Category Archives: Space

Axiom Space Station

Thales Alenia Space, Joint Venture between Thales (67%) and Leonardo (33%), and Axiom Space of Houston, Texas (USA), have signed the final contract for the development of two key pressurized elements of Axiom Space Station – the world’s first commercial space station. Scheduled for launch in 2024 and 2025 respectively, the two elements will originally be docked to the International Space Station (ISS), marking the birth of the new Axiom Station segment. The value of the contract is 110 Million Euro.

Axiom Space Station
Axiom Space Station

Axiom Station will serve as humanity’s central hub for research, manufacturing and commerce in Low Earth Orbit (LEO), expanding the usable and habitable volume of the ISS, attached to the ISS Node 2 module, built also by Thales Alenia Space. When the ISS is decommissioned, the Axiom modules will detach and operate as a free-flying, next-generation commercial space station, a laboratory and residential infrastructure in space, that will be used for microgravity experiments in-space manufacturing, critical exploration life support testing, and hosting both private and professional institutional astronauts. Axiom Space Station will be the cornerstone of a permanent, prosperous human presence and a thriving network of commercial activity in LEO, enabling new advances both on Earth and further out in space. The first two elements to be launched will accommodate up to 4 people each.

Today, in this occasion, Thales Alenia Space and the Italian Air Force have ratified a Memorandum of Collaboration, aiming to promote the access to low earth orbit in favour of institutions, the scientific community, industry and commercial operators, and the development of a research chain on strategic issues (medicine, materials, biogenetics, etc.) as well as to support the possibilities of technological development and OT&E (Operational Testing & Evaluation) in microgravity.

«The contact signed today with Axiom Space confirms the positioning of Thales Alenia Space as a leading industrial player in the New Space ecosystem, both for private and public missions», stated Massimo Claudio Comparini, Thales Alenia Space Deputy CEO and Senior Executive Vice President Observation, Exploration & Navigation business line. «With the development of more than 50% of the ISS’ habitable volume, our Company has marked the history since the origins of Orbital Infrastructures programs. Based on this unique legacy, we are pioneering the future of human presence in LEO. We are pushing back the boundaries of space exploration and setting the basis for the Lunar Gateway and the Moon’s Surfaces ecosystem that will lead manned exploration missions to the red planet by the 2030’s. Humankind’s quest of sense in space is becoming a reality and we are so proud to contribute to making it come true».

Based on its past successful experience in building modules for the International Space Station, Thales Alenia Space is responsible for the design, development, assembly and test of the primary structure and the Micrometeoroid & Debris Protection System for the two Axiom modules.

The welding activities of the primary structure of the first module will start in September 2021, with the assembly process concluding in 2022. The first module will arrive at Axiom facilities in Houston in July 2023, where Axiom will integrate and outfit the core systems and certify it for flight prior to shipping to the launch facility.

«We have convened an elite collection of expertise at Axiom to build and operate the world’s first commercial space station, and Thales Alenia Space fits right into that mold as a partner», Axiom President & CEO Michael Suffredini, who previously served as NASA’s International Space Station Program Manager from 2005 to 2015, said. «This agreement confirms the primary structures for the next-generation destination in space will be constructed with an expert touch, serving as the core of the first human-rated spacecraft to ever be assembled in Houston».

The project is currently undergoing a detailed design phase: the four radial bulkheads for the first module have been recently developed in Thales Alenia Space facilities in Turin. These bulkheads provide the structure to which radial Common Berth Mechanisms (CBMs) and hatches will attach. Together, the four bulkheads, with their accompanying hardware form a cylindrical section, providing four ports for other station elements, including docking adapters. The cylindrical protrusions seen on the bottom half of the bulkhead will serve as a connecting unit, allowing power, data, and fluids to pass from one element to another, including Axiom modules and the ISS.

 

ABOUT THALES ALENIA SPACE

Drawing on over 40 years of experience and a unique combination of skills, expertise and cultures, Thales Alenia Space delivers cost-effective solutions for telecommunications, navigation, Earth observation, environmental management, exploration, science and orbital infrastructures. Governments and private industry alike count on Thales Alenia Space to design satellite-based systems that provide anytime, anywhere connections and positioning, monitor our planet, enhance management of its resources, and explore our Solar System and beyond. Thales Alenia Space sees space as a new horizon, helping to build a better, more sustainable life on Earth. A joint venture between Thales (67%) and Leonardo (33%), Thales Alenia Space also teams up with Telespazio to form the parent companies’ Space Alliance, which offers a complete range of services. Thales Alenia Space posted consolidated revenues of approximately 1.850 billion euros in 2020 and has around 7,700 employees in 10 countries with 17 sites in Europe and a plant in the US.

