Category Archives: Radars

Digital multi-mode radar

Northrop Grumman’s long-range radar, an advanced digital radar available in the market today, has been officially recognized by the U.S. government as the AN/TPY-5(V)1 making it the newest multi-mission air-surveillance radar available to the U.S. military and its international partners.

AN/TPY-5(V)1
AN/TPY-5(V)1 is a digital multi-mode ground radar deployed and in operation, today

«The AN/TPY-5(V)1 provides enhanced surveillance and a robust multifunction capability», said Mike Meaney, vice president, land and maritime sensors, Northrop Grumman. «This S-band system features advanced electronic protection combined with a high degree of mobility that will help ensure survivability in today’s complex battlespace».

 

Strategic Mobility Provides Key Advantage in Today’s Complex Battlespace

The United States continuously seeks to acquire a strategic cross-domain military arsenal to ensure that trusted, versatile solutions are always readily available to protect warfighters – domestically and internationally – during any mission.

A military force that can move more quickly across both familiar and hostile terrain will prevail over adversaries. As the military operating environment becomes more lethal, strategic mobility can help transform modern warfare.

AN/TPY-5(V)1’s size and form factor have been optimized for expeditionary operation on a modern, global battlefield, making its intrinsic capability to self-deploy, emplace and displace in minutes – a key discriminator compared to other systems.

Similarly, advanced digital Active Electronically Scanned Array (AESA) architecture and Command and Control (C2) integration have come together in the AN/TPY-5(V)1 S-band radar to enable protection and situational understanding for warfighters.

 

Delivering Performance Today, Designed for Growth Tomorrow

Facing the challenges of fifth-generation fighters, hypersonic weapons, unmanned systems and ballistic missiles, the AN/TPY-5(V)1’s proven performance has been demonstrated in multiple test events, with each one further establishing and verifying the system’s advanced technical capability.

Designed for growth, it can provide the performance expected in today’s highly contested and congested battlespace, while its advanced software-defined architecture allows for rapid updates to counter new and emerging threats. Updates can be completed via software in hours or even minutes with this system, compared to weeks or months required for traditional ground-based radars.

Missile Defense Radar

On May 26, 2022, the Search Track Acquire Radiate Eliminate (STARE) Project Office, U.S. Army Sentinel Product Office received the first five radars of its initial contract with Lockheed Martin. The Sentinel A4 radar is developed and manufactured by Lockheed Martin in Syracuse, New York, and has been on an accelerated schedule since the project was awarded in September 2019.

Sentinel A4
Lockheed Martin Delivers First Five Sentinel A4 Air & Missile Defense Radars To U.S. Army, Providing Improved Capability As Part Of The Army’s Modernization Efforts

«We are one step closer to getting this enhanced capability to our warfighters», stated Leah Cook, Sentinel Product Director for the U.S. Army Sentinel A4 program office. «The delivery of the first five radars is a result of collaboration and a continued commitment to the U.S. Army».

The U.S. Army and Lockheed Martin have a strong partnership founded on collaboration and trust. The process has included virtual reviews and working groups to maintain momentum through all program development phases.

«Our team understands the criticality of this technology and the need to get it fielded», said Mark Mekker, director of Army Radars for Lockheed Martin. «Our soldiers are in unpredictable environments, and the Sentinel A4 will provide improved eyes on the field to keep them safe».

 

What’s Next?

Lockheed Martin will support the Army in the government test program phase into early 2023. The radars will undergo mobility, environmental, radar performance and logistics testing. Production of the next five radar systems is already underway, and delivery is expected to begin in March 2023.

 

Future Forward to Protect Against Evolving Threats

The Sentinel A4’s open scalable radar architecture is the cornerstone of the radar system’s design and allows for addressing evolving threats with software modifications only.

The new air and missile defense radar will provide improved capability over the previous iteration, the Sentinel A3. It will outperform the legacy radar, delivering improvements in contested environments against cruise missiles, unmanned aerial systems, rotary wing and fixed wing aircraft, and rocket, artillery, and mortar threats. This includes enhanced surveillance, detection, and classification capabilities to protect U.S. Army maneuver formations.

