 lbs/181,2 kN/18,479 kgf

Hover Thrust:                                                40,650 lbs/180,8 kN/18,438 kgf

Main Engine:                                                  18,680 lbs/83,1 kN/8,473 kgf

Lift Fan:                                                             18,680 lbs/83,1 kN/8,473 kgf

Roll Post:                                                           3,290 lbs/14,6 kN/1,492 kgf

Length:                                                               369 in/9.37 m

Main Engine Inlet Diameter:                 43 in/1.09 m

Main Engine Maximum Diameter:     46 in/1.17 m

Lift Fan Inlet Diameter:                            51 in/1,30 m

Lift Fan Maximum Diameter:                53 in/1,34 m

Conventional Bypass Ratio:                   0.57

Powered Lift Bypass Ratio:                    0.51

Conventional Overall Pressure Ratio:         28

Powered Lift Overall Pressure Ratio:           29

An F-35B test jet takes off from the USS Wasp on Aug. 21, 2013. The takeoff was part of Developmental Test Phase Two for the F-35 short takeoff/vertical landing variant
An F-35B test jet takes off from the USS Wasp on Aug. 21, 2013. The takeoff was part of Developmental Test Phase Two for the F-35 short takeoff/vertical landing variant

Speed (full internal weapons load):                Mach 1.6 (~1,200 mph/ 1931 km/h)

Combat radius (internal fuel):                           >450 NM/833 km

Range (internal fuel):                                              >900 NM/1667 km

Max g-rating:                                                               7.0

 

Planned Quantities

U.S. Marine Corps:                                                   340;

U.K. Royal Air Force/Royal Navy:                   138;

Italy:                                                                                     30;

In total:                                                                            508

 

 

Fifth Globemaster

The Honourable Rob Nicholson, Minister of National Defence, announced that the Royal Canadian Air Force (RCAF) will acquire a fifth aircraft to augment the current CC-177 Globemaster (Boeing C-17 Globemaster III) fleet.

The CC-177 Globemaster performs touch and goes at Mountain View.On 25 April 2012, at 8 Wing Trenton, Ontario, 429 Squadron validated techniques, aircraft systems and training while performing the first Canadian Heavy Equipment Drop from a CC-177, Globemaster
The CC-177 Globemaster performs touch and goes at Mountain View.On 25 April 2012, at 8 Wing Trenton, Ontario, 429 Squadron validated techniques, aircraft systems and training while performing the first Canadian Heavy Equipment Drop from a CC-177, Globemaster

The additional CC-177 will improve the Canadian Armed Forces’ response capability to both domestic and international emergencies and provide support to a variety of missions, including humanitarian assistance, peace support and combat. The Government of Canada is committed to ensuring the men and women of Canada’s Armed Forces have the equipment they need to carry out their missions around the world.

The additional Boeing Globemaster will ease the burden on the current fleet and extend the life expectancy of the entire fleet by about seven and a half years.

With the purchase of an additional aircraft, the RCAF is projected to have at least three CC-177 aircraft available more than 90 per cent of the time to respond to concurrent international or domestic crises. This represents an increase of approximately 25 per cent.

The current fleet of Globemaster CC-177s has been playing an integral role in ferrying supplies and troops to Kuwait to establish and resupply the Canadian camp through «Operation Impact». It has also delivered essential armaments and materiel to CF-18s deployed in Lithuania in support of NATO as part of «Operation Reassurance» and the international response to Russia’s aggression against Ukraine.

The CC-177s have also been used domestically to provide support to «Operation Nanook» where they transported both equipment and personnel in Canada’s largest arctic sovereignty operation, and on «Operation Boxtop», where they provide a critical lifeline and resupplies on a semi-annual basis Canadian Forces Station Alert.

The C-177 Globmaster III carrying re-supplies lands at Canadian Forces Station (CFS) Alert in support of Operation Boxtop
The C-177 Globmaster III carrying re-supplies lands at Canadian Forces Station (CFS) Alert in support of Operation Boxtop

Canada’s defence sector will continue to benefit from the purchase of the fifth Globemaster C-17 through the Industrial and Technological Benefits Policy. Boeing’s value proposition includes strong commitments in areas such as supplier development and research and technological development to improve the competitiveness of Canada’s defence sector.

Using existing defence budgets, the acquisition project cost is estimated at $415 million, in addition to 12 years of integrated in-service support valued at $30 million.

«Our Government has made the rebuilding of Canada’s defence capability a cornerstone of our policy agenda at a time when the world remains volatile and unpredictable. Having a fifth Globemaster C-17 will significantly augment the flexibility of the Canadian Armed Forces’ strategic airlift, allowing our men and women in uniform to respond quickly when and where necessary», said Rob Nicholson, Minister of National Defence.

«The CC-177 fleet has proven to be an extremely effective fleet, one which enables large numbers of simultaneous operations even on short notice. Canada’s addition of a fifth aircraft increases the Royal Canadian Air Force’s flexibility and availability to respond to international or domestic crises», added General Tom Lawson, Chief of the Defence Staff.

