Lightning is ready

The Marine Corps declared on July 31 that a squadron of 10 F-35B Lightning II aircraft is ready for worldwide deployment. The Marines’ declaration of Initial Operational Capability (IOC) for its squadron of F-35Bs «marks a significant milestone in the continued evolution of the F-35 Joint Strike Fighter (JSF) program», Undersecretary of Defense for Acquisition, Technology and Logistics Frank Kendall said in a statement issued on July 31.

An F-35B Lightning II prepares to taxi on the flight deck of the USS Wasp during night operations at sea as part of a Marine Corps operational test, May, 22, 2015 (U.S. Marine Corps photo by Corporal Anne K. Henry)
An F-35B Lightning II prepares to taxi on the flight deck of the USS Wasp during night operations at sea as part of a Marine Corps operational test, May, 22, 2015 (U.S. Marine Corps photo by Corporal Anne K. Henry)

«The decision was made following a thorough operational readiness inspection, which assessed the U.S. Marine Corps’ ability to employ this complex weapon system in an operational environment», Kendall continued. «This achievement is a testament to the efforts of the F-35 Joint Program Office and industry team, as well as the hard work and support from the U.S. Marine Corps».

 

The F-35 Program is on Track

«This accomplishment is an affirmation that the F-35 program is on track to deliver essential 5th generation warfighting capabilities to our U.S. services and international partners», Kendall added. «It is also a reminder that we still have work ahead to deliver the full warfighting capability required by all three services and our partners while we continue our successful efforts to drive cost out of the program».

Two F-35B Lightning II Joint Strike Fighters complete vertical landings aboard the USS Wasp (LHD-1) during the opening day of the first session of operational testing, May 18, 2015 (U.S. Marine Corps photo by Lance Cpl. Remington Hall/Released)
Two F-35B Lightning II Joint Strike Fighters complete vertical landings aboard the USS Wasp (LHD-1) during the opening day of the first session of operational testing, May 18, 2015 (U.S. Marine Corps photo by Lance Cpl. Remington Hall/Released)

Marine Fighter Attack Squadron 121, or VMFA-121, based in Yuma, Arizona, is the first squadron in military history to become operational with an F-35 variant, following a five-day operational readiness inspection, which concluded July 17, according to a news release issued on July 31 by the U.S. Marine Corps.

«I am pleased to announce that VMFA-121 has achieved Initial Operational Capability in the F-35B, as defined by requirements outlined in the June 2014 Joint Report to Congressional Defense Committees», Marine Corps General Joseph F. Dunford Jr., commandant of the Marine Corps, said in the U.S. Marine Corps release.

«VMFA-121 has ten aircraft in the Block 2B configuration with the requisite performance envelope and weapons clearances, to include the training, sustainment capabilities, and infrastructure to deploy to an austere site or a ship», Dunford continued. «It is capable of conducting close air support, offensive and defensive counter air, air interdiction, assault support escort and armed reconnaissance as part of a Marine air-ground task force, or in support of the joint force».

Dunford stated that he has his full confidence in the F-35B’s ability to support Marines in combat, predicated on years of concurrent developmental testing and operational flying.

«Prior to declaring Initial Operating Capability, we have conducted flight operations for seven weeks at sea aboard an L-Class carrier, participated in multiple large force exercises, and executed a recent operational evaluation which included multiple live ordnance sorties», Dunford said. «The F-35B’s ability to conduct operations from expeditionary airstrips or sea-based carriers provides our nation with its first 5th generation strike fighter, which will transform the way we fight and win».

F135-PW-600 engine for F-35B Short Take Off and Vertical Landing (STOVL)
F135-PW-600 engine for F-35B Short Take Off and Vertical Landing (STOVL)

 

F-35 Will Eventually Replace Legacy Aircraft

As the future of Marine Corps tactical aviation, the F-35 will eventually replace three legacy platforms: the AV-8B Harrier, the F/A-18 Hornet, and the EA-6B Prowler, according to the Marine Corps release.

«The success of VMFA-121 is a reflection of the hard work and effort by the Marines in the squadron, those involved in the program over many years, and the support we have received from across the Department of the Navy, the joint program office, our industry partners, and the undersecretary of defense», Dunford added. «Achieving Initial Operating Capability has truly been a team effort».

The Marine Corps has trained and qualified more than 50 Marine F-35B pilots and certified about 500 maintenance personnel to assume autonomous, organic-level maintenance support for the F-35B, the release said.

Marine Attack Squadron 211, an AV-8B Harrier II squadron, is scheduled to transition next to the F-35B in fiscal year 2016, according to the release. In 2018, Marine Fighter Attack Squadron 122, an F/A-18 Hornet squadron, will conduct its transition.

Arrival (Vertical landing) on USS Wasp for DT-II. Mr. Peter Wilson was the pilot on 12 August 2013
Arrival (Vertical landing) on USS Wasp for DT-II. Mr. Peter Wilson was the pilot on 12 August 2013

 

Specifications

Length 51.2 feet/15.6 m
Height 14.3 feet/4.36 m
Wingspan 35 feet/10.7 m
Wing area 460 feet2/42.7 m2
Horizontal tail span 21.8 feet/6.65 m
Weight empty 32,300 lbs/14,651 kg
Internal fuel capacity 13,500 lbs/6,125 kg
Weapons payload 15,000 lbs/6,800 kg
Maximum weight 60,000 lbs class/27,215 kg
Standard internal weapons load Two AIM-120C air-to-air missiles
Two 2,000-pound/907 kg GBU-31 JDAM (Joint Direct Attack Munition) guided bombs
Propulsion (uninstalled thrust ratings) F135-PW-600
Maximum Power (with afterburner) 41,000 lbs/182,4 kN/18,597 kgf
Military Power (without afterburner) 27,000 lbs/120,1 kN/12,247 kgf
Short Take Off Thrust 40,740 lbs/181,2 kN/18,479 kgf
Hover Thrust 40,650 lbs/180,8 kN/18,438 kgf
Main Engine 18,680 lbs/83,1 kN/8,473 kgf
Lift Fan 18,680 lbs/83,1 kN/8,473 kgf
Roll Post 3,290 lbs/14,6 kN/1,492 kgf
Main Engine Length 369 inch/9.37 m
Main Engine Inlet Diameter 43 inch/1.09 m
Main Engine Maximum Diameter 46 inch/1.17 m
Lift Fan Inlet Diameter 51 inch/1,30 m
Lift Fan Maximum Diameter 53 inch/1,34 m
Conventional Bypass Ratio 0.57
Powered Lift Bypass Ratio 0.51
Conventional Overall Pressure Ratio 28
Powered Lift Overall Pressure Ratio 29
Speed (full internal weapons load) Mach 1.6 (~1,043 knots/1,200 mph/ 1,931 km/h)
Combat radius (internal fuel) >450 NM/517.6 miles/833 km
Range (internal fuel) >900 NM/1,036 miles/1,667 km
Max g-rating 7.0
Planned Quantities
U.S. Marine Corps 340
U.K. Royal Air Force/Royal Navy 138
Italy 30
In total 508
An F-35B test jet takes off from the USS Wasp on Aug. 21, 2013. The takeoff was part of Developmental Test Phase Two for the F-35 short takeoff/vertical landing variant
An F-35B test jet takes off from the USS Wasp on Aug. 21, 2013. The takeoff was part of Developmental Test Phase Two for the F-35 short takeoff/vertical landing variant