First Crew Module

Northrop Grumman Corporation has finalized a contract with NASA to provide the Habitation and Logistics Outpost (HALO) module for NASA’s Gateway. Under the $935 million contract, Northrop Grumman will complete the design and development activity currently underway and will also be responsible for integrating HALO with the Power and Propulsion Element provided by Maxar Technologies.

HALO
Artist illustration of Northrop Grumman’s HALO module and the Power Propulsion Element which form the first critical component of NASA’s Gateway

HALO will be deployed in lunar orbit as the first crew module of the NASA Gateway, a space station orbiting the moon providing vital support for long-term human exploration of the lunar surface and deep space. The HALO module represents a critical component of NASA’s Gateway serving as both a crew habitat and docking hub for cislunar spacecraft, or spacecraft that navigate between the Earth and the moon. HALO will feature three docking ports for visiting spacecraft and other lunar support vehicles.

«By leveraging our active Cygnus production line, Northrop Grumman can uniquely provide an affordable and reliable HALO module, in the timeframe needed to support NASA’s Artemis program», said Steve Krein, vice president, civil and commercial satellites, Northrop Grumman. «Our team looks forward to continuing our collaboration with NASA in order to overcome the technical challenges associated with the harsh radiation and thermal environment of lunar space, as well as the unique challenge of hosting visiting crews for extended durations in this environment».

Previously, Northrop Grumman was awarded a contract to fund work through the Preliminary Design Review of HALO. This review, completed in May, confirmed the vehicle’s design and satisfied NASA’s overall Gateway requirements for the mission, including safety and reliability.

Under the new contract, Northrop Grumman, along with its industry partners and suppliers, will be working towards a Critical Design Review in the spring of 2022 and delivery of the HALO module to the launch site in 2024.

From the first lunar lander to the space shuttle boosters, to supplying the International Space Station with vital cargo, Northrop Grumman has pioneered new products and ideas that have been put into orbit, on the moon, and in deep space for more than 50 years. As a part of NASA’s Artemis program, we are building on our mission heritage with new innovations to enable NASA to return humans to the moon, with the ultimate goal of human exploration of Mars.

Northrop Grumman solves the toughest problems in space, aeronautics, defense and cyberspace to meet the ever evolving needs of our customers worldwide. Our 90,000 employees define possible every day using science, technology and engineering to create and deliver advanced systems, products and services.

Laser Interconnect

General Atomics Electromagnetic Systems (GA-EMS) announced on June 30, 2021 that, in partnership with the Space Development Agency (SDA), its Laser Interconnect and Networking Communications System (LINCS) satellites were successfully launched on the SpaceX Falcon 9 rocket as part of the Transporter-2 mission from the Kennedy Space Center, Cape Canaveral, Florida. The two 12U cubesats that make up the LINCS system were successfully deployed into orbit and have begun satellite commissioning and operations. This launch marks the first successful launch of SDA payloads since the agency was established in 2019.

LINCS
General Atomics LINCS System Launched Successfully and Deployed

«Congratulations to SDA on this historic milestone. We look forward to continue supporting them over the next several months as the GA-EMS LINCS system is used to demonstrate space-based optical communication and validate its efficacy for the future national security space architecture», stated Scott Forney, president of GA-EMS. «I am extremely proud of the GA-EMS team, whose tireless work and remarkable efforts over the past few years have led to a successful launch and deployment of this important technology».

The LINCS system is comprised of two 12U cubesats each hosting a C-band dual-wavelength full duplex Optical Communication Terminal (OCT) and an InfraRed (IR) payload, with all elements internally designed and built by GA-EMS at their facilities in San Diego, CA and Huntsville, AL. In partnership with SDA, this is among the first Department of Defense contracted efforts to develop and deploy a state-of-the-art 1550 nm OCT to test capabilities to increase the speed, reliability, distance, and variability of communication in space.