 

Efficiencies & Cost Savings

Lockheed Martin radars are designed with a high degree of commonality. The company’s TPY-4 ground based air surveillance radar was built and validated under Lockheed Martin investment and significantly leveraged the Sentinel A4 radar design.

«Commonality across the radar portfolio enable sustainment efficiencies and significant cost savings for our customers. Our scalable technology, coupled with these efficiencies, has resulted in significant international interest in both the Sentinel A4 and TPY-4 radars to replace older assets that simply cannot be upgraded to match what our next generation systems are offering», said Chandra Marshall, Vice President and General Manager of Lockheed Martin’s Radar and Sensor Systems business.

Lockheed Martin continues to invest significantly in the advancement of its software-defined radar technology, including its automated manufacturing processes which improves quality and will lead to even further cost reductions.

Sentinel-A4

Military Utility Vehicle

One of HENSOLDT’s core competences is recognizing threats and protecting end users. At EUROSATORY 2022 in Paris, HENSOLDT presents its broad range of sensor solutions for intelligence, surveillance and reconnaissance operations as well as sensors to improve the safety and operational effectiveness.

Military Utility Vehicle (MUV)
In Paris, HENSOLDT and IVECO Defence Vehicle are jointly presenting the Military Utility Vehicle (MUV) concept demonstrator (Photo: HENSOLDT AG)

In Paris, HENSOLDT and IVECO Defence Vehicle are jointly presenting the Military Utility Vehicle (MUV) concept demonstrator. For the first time, the MUV will present a modular sensor fusion platform that can be used in the civilian and military sectors for reconnaissance as well as for self-protection and convoy protection. The basis of the MUV concept demonstrator is an all-terrain chassis from IVECO DV with a maximum payload of four tonnes. A sensor suite from HENSOLDT is installed on it, with the See Through Armour System (SETAS), Multifunctional Self-Protection for Vehicles (MUSS), Radio Direction Finder and S3 MIMO systems. All systems are connected by a Central Processing Unit (CIPU), which forms the backbone of the sensor suite.

With TRML-4D, the latest member of its C-Band (NATO G-Band) ground-based air defence radar family, HENSOLDT is showing a state-of-the-art system regarding naval and ground tactical radars. TRML-4D uses the latest Active Electronically Scanned Array (AESA) radar technology, with multiple digitally formed beams. It is designed for near- to long-range ground-to-air detection and for weapon assignment. It is capable of detecting, tracking, and classifying various types of air targets, with an emphasis on small, fast, and low-flying and/or manoeuvring cruise missiles and aircraft as well as hovering helicopters. It ensures rapid response detection and tracking of approximately 1,500 targets in a radius of up to 250 km/155.3 miles and at an altitude of up to 30 km/18.6 miles.

HENSOLDT is showcasing a very precise picture of the airspace, created by its passive radar system Twinvis. The system does not emit actively any signal but uses several transmission sources from various locations. It can also interconnect several sensors into one sensor cluster. The transmitters and the Twinvis sensors can be separated from each other at a distance of up to 100 kilometres/62.1 miles. Unlike systems based on passive emitter tracking, requiring aircraft to emit, Twinvis does not depend on any such transmission and does not emit itself, thus being a truly passive system.

Alongside the ground-based radars, HENSOLDT is showing its counter-UAV (Unmanned Aerial Vehicles) system Xpeller for 24/7 protection from illicit intrusions of UAVs over critical areas – even at long ranges – offering a low false alarm rate and high probability of interception. The system is highly modular and combines numerous sensors (radar, electro-optics, direction finders) and target neutralization effectors such as jammers and drone catchers through a single Command and Control (C2) system.

At EUROSATORY, HENSOLDT will demonstrate ARGOSIA, which is a range of embedded Maritime Surveillance (SURMAR) and Intelligence, Surveillance and Reconnaissance (ISR) mission systems designed to meet the requirements of air surveillance and intelligence missions. Together with battle-proofed sensors and equipment selected for their reliability and performances, ARGOSIA proposes many system configurations meeting the needs of defence, maritime and overland surveillance, law enforcement, Search & Rescue as well as imagery intelligence (IMINT) and signals intelligence (SIGINT) missions. This modular and multi-console system consists of the Mission Management System software ARGOSIA, which integrates an advanced digital cartography engine, a sensor-fusion algorithm and powerful decision-support tools that help optimize operator workload.