The first Ghostrider

The first AC-130J Ghostrider landed at Hurlburt Field, Florida July 29, making it Air Force Special Operations Command’s (AFSOC’s) first AC-130J. After completing the initial developmental test and evaluation by the 413th Flight Test Squadron at Eglin Air Force Base (AFB), Florida, the aircraft will be flown by the 1st Special Operations Group (SOG) Detachment 2 and maintained by the 1st Special Operations Aircraft Maintenance Squadron (SOAMXS) during its initial operational tests and evaluations at Hurlburt Field.

A crowd gathers to view the inside of the Air Force Special Operations Command’s first AC-130J Ghostrider at Hurlburt Field, Florida, July 29, 2015. The aircrews of the 1st Special Operations Group Detachment 2 were hand selected from the AC-130 community for their operational expertise and will begin initial operational testing and evaluation of the AC-130J later this year (U.S. Air Force photo by Airman Kai White/Released)
A crowd gathers to view the inside of the Air Force Special Operations Command’s first AC-130J Ghostrider at Hurlburt Field, Florida, July 29, 2015. The aircrews of the 1st Special Operations Group Detachment 2 were hand selected from the AC-130 community for their operational expertise and will begin initial operational testing and evaluation of the AC-130J later this year (U.S. Air Force photo by Airman Kai White/Released)

«Putting it through these tests will allow us to wring out the AC-130J in a simulated combat environment, instead of the more rigid flight profiles in formal developmental testing», said Lieutenant Colonel Brett DeAngelis, the 1st SOG Detachment 2 commander. «Now that we know the equipment works when we turn it on, it’s our task to determine the best way to employ our newest asset».

«The AC-130J brings new technology to the table for AFSOC with more efficient engines, improved fuel efficiency and the ability to fly higher, further and quieter», said Master Sergeant Michael Ezell, the 1st SOAMXS production superintendent. «Additionally, the modified weapons system it possesses is a precision strike package that was collected from the older models, such as the laser-guided bombs and AGM-176 Griffin bombs, and combined to give us all the capabilities of the AC-130W Stinger II and AC-130U Spooky all in one package».

The AC-130J is a modified MC-130J Commando II, containing advanced features that will enable it to provide ground forces with an expeditionary, direct-fire platform that is persistent, suited for urban operations and capable of delivering precision munitions against ground targets.

«This is an exciting transition as we move the AC-130J from the test community to the operational community», DeAngelis said. «While we still have initial operational testing in front of us to accomplish, it will now be done by aircrews selected for their combat expertise, instead of their testing background».

A cadre of 60 aircrew and maintainers were selected by the Air Force Personnel Center to stand up the program, and there will be an additional 30 contractors to help work on the new gunship. «We will be training on the airplane, getting all the qualifications and hands-on experience we need to be able to perform operational testing in order to give an exact picture of how this plane will operate in a real-world environment», Ezell said. «Our focus right now is to learn how to maintain the aircraft and the operators will learn how to fly it and get ready for (initial operational test and evaluation), which should start later this year».

Airmen were hand selected to work on the new AC-130J; they encompass a solid background and level of expertise on C-130Js. The maintenance team cadre came from Little Rock AFB, Arkansas, Dyess AFB, Texas, Kirtland AFB, New Mexico, Davis-Monthan AFB, Arizona, and Cannon AFB, New Mexico.

«As more AC-130Js are produced and delivered, the older models will slowly be retired», DeAngelis said. «Until then, we’ll hold on to them while the AC-130J completes operational tests and the fleet becomes abundant in numbers».

Operational testing is expected to be complete in spring 2016.

«Detachment 2’s mission is simple; ‘Get it right,’» DeAngelis said. «And we have the right group of people to do just that».

Master Sergeant James Knight right, an 18th Flight Test Squadron aerial gunner, instructs Staff Sergeant Rob Turner, left, a 1st Special Operations Group Detachment 2 aerial gunner, on new changes regarding preflight inspections in an AC-130J Ghostrider on Eglin Air Force Base, Florida, July 29, 2015 (U.S. Air Force photo/Senior Airman Christopher Callaway)
Master Sergeant James Knight right, an 18th Flight Test Squadron aerial gunner, instructs Staff Sergeant Rob Turner, left, a 1st Special Operations Group Detachment 2 aerial gunner, on new changes regarding preflight inspections in an AC-130J Ghostrider on Eglin Air Force Base, Florida, July 29, 2015 (U.S. Air Force photo/Senior Airman Christopher Callaway)

 

AC-130J Ghostrider

 

Mission

The AC-130J Ghostrider’s primary missions are close air support and air interdiction. Close air support missions include troops in contact, convoy escort and point air defense. Air interdiction missions are conducted against preplanned targets or targets of opportunity and include strike coordination and reconnaissance. The AC-130J will provide ground forces an expeditionary, direct-fire platform that is persistent, ideally suited for urban operations and delivers precision low-yield munitions against ground targets.

 

Features

The AC-130J is a highly modified C-130J aircraft that contains many advanced features. It contains an advanced two-pilot flight station with fully integrated digital avionics. The aircraft is capable of extremely accurate navigation due to the fully integrated navigation systems with dual inertial navigation systems and Global Positioning System. Aircraft defensive systems and color weather radar are integrated as well. The aircraft is capable of Air Refueling with the Universal Air Refueling Receptacle Slipway Installation (UARRSI) system. To handle power requirements imposed by the advanced avionics and aircraft systems, the AC-130J is equipped with 60/90 kilo volt amp generators that provide increased DC electrical output. In anticipation of IR countermeasure installation, it is provisioned for Large Aircraft Infrared Countermeasures (LAIRCM) installation.