«Optical communication will significantly augment space-based communication, and the launch of the GA-EMS LINCS system is the first step in proving this critical technology in space», added Nick Bucci, vice president of Missile Defense and Space Systems. «Our next checkpoint is to establish the proper orbit, communication and control of the two spacecraft. From there, we will work with SDA and commence a series of experiments testing optical communication in a variety of operational scenarios».

Navigation Technology

The Air Force Research Laboratory (AFRL) is excited to announce that the Navigation Technology Satellite-3 (NTS-3) satellite navigation program is closer in the development of the spacecraft for its in-space demonstration, thanks to the delivery of its bus that will carry it to space in 2023.

Navigation Technology Satellite-3 (NTS-3)
The ESPAStar-D bus that will be integrated into the Air Force Research Laboratory’s Navigation Technology Satellite-3. The bus, which will serve as the body of spacecraft, was built at Northrop Grumman’s facility in Gilbert, Arizona. NTS-3 is scheduled for launch in 2023 (Courtesy photo/Northrop Grumman)

In 2019, the U.S. Air Force designated NTS-3 as one of three Vanguard programs, which are priority initiatives to deliver new, game-changing capabilities for national defense. The NTS-3 mission is to advance technologies to responsively mitigate interference to Position, Navigation and Timing (PNT) capabilities, and increase system resiliency for the U.S. Space Force’s Global Positioning System military, civil and commercial users.

Northrop Grumman Corporation recently delivered an ESPAStar-D spacecraft bus to L3Harris Technologies of Palm Bay, Florida in support of the NTS-3 mission scheduled to launch to geosynchronous orbit from Cape Canaveral in 2023.

The AFRL Transformational Capabilities Office at Wright-Patterson AFB and Space Vehicles Directorate, located at Kirtland Air Force Base (AFB) in Albuquerque, New Mexico, are in partnership with the two industry companies for the bus development and integration.

«This is the first time an ESPAStar bus has been built and delivered as a commercially-available commodity», said Arlen Biersgreen, the NTS-3 program manager. «NTS-3 is using a unique acquisition model for the ESPAStar line that fully exercises the commercial nature of Northrop Grumman’s product line, in order to provide the bus to another defense contractor for payload integration using standard interfaces».

The ESPAStar-D bus, built in Northrop Grumman’s satellite manufacturing facility in Gilbert, Arizona, includes critical subsystems such as communications, power, attitude determination and control, in addition to configurable structures to mount payloads.

A June 2021 press release from Northrop Grumman explains the company built the ESPAStar-D bus «to provide affordable, rapid access to space», and that its configuration, using an Evolved Expendable Launch Vehicle (EELV) Secondary Payload Adapter (ESPA), allows multiple separate experimental payloads to be stacked together on one launch vehicle.

It should be noted that AFRL developed the ESPA ring – a technology that revolutionized the transport of space experiments, allowing for lower-cost and more frequent «rides» to space, for government and industry users.

«The transfer of the bus allows L3Harris to move forward building the NTS-3 spacecraft», said 2nd Lt. Charles Schramka, the program’s deputy principal investigator. «L3Harris will perform tests and begin integrating the NTS-3 PNT payload onto the bus. Together the bus and payload will form the NTS-3 spacecraft».

Following L3Harris’s work, AFRL will test the bus with the NTS-3 ground control and user equipment segments, and will perform its own integrated testing on the overall NTS-3 system architecture.

Besides the bus delivery, there are other advances in the program.

Schramka said, «This month we took delivery of an experimental receiver known as Global Navigation Satellite System Test Architecture (GNSSTA), developed by our sister AFRL unit, the Sensors Directorate at Wright-Patterson AFB, Ohio and Mitre Corporation. GNSSTA is a reprogrammable software defined signal receiver that allows us to receive the legacy GPS and advanced signals generated by NTS-3».

AFRL will continue its integration efforts through 2022 to ensure all parts are working together for the fall of 2023 NTS-3 launch.

«With the delivery of the bus we are entering into the next phase of payload integration», Biersgreen said. «These recent breakthroughs allow the program to continue to move forward and prepare for launch of the first U.S. integrated satellite navigation experiment in over 45 years».