GhostEye Medium‐Range

Right now, that’s especially true of the medium‐range mission space, which has seen a proliferation of adversarial cruise missiles, drones, fixed‐wing and rotary wing aircraft.

GhostEye MR
GhostEye MR: a new radar for medium‐range air defense

«Today’s battlefield moves at a very rapid pace, and it’s riddled with a large portfolio of threats», said Joe DeAntona, a retired U.S. Army colonel who is now vice president for Land Warfare and Air Defense requirements and capabilities at Raytheon Missiles & Defense. «Informed decisions must be made in seconds – not minutes or hours».

Modern missile defense is about more than speed, said DeAntona, who was an air and missile defender for more than 30 years. He added that militaries also require radars that see in 360 degrees and can search, track, discriminate and cue interceptors against multiple types of threats.

 

Integrates with a proven system

Raytheon Missiles & Defense, or RMD, is offering GhostEye MR radar for integration with the National Advanced Surface-to-Air Missile System, or NASAMS.

This medium‐range air defense solution, made in partnership with Kongsberg Defence & Aerospace, has been operational for more than three decades and is currently used by the U.S. and 11 allied nations. The widespread adoption of NASAMS «indicates the highest level of confidence by a global customer base», DeAntona said.

GhostEye MR «integrates with NASAMS and absolutely takes that system to the next level», said Lindsay Viana, director of ground‐based air defense on RMD’s Requirements and Capabilities team.

«This radar expands the range and altitude that the proven NASAMS defends, dramatically increasing overall effectiveness of the air defense capability». Viana said.

As a component of NASAMS, the sensor maximizes the range of that system’s effectors – including RMD’s Advanced Medium Range Air-to-Air Missile Extended Range variant, or AMRAAM‐ER – improving accuracy and performance.

In particular, GhostEye MR’s combination of two key technologies – Active Electronically Scanned Array, or AESA, and military‐grade Gallium Nitride, or GaN – give the sensor a distinct advantage.

«With the addition of GhostEye MR, we extend battlespace coverage to the full kinematic envelope, or reachable area, of the Advanced Medium-Range Air-to-Air Missile Extended Range (AMRAAM‐ER) effector», Viana said.

 

Leveraging LTAMDS commonality

As the latest product in RMD’s GhostEye family of radars, the medium‐range sensor leverages commonality with the Lower Tier Air and Missile Defense Sensor, or LTAMDS, technology that the company is making for the U.S. Army.

«The architecture of our GhostEye family of radars is scalable and modular, enabling a wide range of missions», DeAntona said, adding that «these advancements are now being applied to the GhostEye MR mission set. It’s all logistically streamlined, cost‐effective and easy to integrate».

Raytheon Missiles & Defense adds and extends capabilities through secure software upgrades via «software‐defined aperture» digital technology – similar to that used in updating smartphones, though far more sophisticated. And, there’s no need to take the radar out of the field for these upgrades.

 

Adaptability and interoperability

As sophisticated threats evolve, so too does NASAMS with GhostEye MR. The system’s open architecture allows technology adaptations and updates that empower it to counter adversaries in the ever‐expanding medium range.

Another advantage is its interoperability – the capability to communicate with other systems – for strengthening strategic agility and flexibility.

«That is crucial, and NASAMS has it», said DeAntona. «NASAMS meets all NATO requirements for interoperability. It can communicate with other weapons systems on the NATO network – doing so in real time».

Meanwhile, GhostEye MR is on an accelerated path toward integration in NASAMS. For instance, it is already approved to be part of that system’s fire direction‐and‐control loop. Raytheon Missiles & Defense employed a comprehensive digital design environment spanning the radar’s physical and functional characteristics as well as modeling and simulation to assess its effective performance in a variety of mission scenarios.

The sensor is currently undergoing open‐air testing and multi‐mission demonstrations. The data collected through these events is being used to enhance the fidelity of the digital design models.

«When GhostEye MR searches for something», DeAntona said, «it does so with such fidelity, such accuracy, that it can provide the effector the real time information it needs to take action».