Additionally, the AC-130J is modified with a precision strike package, which includes a mission management console, robust communications suite, two electro-optical/infrared sensors, advanced fire control equipment, precision guided munitions delivery capability as well as trainable 30-mm and 105-mm weapons. The mission management system will fuse sensor, communication, environment, order of battle and threat information into a common operating picture.

 

Background

The AC-130J is the fourth generation gunship replacing the aging SOF fleet of 37 AC-130H/U/W gunships. AC-130 gunships have an extensive combat history dating to back to Vietnam where gunships destroyed more than 10,000 trucks and were credited with many life-saving close air support missions. Over the past four decades, AC-130s have deployed constantly to hotspots throughout the world in support of special operations and conventional forces. In South America, Africa, Europe and throughout the Middle East, gunships have significantly contributed to mission success.

The first AC-130J aircraft is scheduled to begin developmental test and evaluation in January 2014. The first squadron will be located at Cannon Air Force Base, New Mexico, while other locations are to be determined. Initial operational capacity is expected in fiscal 2017 and the last delivery is scheduled for fiscal 2021. The aircraft was officially named Ghostrider in May 2012.

Major Jason Fox, a 18th Flight Test Squadron pilot, delivers the Air Force Special Operations Command’s first AC-130J Ghostrider to the 1st Special Operations Wing on Hurlburt Field, Florida, July 29, 2015 (U.S. Air Force photo/Senior Airman Christopher Callaway)
Major Jason Fox, a 18th Flight Test Squadron pilot, delivers the Air Force Special Operations Command’s first AC-130J Ghostrider to the 1st Special Operations Wing on Hurlburt Field, Florida, July 29, 2015 (U.S. Air Force photo/Senior Airman Christopher Callaway)

 

General Characteristics

Primary Function Close air support and air interdiction with associated collateral missions
Builder Lockheed Martin
Power Plant 4 × Rolls-Royce AE 2100D3 Turboprops
Thrust 4 × 4,591 shaft horsepower
Wingspan 132 feet 7 inch/39.7 m
Length 97 feet 9 inch/29.3 m
Height 38 feet 10 inch/11.9 m
Speed 362 knots/416.6 mph/670.4 km/h at 22,000 feet/6,705.6 m
Ceiling 28,000 feet/8,534.4 m with 42,000 lbs/19,051 kg payload
Maximum Take-Off Weight (MTOW) 164,000 lbs/74,389 kg
Range 2,607 NM/3,000 miles/4,828 km
Crew Two pilots
Two combat systems officers
Three enlisted gunners
ARMAMENT
Precision Strike Package (PSP) 30-mm GAU-23/A cannon
105-mm cannon
SOPGM (Standoff Precision Guided Munitions) GBU-39 Small Diameter Bomb
AGM-176 Griffin missile
Unit Cost $109 million (fiscal 2010 dollars)
Inventory Active force, 32 by fiscal 2021
AFSOC flight crew inspects the armament of the first AC-130J Ghostrider gunship to arrive at Hurlburt Field in Florida. The air force expects to field 32 such aircraft once deliveries are complete (Source: US Air Force)
AFSOC flight crew inspects the armament of the first AC-130J Ghostrider gunship to arrive at Hurlburt Field in Florida. The air force expects to field 32 such aircraft once deliveries are complete (Source: US Air Force)

First Growler

The Royal Australian Air Force (RAAF) received on July 30 its first EA-18G Growler. Prime contractor Boeing and the U.S Navy formally presented the aircraft to the RAAF at a ceremony in St. Louis in the United States. Former Chief of Air Force, Air Marshal Geoff Brown (ret’d), who represented the RAAF at the ceremony, confirmed that Australia would be the first nation outside the United States to fly the airborne electronic attack platform.

Boeing unveils first Royal Australian Air Force EA-18G Growler at a rollout ceremony July 29 in St. Louis, Missouri
Boeing unveils first Royal Australian Air Force EA-18G Growler at a rollout ceremony July 29 in St. Louis, Missouri

«The Growlers will complement our existing and future air combat capability, and ours will be a much more lethal force with this advanced technology», Air Marshal Brown said. «In many respects, it’s the final piece of the air power jigsaw puzzle for the RAAF, and my prediction is it will have one of the biggest strategic effects for the Australian Defence Force since the introduction of the F-111 in the 1970s».

A derivative of the F/A-18F Super Hornet, the EA-18G Growler is the only aircraft in production providing tactical jamming and electronic protection. The Growler will enhance Air Force’s current fleet of 24 Super Hornets and future fleet of F-35A Lightning II Joint Strike Fighters (JSF), and advances «Plan Jericho», the initiative to transform the Air Force into an integrated, networked force able to deliver air power in all operating environments. Growler will also be a key enabler for both maritime and land forces.

The first aircraft to be delivered, A46-301, made its first flight on July 13 but was formally presented in front of RAAF and U.S. Navy representatives, Boeing employees and the Governor of Missouri, Jay Nixon. «The aircraft will now fly to Naval Air Station China Lake, California, for flight testing and then Naval Air Station Whidbey Island, Washington State, where RAAF operators will continue training with U.S. Navy aircrew to gain expertise in the highly technical electronic warfare mission», Air Marshal Brown said.

The second RAAF Growler has also made its first flight, while the following 10 aircraft are in various stages of assembly at Boeing’s St. Louis plant. On current plans, all 12 aircraft will arrive in Australia by the end of 2017.

The Royal Australia Air Force’s first Growler demonstrates capabilities in its first flight demonstration
The Royal Australia Air Force’s first Growler demonstrates capabilities in its first flight demonstration

 

Technical Specifications

Length 60.2 feet/18.3 m
Height 16 feet/4.9 m
Wing Span 44.9 feet/13.7 m
Weight Empty 33,094 lbs/15,011.2 kg
Recovery Weight 48,000 lbs/21,772.4 kg
Internal Fuel 13,940 lbs/6,323.1 kg
Maximum External Fuel 9,744 lbs/4,419.8 kg
Engines 2 × F414-GE-400
Thrust 44,000 lbs/19,958 kgf/195.72 kN
Spot Factor 1.23
Crew One Pilot, one Weapon Systems Officer

 

Commission Submarine

The Navy commissioned its newest fast attack submarine, the USS John Warner (SSN-785), during a 10 a.m. EDT ceremony Saturday, August 1, 2015, at Naval Station Norfolk, in Norfolk, Virginia.