Earth Return Orbiter

Airbus has passed an important milestone for the Earth Return Orbiter (ERO) mission, which will bring the first Mars samples back to Earth: it has passed the Preliminary Design Review (PDR) with the European Space Agency (ESA) and with the participation of NASA.

Earth Return Orbiter (ERO)
ESA/NASA validate Airbus design

With technical specifications and designs validated, suppliers from eight European countries are on board for nearly all components and sub-assemblies. Development and testing of equipments and sub-systems can now start to ensure the mission moves ahead on schedule.

«This PDR has been managed and closed in a record time of less than a year, an amazing achievement considering the complexity of the mission. The entire ERO team, including suppliers and agencies, has really pulled together and we are on target to achieve delivery in 2025 – only five and a half years after being selected as prime contractor», said Andreas Hammer, Head of Space Exploration at Airbus.

The next milestone will be the Critical Design Review in two years after which production and assembly will start, to secure delivery of the full spacecraft in 2025.

After launch in 2026, on an Ariane 64 launcher, the satellite will begin a five year mission to Mars, acting as a communication relay with the surface missions (including Perseverance and Sample Fetch Rovers), performing a rendezvous with the orbiting samples and bringing them safely back to Earth.

Dave Parker, Director of human and robotic exploration at ESA, said: «On behalf of all European citizens, I am proud to see ESA leading the first ever mission to return from Mars. As part of our strong cooperation with NASA, we are working to return pristine material from Mars – scientific treasure that the world’s scientists will study for generations to come and help reveal the history of the Red Planet».

Airbus has overall responsibility for the ERO mission, developing the spacecraft in Toulouse, and conducting mission analysis in Stevenage. Thales Alenia Space will also have an important role, assembling the spacecraft, developing the communication system and providing the Orbit Insertion Module from its plant in Turin. Other suppliers come from Germany, France, UK, Italy, Spain, Norway, Denmark and The Netherlands.

The record development and design for ERO was only possible thanks to Airbus building on already mature and proven technologies, instead of developing brand new technologies with risk associated delays.

Proven Airbus technologies include the decades of experience in plasma (electric) propulsion, acquired through station keeping and in orbit operations of full electric telecom satellites, as well as its expertise on large solar arrays (telecoms and exploration missions, including JUICE, the biggest solar panels for an interplanetary mission until ERO) and complex planetary missions like BepiColombo, launched in 2018.

Airbus will also leverage its vision based navigation technological lead (RemoveDEBRIS, Automatic Air to Air refueling), and autonomous navigation expertise (Rosalind Franklin and Sample Fetch Rovers) and rendezvous and docking expertise built up over decades, using technologies from the successful ATV (Automated Transfer Vehicle) and recent developments from JUICE, Europe’s first mission to Jupiter.

The seven ton, seven metre high spacecraft, equipped with 144 m² solar arrays with a span of over 40 m – the largest ever built – will take about a year to reach Mars. It will use a mass-efficient hybrid propulsion system combining electric propulsion for the cruise and spiral down phases and chemical propulsion for Mars orbit insertion. Upon arrival, it will provide communications coverage for the NASA Perseverance Rover and Sample Retrieval Lander (SRL) missions, two essential parts of the Mars Sample Return campaign.

For the second part of its mission, ERO will have to detect, rendezvous with, and capture a basketball-size object called the Orbiting Sample (OS), which houses the sample tubes collected by the Sample Fetch Rover (SFR, also to be designed and built by Airbus); all this over 50 million km away from ground control.

Once captured, the OS will be bio-sealed in a secondary containment system and placed inside the Earth Entry Vehicle (EEV), effectively a third containment system, to ensure that the precious samples reach the Earth’s surface intact for maximum scientific return.

It will then take another year for ERO to make its way back to Earth, where it will send the EEV on a precision trajectory towards a pre-defined landing site, before itself entering into a stable orbit around the Sun.

GPS III Space Vehicle

The fifth Global Positioning System III (GPS III) satellite designed and built by Lockheed Martin is now headed to its orbit 12,550 miles/20,197 km above earth. This marks another step in supporting the U.S. Space Force’s GPS satellite constellation modernization efforts.