 

Air – Cargo – C-17 Globemaster III

 

MQ-8C takes first flight

Northrop Grumman reported that the U.S. Navy successfully flew the MQ-8C Fire Scout system for the first time off the guided-missile destroyer, USS Jason Dunham (DDG 109), Norfolk, VA, Dec. 16, off the Virginia coast.

After more than a year of land-based testing at Point Mugu, California, the MQ-8C Fire Scout grew its sea legs, making 22 takeoffs and 22 precision landings while being controlled from the ship’s ground control station.

 A Northrop Grumman MQ-8C has completed five days of dynamic interface tests on USS Jason Dunham. (Northrop Grumman)
A Northrop Grumman MQ-8C has completed five days of dynamic interface tests on USS Jason Dunham. (Northrop Grumman)

“The MQ-8C Fire Scout’s flights from the USS Dunham represent a significant Navy milestone. This is the first sea-based flight of the MQ-8C and the first time an unmanned helicopter has operated from a destroyer,” said Capt. Jeff Dodge, Fire Scout program manager at Naval Air Systems Command. “The extended capabilities will offer the Navy a dynamic, multipurpose unmanned helicopter with increased endurance, allowing for our ship commanders and pilots to have a longer on station presence.”

“These dynamic interface tests are an essential part in clearing the operational envelope of the system and are proving the system’s ability to operate off any air-capable ship,” said George Vardoulakis, vice president for medium range tactical systems, Northrop Grumman Aerospace System. “We are on track to validate all of the critical performance parameters of this Navy asset and ready the system for deployment and operational use.”

 

 

Air – Unmanned Systems – MQ-8C Fire Scout

 

Operate Forward

The U.S. Navy has awarded General Dynamics NASSCO a $498 million contract for the detail design and construction of the Mobile Landing Platform (MLP) Afloat Forward Staging Base (AFSB). Under this option, NASSCO will provide the detail design and construction efforts to build the second AFSB of the Mobile Landing Platform-class ships. The work will be performed at NASSCO’s San Diego shipyard and is scheduled to be completed by March 2018.

SAN DIEGO (Nov. 6, 2014) The mobile landing platform Lewis B. Puller (T-MLP-3/T-AFSB-1) successfully completed launch and float-off at the General Dynamics National Steel and Shipbuilding Co. (NASSCO) shipyard.
SAN DIEGO (Nov. 6, 2014) The mobile landing platform Lewis B. Puller (T-MLP-3/T-AFSB-1) successfully completed launch and float-off at the General Dynamics National Steel and Shipbuilding Co. (NASSCO) shipyard.

The MLP AFSB – based on the hull of an Alaska-class crude oil tanker – is a flexible platform and a key element in the Navy’s large-scale airborne mine countermeasures mission. With accommodations for 250 personnel and a large helicopter flight deck (capable of fielding MH-53E Sea Dragon MCM helos), the MLP AFSB will provide a highly capable, innovative and affordable asset to the Navy and Marine Corps.

According to Sam LaGrone, USNI Online Editor at the U.S. Naval Institute, the contract modification that funds the construction follows the first AFSB – USNS Lewis B. Puller (MLP-3/AFSB-1) – that was launched at the San Diego yard on November 6, 2014. Lewis B. Puller is slated to become operational in 2015 and will likely replace the current AFSB stand in – USS Ponce (AFSB-(I)-15). The second new AFSB will most likely based in the Pacific.

Jonathan William "Jon" Greenert is a United States Navy Admiral currently serving as the 30th Chief of Naval Operations.
Jonathan William “Jon” Greenert is a United States Navy Admiral currently serving as the 30th Chief of Naval Operations

Jonathan W. Greenert, Admiral, U.S. Navy said, «The need to clear mines and support special operations forces will not end anytime soon. Moreover, because she is over 40 years old, USS Ponce (AFSB-(I)-15) will be an interim solution that will need to be replaced in the near term. To provide an AFSB for the long term, we converted one Mobile Landing Platform (MLP) and build another from the keel up that adds a flight deck, berthing, fuel storage, equipment storage, and repair spaces. Like Ponce, the new AFSBs will have a rotating crew of civilian mariners and military personnel so they can operate forward almost continuously».

«Thus, AFSBs can support patrol craft, auxiliary boats, helicopters, and special operations forces, providing a base of operations for everything from counter-piracy/smuggling, maritime security, and mine clearing to humanitarian aid and disaster relief. Although a port provides the potential for greater logistical capacity, they may not be readily available when or where they are needed most. AFSBs can operate globally in international waters, providing what may be the only way to support an important mission», added Admiral Jonathan W. Greenert.

The Chief of Naval Operations concluded by saying, «MLP/AFSBs are not a new idea, but with rotating crews and increased capacity, the MLP will dramatically improve our capability where it matters most – forward. They are a key element of my tenet to «Operate Forward», and are essential to effectively support our partners and allies in the Arabian Gulf and elsewhere».