She will be the first in the class to be named after a person
She will be the first in the class to be named after a person

John Warner, designated SSN-785, honors Senator John W. Warner for a lifetime of service to the Commonwealth of Virginia and to the United States of America as a trusted leader, statesman and public servant. He wore the uniform of American nation as both a Marine and sailor and served as the 61st Secretary of the Navy, 1972-1974.

Chief of Naval Operations Admiral Jonathan Greenert delivered the ceremony’s principal address. Jeanne Warner, wife of Senator Warner, is serving as the ship’s sponsor. In a time-honored Navy tradition, she gave the order to «man our ship and bring her to life»!

«The commissioning of USS John Warner marks the beginning of what is expected to be 33 years of distinguished service for this great submarine – a fitting tribute to a man who served his nation for so long as a sailor, a Marine, a United States Senator and, as one of my most esteemed predecessors as Secretary of the Navy», said the Honorable Ray Mabus, Secretary of the U.S. Navy. «This ceremony is not only a celebration of a man who dedicated so much of his life to his country and to the Department of the Navy, but also a reminder of the partnership our Navy shares with the shipbuilding industry in Senator Warner’s home state of Virginia and the continued success of the Virginia-class attack submarine program».

USS John Warner (SSN-785) is the 12th Virginia-class fast attack submarine. While other Virginia-class submarines have been named after U.S. states, SSN-785 holds the distinction of being the first to be named after a person. This next-generation attack submarine provides the U.S. Navy with the capabilities required to maintain the nation’s undersea supremacy well into the 21st century. It will have improved stealth, sophisticated surveillance capabilities and special warfare enhancements that will enable them to meet the Navy’s multi-mission requirements.

USS John Warner (SSN-785) has the capability to attack targets ashore with highly accurate Tomahawk cruise missiles and conduct covert long-term surveillance of land areas, littoral waters or other sea-based forces. Other missions include anti-submarine and anti-ship warfare; mine delivery and minefield mapping. It is also designed for Special Forces delivery and support, a subject senator John Warner worked on throughout his career in the U.S. Senate.

Virginia-class submarines are built with a reactor plant that will not require refueling during the planned life of the ship – reducing lifecycle costs while increasing underway time.

 

General Characteristics

Builder Huntington Ingalls Industries Inc. – Newport News Shipbuilding
Date Deployed Jun 25, 2015
Propulsion One GE PWR S9G(*) nuclear reactor, two turbines, one shaft; 40,000 hp/30 MW
Length 377 feet/114.8 m
Beam 33 feet/10.0584 m
Hull Diameter 34 feet/10.3632 m
Displacement Approximately 7,800 tons/7,925 metric tons submerged
Speed 25+ knots/28+ mph/46.3+ km/h
Diving Depth 800+ feet/244+ m
Crew 132: 15 officers; 117 enlisted
Armament: Tomahawk missiles two 87-inch/2.2-meter Virginia Payload Tubes (VPTs), each capable of launching 6 Tomahawk cruise missiles
Armament: MK-48 ADCAP (Advanced Capability) Mod 7 heavyweight torpedoes 4 torpedo tubes
Weapons MK-60 CAPTOR (Encapsulated Torpedo) mines, advanced mobile mines and UUVs (Unmanned Underwater Vehicles)

* – Knolls Atomic Power Laboratories

The Virginia-class submarine USS John Warner (SSN-785) completed alpha sea trials on Saturday. All systems, components and compartments were tested. The submarine also submerged for the first time and operated at high speeds on the surface and underwater (Photo by Chris Oxley/HII)
The Virginia-class submarine USS John Warner (SSN-785) completed alpha sea trials on Saturday. All systems, components and compartments were tested. The submarine also submerged for the first time and operated at high speeds on the surface and underwater (Photo by Chris Oxley/HII)

 

Nuclear Submarine Lineup

Ship Yard Christening Commissioned Homeport
SSN-774 Virginia EB 8-16-03 10-23-04 Portsmouth, New Hampshire
SSN-775 Texas NNS 7-31-05 9-9-06 Pearl Harbor, Hawaii
SSN-776 Hawaii EB 6-19-06 5-5-07 Pearl Harbor, Hawaii
SSN-777 North Carolina NNS 4-21-07 5-3-08 Pearl Harbor, Hawaii
SSN-778 New Hampshire EB 6-21-08 10-25-08 Groton, Connecticut
SSN-779 New Mexico NNS 12-13-08 11-21-09 Groton, Connecticut
SSN-780 Missouri EB 12-5-09 7-31-10 Groton, Connecticut
SSN-781 California NNS 11-6-10 10-29-11 Groton, Connecticut
SSN-782 Mississippi EB 12-3-11 6-2-12 Groton, Connecticut
SSN-783 Minnesota NNS 10-27-12 9-7-13 Norfolk, Virginia
SSN-784 North Dakota EB 11-2-13 10-25-14 Groton, Connecticut
SSN-785 John Warner NNS 09-06-14 08-01-15 Norfolk, Virginia

EB – Electric Boat, Groton, Connecticut

NNS – Newport News Shipbuilding, Newport News, Virginia

Fastest delivery

The seventh C-17A Globemaster III aircraft arrived in Australia at Royal Australian Air Force (RAAF) Base Amberley on July 29, marking the fastest C-17A delivery in Australian fleet. Minister for Defence Kevin Andrews said the rapid acquisition of the aircraft is a testament to the close relationship that exists between Australia and the United States.

Arrival of the seventh Royal Australian Air Force C-17A Globemaster III at RAAF Base Amberley
Arrival of the seventh Royal Australian Air Force C-17A Globemaster III at RAAF Base Amberley

«The active involvement of a number of United States and Australian agencies has been pivotal in meeting the successful delivery of this aircraft and I applaud everyone involved in the acquisition program», Minister Andrews said. «This acquisition signifies considerable work opportunities for the local industry, with $300 million being spent to upgrade facilities. With its proven ability to transport heavy equipment, vehicles and helicopters in a short time frame, the C-17A’s capabilities are vital to Australia’s national security and safety».

Chief of Air Force Air Marshal Leo Davies, AO, CSC said the acquisition of two additional C-17A aircraft will increase the Australian Defence Force’s capacity to provide vital community and humanitarian assistance.

«The C-17A fleet has been integral to recent operations including the rapid deployment of Australian forces in support of the Iraq Government, assistance in the Queensland floods, and the recovery of MH17 victims from Eastern Ukraine», Air Marshal Davies said.