GPS III SV-05
The fifth Lockheed Martin-built GPS III satellite at Lockheed Martin’s production facility prior to its June 17 launch

Launched earlier today, GPS III Space Vehicle 05 (GPS III SV05) is the latest next-generation GPS III satellite, a warfighting system owned and operated by the Space Force. GPS III SV05 will be the 24th Military Code (M-Code) signal-enabled GPS space vehicle on orbit, completing the constellation’s baseline requirement to provide our military forces a more-secure, harder-to-jam and spoof GPS signal.

GPS III satellites provide significant capability advancements over earlier-designed GPS satellites on orbit, including:

  • Three times better accuracy;
  • Up to eight times improved anti-jamming capabilities; and
  • A new L1C civil signal, which is compatible with international global navigation satellite systems, like Europe’s Galileo, to improve civilian user connectivity.

«With GPS III SV05, we continue our focus on rapidly fielding innovative capabilities for the Space Force’s Positioning, Navigation and Timing Mission», said Tonya Ladwig, Lockheed Martin vice president for Navigation Systems. «With each satellite we bring to orbit, we help the U.S. Space Force to modernize the GPS constellation’s technology and to imagine future capability. Our next three satellites, GPS III SV06, SV07 and SV08, are already complete and just waiting for a launch date».

About 90 minutes after a 12:09 p.m. ET liftoff from Cape Canaveral Space Force Station, in Florida, U.S. Space Force and Lockheed Martin engineers at the company’s Denver GPS III Launch & Checkout Operations Center declared GPS III SV05 separated from its SpaceX Falcon 9 rocket and «flying» under their control.

In the coming days, GPS III SV05’s onboard liquid apogee engine will continue to propel the satellite towards its operational orbit. After it arrives, engineers will send the satellite commands to deploy its solar arrays and antennas, and prepare GPS III SV05 for handover to Space Operations Command.

Part of U.S. critical national infrastructure, GPS drives an estimated $300 billion in annual economic benefits and is responsible for $1.4 trillion since its inception. Globally, more than 4 billion military, civil and commercial users depend on GPS’ positioning, navigation and timing signals.

Lockheed Martin is part of the GPS III team led by the Space Production Corps Medium Earth Orbit Division at the U.S. Space Force’s Space and Missile Systems Center, Los Angeles Air Force Base. The GPS Operational Control Segment sustainment is managed by the Enterprise Corps, GPS Sustainment Division at Peterson Air Force Base. The 2nd Space Operations Squadron, at Schriever Air Force Base, manages and operates the GPS constellation for both civil and military users.

Minotaur I

Northrop Grumman Corporation launched its Minotaur I rocket on June 15, 2021 at 9:35 a.m. EDT, successfully placing a National Reconnaissance Office (NRO) payload into orbit. The Minotaur I was launched from the Mid-Atlantic Regional Spaceport Pad 0B at NASA’s Wallops Flight Facility.

Minotaur I
The Minotaur I rocket was launched from NASA’s Wallops Island Flight Facility

The Minotaur I is a four-staged solid fuel space launch vehicle, featuring two decommissioned Minuteman rocket motors, Northrop Grumman-manufactured Orion 50XL and Orion 38 solid rocket motors, and the company’s state-of-the-art avionics. The vehicle is capable of launching payloads of up to 1,278 pounds (or 580 kilograms) into low Earth orbit.

«This was our second launch of a Minotaur rocket for the NRO from Wallops in the past 12 months», said Rich Straka, vice president, launch vehicles, Northrop Grumman. «Northrop Grumman is able to repurpose retired Peacekeeper and Minuteman propulsion, integrating them with company built solid rocket motors along with new subsystems for our Minotaur family of launch vehicles, allowing us to provide reliable, cost-effective and responsive access to space for our customers».

The NROL-111 launch was the 12th Minotaur I flight and 6th from NASA’s Wallops Flight Facility. The Minotaur family of launch vehicles is comprised of multiple configurations, tailored to meet unique mission requirements. The Minotaur fleet has now completed 28 missions from ranges in Alaska, California, Florida and Virginia with 100 percent success. Northrop Grumman’s Minotaur rockets are manufactured at facilities in Chandler, Arizona; Vandenberg, California; and Clearfield and Magna, Utah.

The vehicle used to launch the NROL-111 mission was procured under the OSP-3 contract administered by the U.S. Space Force Space and Missile Systems Center’s Launch Enterprise Small Launch and Targets Division at Kirtland Air Force Base in New Mexico. Minotaur vehicles are currently available to customers under the OSP-4 contract.