An artist’s conception of the Afloat Forward Staging Base
An artist’s conception of the Afloat Forward Staging Base

 

General Characteristics, Montford Point Class

 

Builder:                                    NASSCO

Propulsion:                            Commercial Diesel Electric Propulsion

Length:                                     239.3 meters (785 feet)

Beam:                                        50 Meters (164 feet)

Displacement:                      78,000 tons (fully loaded)

Draft:                                         9 meters (fully loaded); 12 meters (load line)

Speed:                                       15 knots/17 mph/28 km/h

Range:                                       9500 nautical miles/17594 km

Crew:                                         34 Military Sealift Command personnel

Accommodations:              250 personnel

 

Ships:

USNS Montford Point (MLP 1)

USNS John Glenn (MLP 2)

USNS Lewis B. Puller (MLP 3/AFSB-1) – Launched November 2014

USNS (MLP 4/AFSB-2) – Under construction

 

Future is here

The first Royal Australian Air Force F-35A Lightning II jet arrived at USAF’s Luke Air Force Base. The jet’s arrival marks the first international partner F-35 to arrive for training at Luke.

Australia's first F-35, Fort Worth, Texas.  Pilot Al Norman
Australia’s first F-35, Fort Worth, Texas. Pilot Al Norman

«The Royal Australian Air Force is delighted to be the first foreign partner nation with F-35A aircraft arriving at Luke Air Force Base», Air Commodore Gary Martin, air attaché said. «This is an important milestone for Australia and we are looking forward to the commencement of our fifth-generation pilot training here at Luke in 2015».

Luke will be the central training hub for international F-35A Lightning II training. In the near future, international and U.S. students will be teamed together learning how to effectively employ the fifth-generation strike fighter.

Welcoming the aircraft, Brigadier General Scott Pleus, 56th Fighter Wing Commander said, «Today, we take another tremendous step forward in our transition to the F-35A here at Luke. Australia is the first of 10 nations that will not only become part of the Luke community, but will share in calling the West Valley a home away from home».

«Welcoming our first Australian F-35A is a special day for Luke and the community that has been so supportive of us», Brigadier Pleus said. «Luke’s mission has been to train the world’s greatest fighter pilots. We will continue on that legacy as we train the world’s best F-35 pilots».

«The collaborative training we’ll be doing here on aircraft designed with stealth, maneuverability and integrated avionics will better prepare our combined forces to assume multi-role missions for the future of strike aviation», Pleus said. «From the bed-down of the F-35 and its infrastructure to the execution of training, our partner-nations have been an important piece of Luke’s F-35A team. The relationships we’re building now will be invaluable when we deploy together around the world protecting our respective countries».

Lockheed Martin Fort Worth Texas Photo by Alex Groves
Lockheed Martin Fort Worth Texas Photo by Alex Groves

Australia’s training will be conducted in conjunction with the 61st Fighter Squadron. Other partner-nations that will be joining the U.S. and Australia in the F-35A training program here will be Turkey, Italy, Norway, and the Netherlands, in addition to Foreign Military Sales countries Japan, Korea and Israel.

According to Defense-aerospace.com, the teamwork on the F-35A is not the first time Luke Air Force Base has worked with international partners on an airframe. Luke’s Airmen currently train on base alongside pilots and maintainers from Singapore and Taiwan on the F-16.

Virtually undetectable to an enemy that cannot hide, the Conventional TakeOff and Landing (CTOL) F-35A gives the Royal Australian Air Force the power to dominate the skies – anytime, anywhere. It’s an agile, versatile, high-performance 9g multirole fighter that provides unmatched capability and unprecedented situational awareness.

The F-35A’s advanced sensor package gathers and distributes more information than any fighter in history, giving operators a decisive advantage over all adversaries. Its tremendous processing power, open architecture, sophisticated sensors, information fusion and flexible communication links make the F-35A Lightning II an indispensable tool in future homeland defense, joint and coalition irregular warfare, and major combat operations.

The F-35A brings unparalleled performance to any theater in any conflict against any threat.

AU-1 First Flight, Fort Worth, Texas.
AU-1 First Flight, Fort Worth, Texas.