«This latest acquisition will bolster our existing fleet of strategic lift aircraft – providing vital heavy airlift support to a range of operations, and increase our capacity to provide swift disaster relief and humanitarian assistance at home and abroad. Under Plan Jericho, the Air Force is dedicated to developing a networked, future joint force that can respond across the spectrum – from combat to humanitarian support. An additional two C-17A aircraft will help us achieve that», Air Marshal Davies said.

The Government announced the acquisition of two additional C-17A aircraft in April 2015 representing a $1 billion investment in Australia’s security and Defence Force. The eighth C-17A is planned to arrive in Australia in late 2015.

On 29 July 2015, the seventh C-17A Globemaster III for the Royal Australian Air Force touched down at RAAF Base Amberley on its delivery flight to Australia
On 29 July 2015, the seventh C-17A Globemaster III for the Royal Australian Air Force touched down at RAAF Base Amberley on its delivery flight to Australia

 

Technical Specifications

 

External dimensions

Wingspan to winglet tip 169.8 ft/51.74 m
Length 174 ft/53.04 m
Height at tail 55.1 ft/16.79 m
Fuselage diameter 22.5 ft/6.86 m

 

Cargo compartment

Cargo compartment crew One loadmaster
Cargo floor length 68.2 ft/20.78 m
Ramp length 21.4 ft/6.52 m structural length
Loadable width 18 ft/5.49 m
Loadable height (under wing) 12.3 ft/3.76 m
Loadable height (aft of wing) 14.8 ft/4.50 m
Ramp to ground angle 9 degrees
Ramp capacity 40,000 lbs/18,144 kg
Aerial delivery system capacity
Pallets Eleven 463L(*) pallets (including 2 on ramp)
Single load airdrop 60,000 lbs/27,216 kg platform
Sequential loads airdrop 110,000 lbs/49,895 kg (60 ft/18.29 m of platforms)
Logistic rail system capacity Eighteen 463L(*) pallets (including 4 on ramp)
Dual-row airdrop system Up to eight 18 foot/5.49 m platforms or twelve 463L(*) pallets
Combat offload All pallets from ADS (Alternative Distribution Systems) or logistic rail systems

(*) Each 463L pallet is 88 in/2.24 m wide, 108 in/2.74 m long and 2-1/4 in/0.57 m high. The usable space is 84 in/2.13 m by 104 in/2.64 m. It can hold up to 10,000 lbs/4,500 kg of cargo (not exceeding 250 lbs/113 kg per square inch) at 8 g. Empty, each pallet weighs 290 lbs/130 kg, or 355 lbs/160 kg with two side nets and a top net.

 

Seating

Sidewall (permanently installed) 54 (27 each side, 18 in/45.72 cm wide, 24 in/60.96 cm spacing center to center)
Centerline (stored on board) 48 (in sets of six back-to-back, 8 sets)
Palletized (10-passenger pallets) 80 on 8 pallets, plus 54 passengers on sidewall seats

 

Aeromedical evacuation

Litter stations (onboard) Three (3 litters each)
Litter stations (additional kit) Nine
Total capability (contingency) 36 litters and 54 ambulatory
The aircraft, serial A41-213, will join a fleet of C-17As operated by No. 36 Squadron, providing a strategic airlift capability for Australia, as well as tactical roles such as airdrop
The aircraft, serial A41-213, will join a fleet of C-17As operated by No. 36 Squadron, providing a strategic airlift capability for Australia, as well as tactical roles such as airdrop

 

Cockpit

Flight crew 2 pilots
Observer positions 2
Instrument displays 2 full-time all-function Head-Up Displays (HUD), 4 multi-function active matrix liquid crystal displays
Navigation system Digital electronics
Communication Integrated radio management system with Communications Open System Architecture (COSA)
Flight controls system Quadruple-redundant electronic flight control with mechanical backup system

 

Wing

Area 3,800 ft2/353.03 m2
Aspect Radio 7.165
Wing sweep angle 25 degrees
Airfoil type Supercritical
Flaps Fixed-vane, double-slotted, simple-hinged

 

Winglet

Height 8.92 ft/2.72 m
Span 9.21 ft/2.81 m
Area 35.85 ft2/3.33 m2
Sweep 30 degrees
Angle 15 degrees from vertical

 

Horizontal tail

Area 845 ft2/78.50 m2
Span 65 ft/19.81 m
Aspect ratio 5.0
Sweep 27 degrees

 

Landing gear

Main, type Triple Tandem
Width (outside to outside) 33.7 ft/10.26 m
Tires 50×21-20
Nose, type Single strut, steerable with dual wheels
Tires 40×16-14
Wheelbase 65.8 ft/20.06 m

 

Engine Specifications

Thrust 40,440 lbs/179.9 kN/18,345 kgf
Weight 7,100 lbs/3,220 kg
Length 146.8 in/3.73 m
Inlet diameter 78.5 in/1.99 m
Maximum diameter 84.5 in/2.15 m
Bypass ratio 5.9 to 1
Overall pressure ratio 30.8 to 1
An eighth C-17A will be delivered to Australia by late 2015
An eighth C-17A will be delivered to Australia by late 2015

Canadian Iron Dome

Rheinmetall-Canada and ELTA Systems, an Israel Aerospace Industries (IAI) subsidiary and group, have been awarded the significant Medium Range Radar (MRR) program by the Canadian Department of National Defense (DND). The radar to be supplied for the multi-mission role is the ELTA ELM-2084 MMR «Iron Dome» radar, which includes C-RAM (Counter Rockets, Artillery and Mortars) and air-surveillance capabilities, and will be produced locally in cooperation with Rheinmetall-Canada.

The first contract is to procure 10 Medium Range Radar Systems within three years, and a second contract is for related in-service support
The first contract is to procure 10 Medium Range Radar Systems within three years, and a second contract is for related in-service support

Following an extensive competition process and demanding demonstrations, which also included live fire testing, the ELM-2084 MMR radar was selected due to its superior performance and outstanding capabilities.

The ELM-2084 MMR is an advanced three-dimensional, S-Band radar, incorporating modular and scalable architecture, and is the world-leading multi-mission system. The solid-state, electronically steered active array system incorporates Gallium Nitride (GaN) technology and offers exceptional detection and accuracy performance. The MMR is a highly mobile system, designed for fast deployment with a minimal crew.

Designed to simultaneously perform hostile weapon locating, friendly-fire ranging and air surveillance, the ELM-2084 MMR radar is able to detect rockets, artillery and mortars at long ranges, and can simultaneously engage a large number of targets. Deployed in a C-RAM role, the MMR can provide fire control when integrated with a weapons system.