The latest addition to the GhostEye MR family of radars made by Raytheon Missiles & Defense will counter escalating medium-range threats and fortify layered air and missile defense

Missile Defense Sensor

The first Lower Tier Air and Missile Defense Sensor (LTAMDS), built by Raytheon Missiles & Defense, a Raytheon Technologies business, arrived at the U.S. Army’s White Sands Missile Range on April 11th. The radar is the newest air and missile defense sensor for the U.S. Army, providing significantly more capacity and capability against the wide range of advancing threats facing air defenders around the world.

LTAMDS
Lower Tier Air and Missile Defense Sensor (LTAMDS) arrives at White Sands Missile Range

This is the first of six radars planned for delivery to the Army in 2022 and marks the beginning of a series of extensive tests to prove LTAMDS performance and functionality in an operational environment.

«Together with the Army, we set out to build a radar that could detect and defend against complex and evolving threats while reducing the workload on operators – and we’ve done it with LTAMDS», said Tom Laliberty, president of RMD’s Land Warfare & Air Defense business unit. «LTAMDS provides dramatically more performance against the range of threats, from manned and unmanned aircraft to cruise missiles and ballistic missiles. Air defense forces around the world are taking notice of LTAMDS, with over a dozen countries showing formal interest in acquiring the radar».

LTAMDS is a 360-degree, Active Electronically Scanned Array radar powered by RMD-manufactured Gallium Nitride, a substance that strengthens the radar’s signal, enhances its sensitivity, and increases its reliability. LTAMDS is designed to operate as a sensor in the U.S. Army’s Integrated Air and Missile Defense Battle Command System.

LTAMDS, designed specifically for the U.S. Army’s lower tier mission, is the first sensor in a family of radars Raytheon is calling GhostEye. These sensors can detect otherwise unseen threats at greater distances, higher velocities, and from any direction. Leveraging the advancements of GaN technology and commonality with LTAMDS, Raytheon has separately developed GhostEye MR, a medium-range battlefield radar.

3DELRR

The world’s most advanced and capable transportable or fixed air defense long-range radar, Lockheed Martin’s first AN/TPY-4 radar – recently selected by the U.S. Air Force for the Three Dimensional Expeditionary Long Range Radar (3DELRR) Rapid Prototyping program – has completed production marking availability to the world. The technology that enables TPY-4 provides the capability required for today’s threats and unprecedented flexibility to adjust quickly to those that emerge over time.

AN/TPY-4
Lockheed Martin’s First TPY-4 Radar Completes Production, Bringing Unmatched Tracking Precision and Speed to The U.S. And Its Allies

«Lockheed Martin is committed to investing in advanced defense technology, and the TPY-4 radar is a direct result of those investments», said Rick Herodes, Director of Ground Based Air Surveillance Radars at Lockheed Martin. «TPY-4 meets the needs of a rapidly changing battlefields, marked by technological growth and the emergence of increasingly challenging threats».

 

Milestones & Maturity Development

Lockheed Martin has been on the fast track to provide this radar both in the U.S. and internationally.

In March, the U.S. Air Force selected the TPY-4 radar as the best radar for the 3DELRR program. The 3DELRR contract includes production options for 35 long-range radar systems, planned to reach Initial Operational Capability.

In July 2021, the radar received official nomenclature from the U.S. Government and Kongsberg Defence & Aerospace (KDA) delivered the Platform Electronics Subsystem (PES) for the first TPY-4 radar. The Lockheed Martin and KDA partnership leverages Lockheed Martin’s state of the art radar technology and KDA’s experience in defense industry solutions, resulting in a next generation sensor that meets and exceeds current long range surveillance requirements.

 

The World’s First Truly Software-Defined Radar

TPY-4 is intentionally designed as a multi-mission system capable of tracking current and emerging threats, and will integrate seamlessly into existing air defense systems. TPY-4 is an internationally available, transportable, multi-mission radar that can operate in contested RF environments. The radar integrates the latest mature commercial technologies to create a revolutionary radar architecture.

The radar system is fully digital at every transmit/receive element with an unprecedented software-defined sensor architecture, allowing the radar to quickly adjust to tomorrow’s threats and missions. It’s individually software-controlled digital transmitters and receivers provide flexibility to quickly change performance for new missions and environments while providing ease of adaptation to future advanced threats. Performance and operational changes can be made rapidly via software enhancements without the design or hardware changes required by older radar architectures.