 

F-35A SPECIFICATIONS

Length:                                                                          51.4 ft/15.7 m

Height:                                                                          14.4 ft/4.38 m

Wingspan:                                                                   35 ft/10.7 m

Wing area:                                                                   460 ft2/42.7 m2

Horizontal tail span:                                              22.5 ft/6.86 m

Weight empty:                                                          29,300 lb/13,290 kg

Internal fuel capacity:                                           18,250 lb/8,278 kg

Weapons payload:                                                  18,000 lb/8,160 kg

Maximum weight:                                                   70,000 lb class/31,751 kg

Standard internal weapons load:                   25 mm GAU-22/A cannon

Two AIM-120C air-to-air missiles

Two 2,000-pound (907 kg) GBU-31 JDAM (Joint Direct Attack Munition) guided bombs

F135-PW-100 engine for F-35A Conventional TakeOff and Landing (CTOL)
F135-PW-100 engine for F-35A Conventional TakeOff and Landing (CTOL)

Propulsion (uninstalled thrust ratings):      F135-PW-100

Maximum Power (with afterburner):           43,000 lbs/191,3 kN/ 19,507 kgf

Military Power (without afterburner):        28,000 lbs/128,1 kN/ 13,063 kgf

Length:                                                                            220 in/5.59 m

Inlet Diameter:                                                           46 in/1.17 m

Maximum Diameter:                                               51 in/1.30 m

Bypass Ratio:                                                               0.57

Overall Pressure Ratio:                                         28

Royal Australian Air Force Logo
Royal Australian Air Force Logo

Speed (full internal weapons load):               Mach 1.6 (~1,200 mph/ 1931 km/h)

Combat radius (internal fuel):                          >590 NM/1,093 km

Range (internal fuel):                                             >1,200 NM/2,200 km

Max g-rating:                                                              9.0

 

Planned Quantities

U.S. Air Force:                                              1,763;

Italy:                                                                         60;

Netherlands:                                                       37;

Turkey:                                                                100;

Australia:                                                            100;

Norway:                                                                 52;

Denmark:                                                              30;

Canada:                                                                  65;

Israel:                                                                      33;

South Korea:                                                      40;

Japan:                                                                     42;

In total:                                                           2,322

 

 

F-35A Lightning II CTOL (Conventional Take-off and Landing)
(http://usairforc.blogspot.ru/2014/11/f-35a-lightning-ii.html)

Upgrading the Spearfish

The UK’s Ministry of Defence has awarded BAE Systems a £270 million ($424 million) contract to upgrade the Spearfish Heavyweight Torpedo for the Royal Navy’s submarines. Following the completion of the design phase, existing torpedoes will be upgraded by BAE Systems at its Broad Oak facility in Portsmouth to the new design with initial deliveries in 2020 continuing until 2024, said BAE Systems’ representatives. Key subcontractors for the Spearfish Upgrade programme include MBDA TDW (responsible for an Insensitive Munitions warhead), Atlas Elektronik UK (fibre-optic guidance link and signal processing in the digital homing head), GE Intelligent Platforms (processing boards), and Altran (safety electronic unit).

Spearfish Heavyweight Torpedo Mod 1
Spearfish Heavyweight Torpedo Mod 1

The upgrade, known as Spearfish Mod 1 extends the life of the torpedo, improves safety through the introduction of an Insensitive Munitions warhead and by utilizing a single fuel propulsion system that will offer cost and safety benefits over the current dual-fuel (using Otto fuel II and HAP, Hydroxyl Ammonium Perchlorate) system and provides more capable data links between the weapon system and the launching vessel (replacement of the current copper/cadmium wire guidance link with a fibre-optic system). This results in capability improvements for the Royal Navy as well as significant reduction in through-life operating costs.

The anti-submarine and anti-surface Spearfish Mod 0 torpedoes are currently deployed the BAE Systems designed and built Trafalgar and Vanguard submarines, as well as the Astute Class submarines. Spearfish can be used in defensive and offensive situations and its advanced design delivers maximum warhead effectiveness at high speed with outstanding maneuverability, low radiated noise, advanced homing and sophisticated tactical intelligence.

The torpedo can operate autonomously from the time of launch and is capable of variable speeds across the entire performance envelope. Its high power density bespoke engine allows it to attain exceptional sprint speed in the terminal stage of an attack. The result is an underwater weapon that provides decisive advantage against the full range of submarine and surface threats in all operational environments. Extensive in-water testing will demonstrate consistently high performance and outstanding reliability.

Spearfish Heavyweight Torpedo Tail
Spearfish Heavyweight Torpedo Tail

John Hudson, Managing Director for BAE Systems’ UK Maritime Sector, said: «Upgrading the Spearfish Heavyweight Torpedo Mod 0 will provide sophisticated advances for the Royal Navy with increased operational advantage in the underwater domain». He continued: «As well as sustaining and creating jobs in the Solent region, the contract allows the opportunity to work on one of the most exciting development programmes in the country, underpinning BAE Systems’ position at the forefront of underwater systems development over the last 40 years».

The contract also ensures the sustainment of the UK’s torpedo manufacturing capability at BAE Systems’ Broad Oak facility in Portsmouth through to the mid-2020s, and underpins plans to maintain Spearfish in Royal Navy service beyond 2050.

MAIN CHARACTERISTICS

Length:                                              5 m

Weight:                                             <2.000 tonnes

Speed:                                                70 mph/61 Knots/113 km/h

Materials:                                        Aluminium and Titanium

Crouching Tiger

Airbus Helicopters has completed official delivery of the first two Tiger helicopters in the new HAD-E version (Helicoptero de Apoyo y Destrucción, Support and Destruction Helicopter) for the Spanish Army Airmobile Force (FAMET), said Gloria Illas, Airbus Helicopters España.