Because of its superior tracking capabilities, MMR delivers a reliable and improved air situation picture as well as reliable, uninterrupted tracking of any maneuvering aircraft. Furthermore, it can detect and track low Radar Cross-Section (RCS) targets.

The delivery of the radar systems is expected to begin in 2017
The delivery of the radar systems is expected to begin in 2017

Advanced signal processing enables effective operation even in conditions of heavy clutter as well as in noisy and dense environments, with assured classification and identification of targets and superior low-altitude operation. The radar system also includes advanced Electronic Counter-Counter Measure (ECCM) capabilities.

The two companies will implement a technology transfer program in full conformity with the intent of Canada’s recently announced Defence Procurement Strategy to create local jobs and capabilities and help spur economic growth.

«This partnership with ELTA Systems is of strategic importance to Rheinmetall Canada», said Rheinmetall Canada’s President and CEO, Dr. Andreas Knackstedt. «ELTA was considered the partner of choice due to the program’s demanding requirements. The award of the MRR contract to the Rheinmetall/ELTA team is a testimony of ELTA’s leading-edge technology and know-how for which it is recognized worldwide».

«We are honored to have been selected by the Canadian Army», said Mr. Nissim Hadas, IAI Executive VP & ELTA President. «Together, with our partners in Rheinmetall-Canada, we will provide the most sophisticated C-RAM, air-surveillance and radar available, with a significant portion of the production to be performed locally in Canada».

The Medium Range Radar Project will give the Canadian Armed Forces 10 radar systems that can be transported into an operation by truck.

 

Performance Highlights

Air Surveillance Weapon Location
Detection Range 256 NM/295 miles/474 km 54 NM/62 miles/100 km
Azimuth Coverage 120º or rotating 360º 120º
Elevation Coverage Up to 50º & 100 kft Up to 50º
Accuracy High accuracy 3D measurement 0.3% Circular Error Probable (CEP)
Target Capacity Up to 1,100 targets 200 targets/min
The Medium Range Radar contracts are aligned with the Defence Procurement Strategy, which has three objectives: ensuring our men and women in uniform get the equipment they need at the right price for taxpayers; leveraging the purchase of defence equipment to create domestic jobs and growth; and streamlining defence procurement processes
The Medium Range Radar contracts are aligned with the Defence Procurement Strategy, which has three objectives: ensuring our men and women in uniform get the equipment they need at the right price for taxpayers; leveraging the purchase of defence equipment to create domestic jobs and growth; and streamlining defence procurement processes

For its home port

On Wednesday 22 July, the FREMM FFG-1001 Tahya Misr of the Egyptian navy left the Brest military port to join its homeport in Alexandria, Egypt, six months after the contract for the supply of a multi-mission frigate was signed between DCNS and the Ministry of Defence of the Arab Republic of Egypt.

The Egyptian navy is now the third navy to operate this exceptional latest-generation warship
The Egyptian navy is now the third navy to operate this exceptional latest-generation warship

DCNS quickly initiated the required adaptation and outfitting work and the training of seamen to permit the Egyptian navy to take on the ship. As early as March 2015 DCNS trained the Egyptian seamen making up this frigate’s crew. In order to operate such a highly automated ship safely, DCNS and its partners accompany the crew for a period of 15 months. The programme includes several phases: theoretical modules, on-land training using platforms and simulators and then onboard training both at the quayside and at sea.

On 23 June of this year, the FREMM Tahya Misr was transferred from DCNS to the Egyptian navy during a ceremony attended by the Egyptian and French Defence Ministers. On 22 July, the Egyptian FREMM cast off from Brest and headed to Alexandria, its homeport.

The partnership with DCNS does not, however, stop with the FREMM Tahya Misr leaving France: the contract also includes DCNS providing support services and through life support in Egypt for the next five years.

With the FREMM developed and built by DCNS, the Egyptian navy has the most modern front-line ship of the 21st century
With the FREMM developed and built by DCNS, the Egyptian navy has the most modern front-line ship of the 21st century

 

Second international success for the FREMM

The most technologically advanced and most competitive ship on the market, the FREMM meets the operational requirements of numerous navies due to its versatility and its maneuverability. Capitalizing on its unprecedented success in Europe for the firing of the naval cruise missile on board the FREMM Aquitaine on 19 May 2015, DCNS offers its clients vessels that are global references in terms of their design and construction as well as for the integration of innovative systems.

In addition, the updating of the Military Planning Law will permit DCNS to continue developing its range of ships and services and to accelerate its international development. With the kick-off of the intermediate-size frigate program, DCNS is going to propose a product, which meets the needs of the French Navy and will meet a growing international demand for front-line frigates of approximately 4,000 tons.

Currently, in the surface ship market, DCNS counts among its customers, the Royal Moroccan Navy with the delivery in January 2014 of the FREMM Mohammed VI and the Egyptian Navy with the delivery of the FREMM Tahya Misr (FFG-1001) and four GOWIND corvettes. Moreover, DCNS is building six GOWIND corvettes for the Malaysian Navy. These contracts show the success of DCNS’ products in the international market.

The Gowind 2500 multi-mission corvette is designed for surveillance, surface and subsurface combat, protection and escort naval missions
The Gowind 2500 multi-mission corvette is designed for surveillance, surface and subsurface combat, protection and escort naval missions

 

Technical characteristics of the FREMMs

Equipped with high-tech sensors and weapons, integrated with the SETIS combat system developed by DCNS, the frigate can counter all types of threats, whether air, surface, submarine or land-based. The heavily armed FREMM is equipped with the most effective weapons systems and equipment, such as the Herakles multifunction radar, the Aster and Exocet MM 40 missiles, or the MU 90 torpedoes. It is innovative and offers unequalled levels of interoperability and availability.

 

Characteristics

Total length 466 feet/142 m
Width 65.6 feet/20 m
Displacement 6,000 tonnes
Maximum speed 27 knots/31 mph/50 km/h
Operation 108 persons (including helicopter detachment)
Accommodation capacity 145 men and women
Cruising range at 15 knots/17 mph/28 km/h 6,000 nautical miles/6,905 miles/11,112 km
D651 «Normandie» FREMM multi-mission frigate (front view)
D651 «Normandie» FREMM multi-mission frigate (front view)

Specialist Vehicle

General Dynamics UK has been awarded a £390 million contract by the UK Ministry of Defence (MoD) to provide in-service support for the Scout Specialist Vehicle (Scout SV) fleet until 2024. In addition, the company is opening a new Armored Fighting Vehicle (AFV) Assembly, Integration and Testing (AIT) facility in South Wales.