Northrop Grumman solves the toughest problems in space, aeronautics, defense and cyberspace to meet the ever evolving needs of our customers worldwide. Our 90,000 employees define possible every day using science, technology and engineering to create and deliver advanced systems, products and services.

Pegasus XL

Northrop Grumman Corporation successfully launched the Tactically Responsive Launch-2 (TacRL-2) payload into orbit for the U.S. Space Force (USSF), Space and Missile Systems Center (SMC), using the company’s Pegasus XL rocket. TacRL-2 was launched from Vandenberg Space Force Base.

Pegasus XL
Northrop Grumman successfully launched the TacRL-2 payload into orbit for the U.S. Space Force’s Space and Missile Systems Center using the company’s Pegasus XL rocket

Pegasus, the world’s first privately-developed commercial space launch vehicle, is an air-launched three-staged rocket carried aloft by Northrop Grumman’s specially modified «Stargazer» L-1011 aircraft. Shortly after its release from Stargazer, at approximately 40,000 feet/12,192 m above the Pacific Ocean, Pegasus ignited its first stage, beginning its successful flight carrying TacRL-2 to its intended orbit.

«This Pegasus launch was a clear demonstration of our team’s ability to provide rapid and responsive operation needs», said Rich Straka, vice president, launch vehicles, Northrop Grumman. «Our team was able to execute the design, integration and testing of the TacRL-2 launch vehicle in less than four months from contract award».

This is the 45th successful launch of Pegasus, which uses solid propulsion to offer maximum responsiveness by enabling launch to a wide variety of orbits on short timelines. This capability provides customers with the flexibility to operate from virtually anywhere on Earth with minimal ground support requirements. Pegasus has launched more than 90 satellites into low earth orbit from five separate launch sites in the United States, Europe and the Marshall Islands.

Northrop Grumman solves the toughest problems in space, aeronautics, defense and cyberspace to meet the ever evolving needs of our customers worldwide. Our 90,000 employees define possible every day using science, technology and engineering to create and deliver advanced systems, products and services.

Lunar Terrain Vehicle

Lockheed Martin and General Motors Co. are teaming up to develop the next generation of lunar vehicles to transport astronauts on the surface of the Moon, fundamentally evolving and expanding humanity’s deep-space exploration footprint.

Lunar Terrain Vehicle (LTV)
Lockheed Martin, General Motors team-up to develop next-generation Lunar Rover for NASA Artemis astronauts to explore the Moon

NASA’s Artemis program is sending humans back to the Moon where they will explore and conduct scientific experiments using a variety of rovers. NASA sought industry approaches to develop a Lunar Terrain Vehicle (LTV) that will enable astronauts to explore the lunar surface farther than ever before. The LTV is the first of many types of surface mobility vehicles needed for NASA’s Artemis program.

To support NASA’s mission, the two industry leaders will develop a unique vehicle with innovative capabilities, drawing on their unparalleled engineering, performance, technology and reliability legacies. The result may allow astronauts to explore the lunar surface in unprecedented fashion and support discovery in places where humans have never gone before.

Lockheed Martin will lead the team by leveraging its more than 50-year-history of working with NASA on deep-space human and robotic spacecraft, such as NASA’s Orion exploration-class spaceship for Artemis and numerous Mars and planetary spacecraft.

«This alliance brings together powerhouse innovation from both companies to make a transformative class of vehicles», said Rick Ambrose, executive vice president, Lockheed Martin Space. «Surface mobility is critical to enable and sustain long-term exploration of the lunar surface. These next-generation rovers will dramatically extend the range of astronauts as they perform high-priority science investigation on the Moon that will ultimately impact humanity’s understanding of our place in the solar system».

GM is a leader in battery-electric technologies and propulsion systems that are central to its multi-brand, multi-segment electric vehicle strategy, positioning the company for an all-electric future. Additionally, GM will use autonomous technology to facilitate safer and more efficient operations on the Moon.

«General Motors made history by applying advanced technologies and engineering to support the Lunar Rover Vehicle that the Apollo 15 astronauts drove on the Moon», said Alan Wexler, senior vice president of Innovation and Growth at General Motors. «Working together with Lockheed Martin and their deep-space exploration expertise, we plan to support American astronauts on the Moon once again».