Tiger HAD-E version (Helicoptero de Apoyo y Destrucción, Support and Destruction Helicopter)
Tiger HAD-E version (Helicoptero de Apoyo y Destrucción, Support and Destruction Helicopter)

As for the combat helicopters, Tiger deliveries belong to the new HAD-E version, which offers numerous advantages compared to the HAP-E Tigers (Hélicoptère d’Appui Protection, Support and Escort Helicopter) currently in service: a new MTR390-E (Enhanced) turboshaft with 14% more power, an improved optronic vision system, Spike air-to-ground missiles, an Identification Friend or Foe (IFF) system coupled with an interrogator and a new electronic warfare and countermeasure system.

The Spanish Army purchased a total of 24 of these helicopters. To date, six HAP-E version Tiger helicopters have been delivered to the Attack Helicopter Battalion. Their satisfactory deployment in Afghanistan during 2013 represents an important milestone for this helicopter.

Tiger HAD-E
Tiger HAD-E

 

CHARACTERISTICS

 

Main Assets

Length (rotor rotating):                                                          15.82 m (51.90 ft)

Fuselage length:                                                                          13.85 m (45.43 ft)

Rotor diameter:                                                                           13.00 m (42.85 ft)

Height:                                                                                               3.84 m (12.60 ft)

Width:                                                                                                4.53 m (14.85 ft)

Disc area:                                                                                         133 m² (1,430 ft²)

 

Typical characteristics

Maxi Take-Off Weight (MTOW) – ISA (International Standard Atmosphere), SL (Sea Level):                                           6,600 kg/14,553 lb

Engine 2 × MTR 390 – Step 1-5:                                    1,092 kW/1,464 shp

Super contingency power (One Engine Inoperative):           1,322 kW/ 1,774 shp

Standard fuel capacity:                                                        1,105 kg/2,435 lb

Standard fuel capacity + external fuel tanks:         1,689 kg/3,723 lb

 

Performances

Fast cruise speed at MTOW, SL:                                     271 km/h/146 kts

Mission duration (standard):                                             2 h 30 min

Maximum endurance with external fuel tank:        5 h 00 min

Max range «armed» with standard fuel tanks:        400 NM/740 km

Max range «not armed» with external fuel tanks: 610 NM/1,130 km

 

Flight envelope

Operating temperature:         – 30°C to ISA + 35°C

Service ceiling:                              -500 m to 4000 m/-1,640 ft to 13,123 ft

Tiger HAD-E with 70 mm unguided rockets (up to 52 rockets)
Tiger HAD-E with 70 mm unguided rockets (up to 52 rockets)

 

Typical configurations

Attack

4 Air-to-Air Mistral

+ 8 Hellfire or Spike

+ 30 mm turreted gun

 

Ground

68 rockets 68 mm

or

52 rockets 70 mm

+ 30 mm turreted gun

 

Attack

2 Air-to-Air Mistral

+ 4 Hellfire or Spike

+ 34 rockets 68mm

or

26 rockets 70 mm

+ 30 mm turreted gun

 

Armed Reconnaissance

4 Air-to-Air Mistral

+ 44 rockets 68 mm

or

38 rockets 70 mm

+ 30 mm turreted gun

 

Air-to-Air combat

4 Air-to-Air Mistral

+ 30 mm turreted gun

 

Armament

30 mm turret-mounted gun (Nexter 30M781)

Total Ammunition capacity:

450 rounds;

Rate of fire: 750 rounds per minute;

Bursts: 5/10/25 bullets;

Azimuth: +/-90°;

Elevation: +28°/-25°

Optimized firing domain:

ATG (Air-To-Ground): up to 1,500 m;

ATA (Air-To-Air): up to 1,000 m

30 mm turret-mounted gun (Nexter 30M781)
30 mm turret-mounted gun (Nexter 30M781)

 

Rockets

Versatile 68 mm or 70 mm unguided rocket system (change of rocket type without change of any fixed part on helicopter)

68 mm (up to 68 rockets):

2 inner launchers of 22 rockets;

2 outer launchers of 12 rockets

70 mm (up to 52 rockets):

2 inner launchers of 19 rockets;

2 outer launchers of 7 rockets

Firing Control for:

rocket inner pods elevation;

sub-ammunition ejection delays;

rocket types

Growth potential for laser guided rockets

 

Missiles

Air-to-Air Mistral Missile:

Off boresight capability;

Multicell seeker;

2 × 2 missiles (outer launchers);

Range = up to 6000 m

Air-to-Ground missiles

Hellfire (laser guided):

2 M299 launchers × 4 missiles;

Range = 8000 m;

Self-designation or Collaborative designation;

Locked Before Launch (LOBL) or Locked After Launch (LOAL)

Spike ER:

2 × 4 missiles;

Range = 8000 m;

(Fire-and-follow) with electro-optical or fiber optics technologies

Tiger HAD-E (Spanish Army Airmobile Force)
Tiger HAD-E (Spanish Army Airmobile Force)

Swedish destroyer

Defence and Security Company Saab presented the newly developed next generation Carl Gustaf M4 at the 2014 Association of the U.S. Army exhibition in Washington D.C. The Carl Gustaf M4, known in the U.S. as M3A1 MAAWS (Multi-role Anti-armor Anti-tank Weapon System), is the latest man-portable shoulder-launched multi-role weapon system from Saab designed to provide users with flexible capability and help troops to remain agile in any scenario.