TPY-4 outperforms other systems in these key areas:

  • Target Detection: TPY-4 detects smaller, harder-to-detect next generation threats in heavy clutter.
  • Mission Diversity: The radar operators can quickly pivot from one mission to another, enabling them to address threats in a contested environment. The radar will operate in extreme climates and environments.
  • Software Defined: The system is digital at every element with operation and performance defined software enabling quick upgrades to combat emerging threats. TPY-4 adheres to open hardware, software, and interface standards to ensure long-term supportability and ease of integration.
  • Transportability: The system is available in both fixed and transportable variants able to be transported via C-130 Hercules, C-17 Globemaster III, truck, rail, or helicopter.

 

Radar Coverage

Operation Mode 6 RPM Stop / Stare
Azimuth 360° +/- 45°
Range 300 NM/555 km 540 NM/1000 km
Height 100,000 feet/30.5 km
Search Elevation -6° to 38°
Track Elevation -6° to 90°
Radar Type 3D Element Based Digital Active Electronically Scanned Array (AESA) with Gallium Nitride (GaN)
Frequency L-Band (1215 to 1400 MHz)

 

Multi-Mission Radar

Israel Aerospace Industries (IAI) has supplied the Czech Republic, via its Czech partners RETIA and VTU, with the first air defense Multi-Mission Radar (MMR), as part of a deal signed in December 2019 by the Ministries of Defense of both the Czech Republic and Israel. The radar, which is operational and combat-proven in Israel, provides both surveillance and defense capabilities to customers around the world, and is integrative with NATO systems. The radar detects and classifies threats, and supplies weapons systems with the data necessary to neutralize a number of those threats simultaneously. Thanks to the system’s advanced tracking capabilities, the radar provides situational awareness which is both precise and reliable, and includes the detection and identification of targets having low signatures.

Multi-Mission Radar (MMR)
The radar displays a high-quality air situation picture, dealing simultaneously and efficiently with a wide range of targets while supporting air defense systems

The MMR can deal simultaneously with multiple missions – including air defense against aircraft, Unmanned Aerial Vehicles (UAVs) and drones, artillery against varied enemy targets, and the identification and location of rocket launches, enemy artillery, and mortars, while locating both the launch and expected hit position, and controlling intercepting missiles launched against these threats. The MMR is the ‘brain’ of Israel’s Barak MX Air and Missile Defense System, the Iron Dome, and David’s Sling, and to date over 150 such systems have been sold to customers around the world.

Yoav Tourgeman, IAI VP and ELTA CEO, said: «Working together with our local Czech partners, IAI is proud to supply the Czech Ministry of Defense with these advanced radar systems on time and according to the project schedule. Despite the challenges of the last two years during the COVID-19 pandemic, the project teams, in both Israel and the Czech Republic, were able to cooperate successfully while remaining committed to the aim of joint production. The advanced radar that has now been supplied to the Czech Republic is able to simultaneously identify and classify hundreds of targets, perform identification of unmanned platforms, missiles, rockets and other new threats in the operational area. We believe that the system’s ability to integrate with NATO systems will bring about a new era of operations for the Czech Ministry of Defense».

Aegis Combat System

Raytheon Missiles & Defense’s SPY-6 Air and Missile Defense Radar (AMDR) attained another milestone when the future USS Jack H. Lucas (DDG-125) achieved «light off» on its Aegis Combat System, marking the beginning of on-board system testing and crew training for the ship.

USS Jack H. Lucas (DDG-125)
The U.S. Navy’s new guided missile destroyer, USS Jack H. Lucas (DDG-125) successfully launched at Huntington Ingalls Industries in Pascagoula, Mississippi, on June 4, 2021, and achieved Light Off on its Aegis Combat System on December 17, 2021. Raytheon Missiles & Defense is working with the shipbuilder to integrate the AN/SPY-6(V)1, also called SPY-6, integrated Air and Missile Defense Radar (AMDR) onto the ship (Photo: Huntington Ingalls Industries)

«This important milestone kicks off onboard testing and training with naval crews on the SPY-6 radars», said Kim Ernzen, vice president of Naval Power at Raytheon Missiles & Defense. «SPY-6 is the world’s most advanced surface maritime radar, and our team is ready to provide training and support to the Navy through this phase and beyond».