GM has a proven history of supporting NASA and working within the space industry. The company manufactured, tested and integrated the inertial guidance and navigation systems for the entire Apollo Moon program, including Apollo 11 and the first human landing in 1969. GM also helped develop the electric Apollo Lunar Roving Vehicle (LRV), including the chassis and wheels for the LRV that was used on Apollo’s 15-17 missions.

Unlike the Apollo rovers that only traveled 4.7 miles (7.6 kilometers) from the landing site, the next-generation lunar vehicles are being designed to traverse significantly farther distances to support the first excursions of the Moon’s south pole, where it is cold and dark with more rugged terrain.

Autonomous, self-driving systems will allow the rovers to prepare for human landings, provide commercial payload services, and enhance the range and utility of scientific payloads and experiments.

Lockheed Martin brings unparalleled experience and capabilities in deep-space exploration. It has built spacecraft and systems that have gone to every planet, been on every NASA mission to Mars including building 11 of the agency’s Mars spacecraft, and played major roles on the space shuttle program and International Space Station power systems.

Missile Warning Satellite

Following a successful launch from Cape Canaveral Space Force Station in Florida earlier on May 18, 2021, the U.S. Space Force’s Space Delta 4 operations team is now «talking» with the fifth Space Based Infrared System Geosynchronous Earth Orbit (SBIRS GEO-5) satellite.

SBIRS GEO-5
Lockheed Martin’s SBIRS GEO-5 missile warning spacecraft is the first military space satellite built on a modernized LM 2100 Combat Bus space vehicle

As planned, SBIRS GEO-5 – built by Lockheed Martin – is responding to the Delta’s commands. Signal acquisition was confirmed approximately ~36 minutes after the satellite’s 1:37 p.m. EDT launch aboard a United Launch Alliance (ULA) Atlas V rocket. Now separated from the rocket, the satellite is continuing on to orbit under its own propulsion.

SBIRS GEO-5 is the latest satellite to join the Space Force’s orbiting Overhead Persistent Infrared (OPIR) missile warning constellation equipped with powerful scanning and staring surveillance sensors. These 24-7, always-on, orbital guardians detect missile launches, support ballistic missile defense, expand technical intelligence gathering and bolster situational awareness on the battlefield.

«The world is a more threatening place now with more than 1,000 ballistic missile launches occurring globally every year», said Tom McCormick, vice president of Lockheed Martin Space’s OPIR Mission Area. «SBIRS is the tip of the missile defense spear, seeing all those missiles and providing our military the ability to ensure our national security and the safety of our armed forces».

 

Faster, More Resilient Missile Warning

Built in about five years, SBIRS GEO-5 is the first military space satellite built on an LM 2100 Combat Bus, a version of Lockheed Martin’s modernized, modular LM 2100 space vehicle with greatly enhanced resiliency.

The LM 2100 bus is the result of a Lockheed Martin internally-funded, multi-year modernization initiative. Features include:

  • Greater resiliency and cyber-hardening;
  • Enhanced spacecraft power, propulsion and electronics;
  • Common components and procedures to streamline manufacturing;
  • Flexible design that reduces the cost to incorporate future, modernized sensor suites.

«We designed our modernized LM2100 bus with our military customers’ changing, more-contested environment, in mind», said McCormick. «By adding enhanced resiliency features to the LM 2100 we created an initial ‘combat bus’ for the Space Force for even greater capability».

SBIRS GEO-5 is a step toward achieving the resilient missile warning to be provided by SBIRS’ follow on, the Next Gen OPIR Block 0 System. SBIRS GEO-6, launching in 2022, and the first three Next Gen OPIR Block 0 GEO satellites, as well as the future GPS III Follow On (GPS IIIF) satellites, are also based on the LM 2100 Combat Bus.

Lockheed Martin is proud to be part of the SBIRS team led by the Production Corps, Geosynchronous Earth Orbit Division, at the U.S. Space Force’s Space and Missile Systems Center, Los Angeles Air Force Base, California. Lockheed Martin Space, Sunnyvale, California, is the SBIRS prime contractor, with Northrop Grumman, Azusa, California, as the payload integrator.