Scout Specialist Vehicle
Scout Specialist Vehicle

The contract is an extension of the in-service support that General Dynamics UK was contracted to provide for the Scout SV fleet until 2020, and it includes the provision of spares and repairs for all 589 platforms. The extended in-service support contract offers a cost-effective support solution that builds upon the Scout SV manufacturing phase, taking advantage of the production pricing of parts.

With this facility investment, General Dynamics UK will undertake the assembly, integration and testing of 489 Scout Specialist Vehicle platforms. A further 100 platforms will undergo assembly, integration and testing at General Dynamics European Land Systems’ facility in Seville, Spain. The vehicles are on schedule to be delivered to the British Army from 2017 through 2024.

The new UK industrial capability, alongside the Scout SV extended in-service support contract, will support the creation of 250 new jobs in South Wales. The Scout SV programme directly supports approximately 2,650 jobs across the UK.

The investment by General Dynamics UK in this new AIT industrial capability is reaffirmation of the UK’s proud history of developing and manufacturing AFVs.

Protected Mobility Reconnaissance Support (PMRS) variant
Protected Mobility Reconnaissance Support (PMRS) variant

Prime Minister David Cameron said: «Today’s decision by General Dynamics to bring the assembly of these world class armored vehicles to South Wales is to the credit of the skills and expertise in the local area. The 250 additional new skilled jobs at General Dynamics UK will build on those already safeguarded by the decision to purchase 589 Scout vehicles for our Armed Forces, ensuring our servicemen and women have the very best equipment to keep us safe».

Defence Minister Philip Dunne said: «Increasing British jobs both at General Dynamics UK and through the supply chain, the Scout SV will make a real contribution to the UK economy over its 30 year lifespan. The decision from General Dynamics UK to create a facility in Wales to assemble and maintain this cutting-edge capability for the British Army will result in greater efficiency in maintaining vehicles, lower costs and create highly-skilled jobs in the process».

Kevin Connell, vice president of General Dynamics Land Systems – UK, said: «The UK MoD is a critical partner for General Dynamics, and today’s announcement demonstrates our commitment to delivering world-leading AFV platforms to the British Army from the UK. This new industrial capability will support the delivery of extended in-service support for Scout SV, whilst creating 250 new jobs on this important UK programme, and will open up exciting new possibilities for General Dynamics in the UK in the years ahead».

Scout SV was developed at General Dynamics UK’s AFV design and engineering center in Oakdale, South Wales. The company’s employees include highly skilled engineers who are delivering the family of best-in-class platforms. Today’s announcement creates a UK-based team of more than 550 with expertise in the design, development and AIT of AFV.

Command & Control
Command & Control

Wideband Global SATCOM

A United Launch Alliance (ULA) Delta IV rocket successfully launched the seventh Wideband Global SATCOM (WGS) communications satellite for the U.S. Air Force at 8:07 p.m. EDT on July 23 from Space Launch Complex-37. This is ULA’s seventh launch in 2015 and the second successful ULA launch in just eight days. It marks ULA’s 98th successful one-at-a-time launch since the company was formed in December 2006.

A Delta IV rocket lifts off carrying the seventh Wideband Global SATCOM satellite for the U.S. Air Force
A Delta IV rocket lifts off carrying the seventh Wideband Global SATCOM satellite for the U.S. Air Force

«Kudos to the U.S. Air Force and all of our mission partners on today’s successful launch and orbital delivery of the WGS-7 satellite. The ULA team is honored to work with these premier U.S. government and industry mission teammates and to contribute to the WGS enhanced communications capabilities to the warfighter», said Jim Sponnick, ULA vice president, Atlas and Delta Programs. «The team continues to emphasize reliability, and one launch at a time focus on mission success to meet our customer’s needs».

This mission was launched aboard a Delta IV Medium-plus (5,4) configuration Evolved Expendable Launch Vehicle (EELV) using a single ULA common booster core powered by an Aerojet Rocketdyne RS-68A main engine, along with four Orbital ATK GEM-60 solid rocket motors. The upper stage was powered by an Aerojet Rocketdyne RL10B-2 engine with the satellite encapsulated in a five-meter-diameter composite payload fairing.

Wideband Global SATCOM provides anytime, anywhere communication for the warfighter through broadcast, multicast and point-to-point connections. WGS provides essential communications services, allowing Combatant Commanders to exert command and control of their tactical forces, from peacetime to military operations. WGS is the only military satellite communications system that can support simultaneous X and Ka band communications.

In preparation for launch from Space Complex-37, the Mobile Service Tower or MST is rolled back from the ULA Delta IV rocket carrying the WGS-7 mission for the U.S. Air Force
In preparation for launch from Space Complex-37, the Mobile Service Tower or MST is rolled back from the ULA Delta IV rocket carrying the WGS-7 mission for the U.S. Air Force

ULA’s next launch is the Atlas V MUOS-4 mission for the United States Navy, scheduled for August 31 from Space Launch Complex-41 from Cape Canaveral Air Force Station, Florida.

The EELV program was established by the United States Air Force to provide assured access to space for Department of Defense and other government payloads. The commercially developed EELV program supports the full range of government mission requirements, while delivering on schedule and providing significant cost savings over the heritage launch systems.

With more than a century of combined heritage, United Launch Alliance is the nation’s most experienced and reliable launch service provider. ULA has successfully delivered more than 95 satellites to orbit that provide critical capabilities for troops in the field, aid meteorologists in tracking severe weather, enable personal device-based GPS navigation and unlock the mysteries of our solar system.

The Air Force's seventh Wideband Global SATCOM satellite, encapsulated inside a 5-meter payload fairing, is mated to a Delta IV rocket at Space Launch Complex-37
The Air Force’s seventh Wideband Global SATCOM satellite, encapsulated inside a 5-meter payload fairing, is mated to a Delta IV rocket at Space Launch Complex-37

 

Wideband Global SATCOM (WGS)

WGS-7, the first Block II Follow-on satellite, supports communications links in the X-band and Ka-band spectra. While Block I and II satellites can instantaneously filter and downlink up to 4.575 MHz from 39 primary channels, WGS-7 can filter and downlink up to 5.375 MHz from 46 primary channels.

As with the Block II satellites, WGS-7 includes a high-bandwidth Radio Frequency (RF) bypass capability, which allows for larger bandwidth allocations to users. Depending on the mix of ground terminals, data rates, and modulation and coding schemes employed, a single WGS satellite can support data transmission rates between 2.1 and 3.6 Gbps.