The AN/SPY-6(V) Family of Radars is the newest radar system for the U.S. Navy, performing air and missile defense on seven classes of ships. The SPY-6 family can defend against ballistic missiles, cruise missiles, hostile aircraft and surface ships simultaneously. When compared to legacy radars, SPY-6 will bring new capabilities to the surface fleet, such as advanced electronic warfare protection and enhanced detection abilities.

SPY-6 is scalable and modular to support production for the U.S. and partner nations across all variants. This commonality supports standardized logistics and training for those who work on the radars.

Long-Range Radar

The Missile Defense Agency (MDA), U.S. Northern Command (USNORTHCOM) and the Space Force (USSF) marked the completion of construction on the Long-Range Discrimination Radar (LRDR) site at Clear Space Force Station, Alaska, during a ceremony on Monday, December 7, 2021.

Long-Range Discrimination Radar (LRDR)
The Long-Range Discrimination Radar (LRDR) at Clear Space Force Station, Alaska, is a multi-mission, multi-face radar designed to provide search, track and discrimination capability in support of U.S. homeland defense, October 26, 2021

The multi-mission LRDR is designed, for now, to better track incoming ballistic missiles. It combines the capabilities of lower frequency radars – which can track multiple objects in space at long range, but are not able to help warfighters determine which objects are a threat – with the capabilities of higher-frequency radars, which have a more limited field of view but are better able to «discriminate» among multiple objects and figure out what of those is dangerous.

As ballistic missiles are launched and shed portions of themselves along their trajectory – including decoy and countermeasure material – the LRDR will help to determine which of those objects must be targeted by the missile defense system.

When fully operational, the multi-face LRDR – equipped with a 220-degree wide field of view and arrays measuring 60 feet/18.28 meters high by 60 feet/18.28 meters wide – will provide the ability to search, track and discriminate multiple, small objects in space, including all classes of ballistic missiles. Future iterations of the radar’s software will allow it to also track hypersonic missiles.

The information the LRDR provides will increase the effectiveness of the missile defense system and help the U.S. Northern Command better defend the United States.

The capabilities the LRDR provides will also serve as a new kind of deterrent against potential missile attacks by adversaries, said Army Lieutenant General A.C. Roper, the deputy commander of U.S. Northern Command.

«For years, the Department of Defense has subscribed to a mindset of deterrence through punishment – taking advantage of our global response to execute retaliatory strikes», Roper said.

Secretary of Defense Lloyd J. Austin III has challenged the military to instead approach deterrence from a different perspective: deterrence through denial, Roper said.

«It’s a defense designed to give our potential adversaries pause», he said. «It is the type of deterrence that shifts their cost-benefit calculus, providing doubt that an attack will be successful. And the LRDR helps to shift that calculus».

The general told those responsible for designing and building the new LRDR system that they have given potential adversaries something to think about if they’re contemplating an attack on the U.S. homeland.

«This long-range discrimination radar is designed to defend the homeland by providing the unparalleled ability to search, track and discriminate multiple objects simultaneously», Roper said. «This radar provides a much-needed improvement to Northcom’s homeland ballistic missile defense mission, ultimately resulting in more effective and efficient employment of the ground-based interceptors».

Full Operational Capability (FOC) for the LRDR is expected in 2023, Navy Vice Admiral Jon A. Hill, director of the Missile Defense Agency said. Right now, the newly built LRDR will be evaluated and integrated into existing systems.

«This initial delivery is an important step to declare that we’re done with a major construction. We are now fully into the test mode of this radar», Hill said. «That testing is so critical because it pushes you right into the integration, command and control into ground-based midcourse defense. That integration work will be complete and, then, in 2023, we’ll be able to do operational acceptance for Northern Command».

Right now, the primary requirement met by the LRDR is against a ballistic missile threat, but in future iterations of the LRDR, tracking of hypersonic weapons can also be included without significant changes to the system, Hill said.

«That is what the radar filters are designed to go after», Hill said. «To bring in what I call a filter – which means you can then space your tracking and your timing to go to hypersonic – that’s not a big leap … that is a software upgrade, but it is not the driving requirement for LRDR today».