The new Carl-Gustaf M4 is a man-portable multi-role weapon system
The new Carl-Gustaf M4 is a man-portable multi-role weapon system

Since 1948, Carl Gustaf has been supporting dismounted infantry around the world in dealing with a full range of battlefield challenges. A marked evolution in the history of the system, the new Carl Gustaf M4 model meets the needs of modern conflict environments while offering compatibility with future innovations.

The new lightweight Carl Gustaf M4, weighing approximately 15 pounds (<7 kg, some 3 kg lighter than the earlier Carl Gustaf M3 and half the weight of the 14.2 kg M2 version), offers significant weight savings to the soldier. According to Nicholas de Larrinaga, IHS Jane’s Defence Weekly, this has been achieved by constructing the recoilless rifle’s barrel out of titanium, saving 1.1 kg (compared to the M3’s steel barrel), building its outer casing our of carbon fibre (saving 0.8 kg), and by redesigning the weapon’s venturi to save a further 0.9 kg. The redesign has also served to decrease the size of the Carl Gustaf, bringing the M4’s total length down to under 1,000 mm (M2 – 1,130 mm; M3 – 1,065 mm).

The M4 enables soldiers to deal with any tactical situation
The M4 enables soldiers to deal with any tactical situation

The Carl Gustaf M4’s current default sight is the same telescopic sight used on the M3 model, although it can also mount a red-dot sight or, through its integrated 1913 Picatinny rail mounts, be fitted with a variety of other sighting options.

It is also compatible with future battlefield technology such as intelligent sighting systems for programmable ammunition. With a wide variety of munitions available, it is a weapon system capable of handling multiple tactical situations, bridging the gap between full-scale operations and low intensity conflicts, and providing the modern warfighter with unprecedented flexibility and capability on the battlefield. The Carl Gustaf M4 enables soldiers to deal with any tactical situation – from neutralizing armored tanks or enemy troops in defilade, to clearing obstacles and engaging enemies in buildings.

The Carl-Gustaf M4 is compatible with all existing and future Carl-Gustaf ammunition from its wide range of anti-armour, anti-structure, anti-personnel and support rounds
The Carl-Gustaf M4 is compatible with all existing and future Carl-Gustaf ammunition from its wide range of anti-armour, anti-structure, anti-personnel and support rounds

The new generation Carl Gustaf is a further development of today’s widely deployed Carl-Gustaf M3. This «outdated» version has long been in service with the U.S. Army Rangers and has been employed by every U.S. Special Operations Force in the U.S. military. Versions of the system are in service with more than 40 nations globally.

The latest M4 design and capability enhancements were recently showcased to a select group of visitors at a ground combat systems demonstration held in Sweden. The demonstration included a comprehensive series of successful firings with a range of ammunition types against a variety of targets. The new Carl-Gustaf is attracting a high level of interest.

In addition, development does not stop here. Future complementary improvements to this new formidable system will include development of smart programmable ammunition, advanced sighting systems, and expanded confined space capabilities.

 

Little pigeons
can carry great messages

Insitu, Inc. (Bingen, Washington) is being awarded a $41,076,746 firm-fixed-price contract for the procurement of three low rate initial production RQ-21A Blackjack unmanned aircraft systems. This award provides for the procurement of the air vehicles, ground control stations, launch and recovery equipment, initial spares, and system engineering and program management (Source: US Department of Defense).

RQ-21A Blackjack
RQ-21A Blackjack

Work will be performed in Bingen, Washington, and is expected to be completed in January 2016. Fiscal 2014 procurement funds (Marine Corps) in the amount of $38,309,942 and fiscal 2015 research and development funds (Marine Corps) in the amount of $2,766,804 will be obligated at the time of award, none of which will expire at the end of the current fiscal year.

 

Mission

The RQ-21A Blackjack, a larger twin-tailed follow-on to the ScanEagle, was selected in 2010 for procurement by the Navy and Marine Corps to fill the requirement for a Small Tactical Unmanned Aircraft System (STUAS). The system provides persistent maritime and land-based tactical Reconnaissance, Surveillance, and Target Acquisition (RSTA) data collection and dissemination capabilities to the warfighter. The air vehicle’s open-architecture configuration can integrate new payloads quickly and can carry sensor payloads as heavy as 25 pounds.