WGS-7 also allows for up to ~800 MHz of additional bandwidth through the use of «Redundant Port Activation».

The Air Force's seventh Wideband Global SATCOM satellite is encapsulated inside a Delta IV 5-meter payload fairing
The Air Force’s seventh Wideband Global SATCOM satellite is encapsulated inside a Delta IV 5-meter payload fairing

WGS has 19 independent coverage areas, 18 of which can be positioned throughout its field-of-view. This includes eight steerable/shapeable X-band beams formed by separate transmit/receive phased arrays; 10 Ka-band beams served by independently steerable diplexed antennas; and one transmit/receive X-band Earth-coverage beam. WGS can tailor coverage areas and connect X-band and Ka-band users anywhere within its field-of-view.

Five globally located Army Wideband SATCOM Operations Centers provide 24/7 payload monitoring and command and control of the WGS constellation. Each Global Satellite Configuration and Control Element has the capability to control up to three satellites at a time.

Spacecraft platform control and anomaly resolution is accomplished by the third Space Operations Squadron at Schriever Air Force Base in Colorado Springs, Colorado.

 

The U.S. Air Force’s seventh Wideband Global SATCOM satellite, encapsulated inside a 5-meter payload fairing, is mated to a Delta IV rocket at Space Launch Complex-37

 

A Delta IV rocket lifts off carrying the seventh Wideband Global SATCOM satellite for the U.S. Air Force. Wideband Global SATCOM provides anytime, anywhere communication for the warfighter through broadcast, multicast and point-to-point connections

 

The East Commonwealth

On July 24, a delegation headed by the Minister of National Defence of Lithuania Juozas Olekas paid a visit to Lviv, Ukraine. During the visit Minister of Defence of Poland Tomasz Semoniak and Minister of Defence of Ukraine Lieutenant General Stepan Poltorak and Minister Juozas Olekas met to sign a technical agreement on a joint military unit of the respective countries, the Lithuanian-Polish-Ukrainian Brigade (LITPOLUKRBRIG), and fundamentals of its command.

The LITPOLUKRBRIG battalions will be held on standby in their home countries, and deploy in composition of the LITPOLUKRBRIG in case a decision is made to activate the Brigade or any of its elements
The LITPOLUKRBRIG battalions will be held on standby in their home countries, and deploy in composition of the LITPOLUKRBRIG in case a decision is made to activate the Brigade or any of its elements

The technical agreement supplements and elaborates on the agreement of establishing the LITPOLUKRBRIG the defence Ministers of the three establishing countries endorsed in Warsaw last September. The technical agreement stipulates that within 6 months after the signature of the document the LITPOLUKRBRIG command will have reached its initial operational capability, while within 12 months it will be fully capable of commanding the unit. The capacity of the LITPOLUKRBRIG command will then need to be approved by international certification.

The brigade commander, his deputy and the chief of staff will be assigned by Lithuania, Poland and Ukraine for a period of three years on a rotating basis. The establishing states will delegate representatives to form a LITPOLUKRBRIG Coordination Group, which will be tasked with approving the brigade’s budget-related, or other finance, training, exercises and logistics-related planning, and with supervision of the command’s work.

While in Lviv, Minister of National Defence and his delegation will also observe Exercise Rapid Trident in Yavoriv district of Lviv region. It is an exercise the U.S. Army Europe (USAREUR) organizes in Ukraine on an annual basis. This year a contingent formed by the Grand Duchess Birutė Battalion is taking part in the exercise, also involving 17 other NATO allies and partner nations, on Lithuania’s behalf. Commander of the Lithuanian Land Force Major General Almatnas Leika will also pay a visit to Exercise Rapid Trident. The Battalion will also form the core of the Lithuanian contingent to be assigned to the trilateral LITPOLUKRBRIG Brigade.

The LITPOLUKRBRIG is planned to be made up of an international staff, three battalions and special-purpose units
The LITPOLUKRBRIG is planned to be made up of an international staff, three battalions and special-purpose units

 

Lithuanian-Polish-Ukrainian Brigade (LITPOLUKRBRIG)

The Ministers of Defence of the stablishing countries endorsed the agreement on establishing the trilateral Lithuanian-Polish-Ukrainian Brigade (LITPOLUKRBRIG) in Warsaw on 19 September 2014. Subsequently, the agreement was ratified by the parliaments of the respective countries.

The Brigade will be formed following the model of multinational crisis response capabilities – European Union Battle Groups (EU BGs). The LITPOLUKRBRIG is planned to be made up of an international staff, three battalions and special-purpose units. Lithuania, Poland and Ukraine will each assign an infantry battalion, the establishing nations will commit personnel for special-purpose units and the LITPOLUKRBRIG staff.

The agreement provides for the participation of the LITPOLUKRBRIG personnel in joint training and exercises and deployment of the Brigade or its elements to international operations mandated by the United Nations Security Council, while decision regarding deployment of the LITPOLUKRBRIG to international operations will be made by general consent of all the establishing countries.

The LITPOLUKRBRIG HQ will be based in Lublin, Poland. Lithuania plans posting up to five soldiers on a permanent basis as well as to deploy additional military personnel during LITPOLUKRBRIG training and exercises. The LITPOLUKRBRIG battalions will be held on standby in their home countries, and deploy in composition of the LITPOLUKRBRIG in case a decision is made to activate the Brigade or any of its elements.

The Lithuanian contribution to the LITPOLUKRBRIG will be formed from the personnel of the Grand Duchess Birutė Uhlan Battalion. Personnel of the Battalion were also the source of the Lithuanian input into the joint Lithuanian-Polish Battalion (LITPOLBAL) in 1999-2007. The contemporary military unit formed cooperatively with a NATO ally enabled Lithuanian solders to adopt NATO military procedures, to prepared for NATO-led multinational operations as well as to get ready for integration into NATO’s military organization. The LITPOLUKRBRIG project is also aimed strengthening regional cooperation and assisting Ukraine in taking a more active part in the cooperation in the region and Euro-Atlantic area, and adopting experience and military standards of NATO allies.

As embedded in the LITPOLUKRBRIG establishing agreement, other nations will be able to join the unit at the invitation of the establishing nations. Negotiations on the establishment of the Lithuanian, Latvian and Ukrainian trilateral military unit thus contributing to regional and wide-scale international stability and security were launched in 2007. The project also aims for strengthening the strategic partnership and defence cooperation between Lithuania and Poland and assisting Ukraine to join the cooperation in the Euro-Atlantic space on a more active basis.