Long-Range Discrimination Radar (LRDR)
The LRDR complex also includes a mission control facility, power plant and maintenance facility, October 24, 2021

Sky Sabre

A totally integrated state-of-the-art air defence system recently delivered to the Royal Artillery is propelling the British Army to the very forefront of ground based air defence missile technology.

Sky Sabre
Sky Sabre air defence missile system

The Royal Artillery has accepted into its arsenal the Sky Sabre air defence system, providing a step change in the British Army’s medium range air defence capability and with it, unprecedented speed, accuracy, performance and target acquisition.

Sky Sabre, as the name implies, is very much at the cutting edge replacing its venerable predecessor Rapier which recently entered its fifth decade of operation with British Forces. Rapier has seen service in Kuwait, the South Atlantic, and probably most visibly when it deployed to numerous London parks to combat any security threats during the 2012 Olympics.

The new system is operated by 16 Regiment Royal Artillery, part of 7 Air Defence Group, based at Baker Barracks on the South Coast’s Thorney Island. The Regiment is currently rolling out an extensive training package to transition from Rapier to the new system, and what a system that is.

To put into context how advanced Sky Sabre is, Major Tim Oakes, the Senior Training Officer for the training programme and one of the lynch pins in the delivery of the system, said, «Sky Sabre is so accurate and agile that it is capable of hitting a tennis ball sized object travelling at several times the speed of sound. In fact, it can control the flight of 24 missiles simultaneously whilst in flight, guiding them to intercept 24 separate targets. It is an amazing capability».

Delivered by the MOD’s procurement arm, Defence Equipment and Support, the system comprises of three separate components. Although pictured in the accompanying photographs together, in reality in the battlespace they would be expected to operate at distances of up to 15 km/9.32 miles apart.

First of all, there are the eyes and ears of the system and for Sky Sabre that is the Giraffe Agile Multi Beam 3D medium-range surveillance radar. Its radar rotates atop an extending mast which allows it to be elevated above tree lines and other obstructions to identify low flying intruders. The Giraffe can see a full 360 degrees out to a range of 120 km/74.56 miles. It is a tried and very much trusted system that has seen numerous upgrades since it first entered service.

The second component lies at the very heart of the whole system; it is, of course, the Battle Management and Intelligence suite. In essence, the command and control centre. This capability that links up the radar with the missiles and sends them to their targets. It also provides what is known as Link 16; this is a tactical datalink that allows Sky Sabre to share its information with Royal Navy vessels, the Royal Air Force, and our allies. It means that the system can be integrated wholly and contribute fully with joint, combined, or NATO operations.

Finally, we get to the sharp end; the third component is the Land Ceptor intelligent launcher and missile itself. At 99 kg/218 lbs. each, the missiles are double the weight of the Rapier it replaces and have three times the range. This is the Common Anti-Air Modular Missile (CAMM) that reaches speeds of 2300 mph/3701 km/h and can eliminate fighter aircraft, drones, and even laser-guided smart bombs.

They are housed in eight silos mounted on the rear of their mobile launcher and when fired they launch in a unique omni-directional manner that significantly reduces its signature making it less of a target for enemy counter measures. When exhausted, the Land Ceptor launcher can be replenished with a new set of eight CAMMs in less than half the time that it took to re-arm Rapier.

Sky Sabre’s CAMM is the same missile that is used on board ships (Sea Ceptor) and shares components with the Royal Air Force munitions (ASRAAM). This commonality across all services brings with it huge logistical efficiencies as well as significant cost savings.

The Commanding Officer of 16 Regiment Royal Artillery, Lieutenant Colonel Chris Lane, said: «We will be able to compete with our peers and take on some of the toughest adversaries. It gives us a capability we have not had before; this new missile system with its new launcher and world-class radar will absolutely put us at the forefront of ground-based air defence».

16 Regiment Royal Artillery is now accepting into service the first tranche of this significant upgrade in the UK’s ability to defend itself from the air. Intended further procurements of Sky Sabre-based systems will be configured to operate in all parts of the globe. This means it could expect to see service world-wide much like its predecessor Rapier that will now gradually be phased out of service and returned to its scabbard!