The RQ-21A completed its first shipboard flight in February 2013 from the amphibious transport dock ship USS Mesa Verde (LPD-19)
The RQ-21A completed its first shipboard flight in February 2013 from the amphibious transport dock ship USS Mesa Verde (LPD-19)

 

Description

RQ-21A will consist of five air vehicles, two ground control stations and multi-mission payloads that will provide intelligence, surveillance, reconnaissance and communications relay for up to 12 hours per day continuously with a short surge capability for 24 hours a day. Payloads include day/night full-motion video cameras, infrared marker, laser range finder, communications relay package and Automatic Identification System receivers. Ancillary equipment includes launch/recovery mechanisms, tactical communications equipment and spares.

RQ-21A will have a minimal operating radius of 50 nautical miles (92,6 km) and the air vehicle will be capable of airspeeds up to 80 knots (92 mph/148 km/h) with a service ceiling of 15,000 feet (4572 m) density altitude. The fully autonomous launch and recovery system will require minimal space for takeoff and recovery from an unimproved expeditionary/urban environment, as well as from the deck of U.S. Navy ships.

The Marine Corps requirement is 32 RQ-21A systems, and the Navy requirement is 25 RQ-21A systems for shipboard, special warfare and expeditionary missions. In July 2010, the Department of the Navy awarded a contract for the design, development, integration and test of RQ-21A. The Marine Corps exercised an early operational capability option and took delivery in late 2011 of two systems.

The RQ-21A completed its first shipboard flight in February 2013 from the amphibious transport dock ship USS Mesa Verde (LPD-19). Low-rate initial production was approved in May 2013 and accepted by the Marine Corps in January 2014. Initial operational test and evaluation began January 2014 with Initial Operational Capability slated for spring 2014. The RQ-21A will be deployed by Marine UAV (Unmanned Aerial Vehicle) squadrons.

Standard Payloads: day/night, full-motion video; electro-optical/infrared cameras; mid-wave infrared imager; infrared marker; laser rangefinder; communications relay; Automatic Identification System receivers for shipping traffic data
Standard Payloads: day/night, full-motion video; electro-optical/infrared cameras; mid-wave infrared imager; infrared marker; laser rangefinder; communications relay; Automatic Identification System receivers for shipping traffic data

 

Dimensions

Length:                                                 8.2 ft/2.5 m

Wingspan:                                          16 ft/4.8 m

 

Weights

Empty structure weight:           81 lb/36 kg

Max takeoff weight:                     135 lb/61 kg

Max payload weight:                   39 lb/17 kg

 

Performance

Endurance:                                        up to 16 hours

Ceiling:                                                 >19,500 ft/5,944 m

Max horizontal speed:                90+ knots/104 mph/167 km/h

Cruise speed:                                    60 knots/69 mph/111 km/h

Engine:                                 8 HP reciprocating engine with EFI; JP-5, JP-8

 

Payload Integration

Onboard power:                             350 W for payload

Onboard connectivity:               Ethernet (TCP/IP), data encryption

 

Standard Payload Configuration

Electro-optic imager

Mid-wave infrared imager

Laser rangefinder

IR marker

Communications relay and AIS (Automatic Identification System)

 

Technicians prepare an RQ-21A Small Tactical Unmanned Aircraft System for it's first flight from the Webster Field Annex at Naval Air Station Patuxent River
Technicians prepare an RQ-21A Small Tactical Unmanned Aircraft System for it’s first flight from the Webster Field Annex at Naval Air Station Patuxent River

Workhorse for Spain

According to Mr. Julien Negrel, NHIndustries Business Director, NHI delivered to the Spanish Army Airmobile Force (FAMET) the first NH90 Tactical Transport Helicopter built in Spain. This delivery took place on Friday 19th December 2014 in Albacette, in the Airbus Helicopters Spain facility.

The Spanish version of the NH90 TTH
The Spanish version of the NH90 TTH

«This delivery is the proof that the NH90 is not only the best helicopter in its class to modernize the Spanish armed forces, but it is as well a true industrial partnership creating skilled jobs in Spain», declared Xavier Poupardin Delegated Managing Director of NHI. «The Spanish NH90 program is the result of an excellent cooperation between Industry and the Spanish Ministry of Defense, the Spanish Ministry of Industry with the support of the Directorate General of Armament and Equipment (DGAM)», added Xavier Poupardin.

The Spanish version of the NH90 TTH, the GSPA, will be the workhorse of the Spanish armed forces for the next decades, replacing several types of previous generation helicopters. Its main missions will be Tactical Troop Transport, Search and Rescue, Personnel Recovery and Medical Evacuation. NHI and Airbus Helicopters España will supply a total of 22 NH90 helicopters to the Spanish Armed Forces under a delivery schedule that continues through to 2019.

The NH90 is the optimal choice for modern operations thanks to its large full composite airframe, its excellent power to weight ratio, and its wide range of role equipment. It features a redundant Fly-by-Wire flight control system for reduced Pilot’s workload and enhanced flight characteristics.

The NH90 is proposed in two main variants, one dedicated to naval operations, the NH90 NFH (NATO Frigate Helicopter) and the NH90 TTH (Tactical Troop Transport) for land based operations. As of today, 230 helicopters have been delivered in Naval and Tactical transport variants since the beginning of the program and 51 since the beginning of 2014. They are in service in Belgium, Germany, France, Italy, The Netherlands, Sweden, Finland, Norway, Greece, Oman, Australia, New Zealand and Spain.

NH90 TTH (Tactical Troop Transport)
NH90 TTH (Tactical Troop Transport)

 

MAIN CHARACTERISTICS

 

External Dimensions

Overall dimensions (rotors turning)

Length:                                                                                19.56 m (64.18 ft)

Width:                                                                                  16.30 m (53.48 ft)

Height:                                                                                  5.31 m (17.42 ft)

 

Weights

Maximum Gross Weight:                                           10,600 kg (23,369 lb)

Alternate Gross Weight:                                            11,000 kg (24,250 lb)

Empty Weight:                                                                  6,400 kg (14,109 lb)

Useful Load:                                                                        4,200 kg (9,260 lb)

 

Cargo Capacity

Cargo Hook:                                                                        4,000 kg (8,818 lb)

Single or dual Rescue Hoist:                                      270 kg (595 lb)

Rescue Hoist on ground:                                             400 kg (880 lb)

Crew (2 + 1); 20 troops in full crashworthy or up to 12 strechers

 

Fuel Capacity

7-Cell Internal System:                                                2,035 kg (4,486 lb)

Internal Auxiliary Fuel Tanks (each):                   400 kg (882 lb)

External Auxiliary Fuel Tanks (each)                   292 kg (644 lb)

or                                                                                               500 kg (1,102 lb)

NH90 Helicopter
NH90 Helicopter

 

Internal Dimensions

Width:                                                                                    2.00 m (6.56 ft)

Length:                                                                                   4.80 m (15.75 ft)

Height:                                                                                   1.58 m (5.18 ft)

Volume:                                                                                 15.20 m³ (536.78 ft³)

Sliding doors opening:                                    1.60 × 1.50 m (5.25 × 4.92 ft)

Rear ramp opening:                                          1.78 × 1.58 m (5.84 × 5.18 ft)

 

NH90 General Performance (Basic Aircraft, at 10,000 kg)

Maximum Cruise Speed:                                               300 km/h (162 kts)

Economical Cruise Speed:                                            260 km/h (140 kts)

Maximum Rate of Climb:                                              11.2 m/s (2,200 ft/min)

OEI (One Engine Inoperative) Rate of Climb 2 min Rating:        4.3 m/s (850 ft/min)

OEI Rate of Climb Continuous Rating at 2000 m (6560 ft):       1.5 m/s (300 ft/min)

Hover Ceiling IGE (In Ground Effect):                   3,200 m (10,500 ft)

Hover Ceiling OGE (Out of Ground Effect):      2,600 m (8,530 ft)

Maximum Range:                                                               982 km (530 NM)

Maximum Range with 2,500 kg payload:             900 km (486 NM)

Maximum Endurance:                                                     5 h

Ferry Range (with Internal Aux Fuel Tanks):     1,600 km (864 NM)

GSPA Helicopter
GSPA Helicopter

 

Power System – Twin engine with dual channel FADEC

(Full Authority Digital Electronic Control)

Two Turbomecca (RTM 322-01/9 or RTM 322-01/9A enhanced version)

or

Two General Electric (GE T700/T6E1 or CT7-8F5 enhanced version)

 

NH90 Engines Power Ratings

(Uninstalled power data-ISA/Sea Level)

 

RATING                                                                                     RTM 322-01/9

OEI 30 sec (100%):                                                              2,172 kW (2,913 shp)

OEI 2 min:                                                                                 1,855 kW (2,488 shp)

OEI Continuous:                                                                   1,781 kW (2,388 shp)

AEO TOP (All Engines Operating)(30 min) (x2):1,781 kW (2,388 shp)

AEO Continuous (x2):                                                        1,664 kW (2,231 shp)

 

RATING                                                                                     GE T700/T6E1 (*)

OEI 30 sec (100%):                                                              2,095 kW (2,809 shp)

OEI 2 min:                                                                                 1,842 kW (2,470 shp)

OEI 60 min:                                                                              1,692 kW (2,269 shp)

AEO TOP (30 min) (x2):                                                    1,692 kW (2,269 shp)

AEO Continuous (x2):                                                        1,577 kW (2,115 shp)

(*) GE engines with Integrated Particle Separator (IPS)

 

Role Equipment

Door mounted pintle machine gun (7.62 mm or 12.7 mm)

Armour protection for cabin (modular)

Self-protection suite