Category Archives: Radars

Multi-Band,
Multi-Mission

Lockheed Martin, Ball Aerospace, and Kratos Defense & Security Solutions, Inc. were awarded a $7.2 million prototype agreement by the Defense Innovation Unit to develop a new Multi-Band, Multi-Mission (MBMM) prototype phased array as part of a broader initiative to modernize the existing Air Force Satellite Control Network and bring new technology faster to warfighters. MBMM enables multiple satellites to simultaneously connect with a single array antenna over multiple frequencies, a significant performance improvement compared to traditional single contact parabolic dishes.

Lockheed Martin, Ball and Kratos team on Advanced Phased Array for Air Force

The Lockheed Martin team is building prototype transmit and receive Electronically Steerable Arrays (ESA). Each array uses Ball’s advanced phased array technologies and supports L- and S-band frequencies initially. Signal processing is accomplished with Kratos’ digital Intermediate Frequency (IF) technology and cloud-enabled quantumRadio.

«MBMM is a smarter way to quickly and affordably scale satellite transmission while lowering long-term maintenance costs for the Air Force», said Maria Demaree, vice president and general manager of Lockheed Martin Mission Solutions. «Today, when a parabolic antenna goes down, it can take days to repair; with MBMM, it will take hours and won’t take the entire site offline – that’s a tremendous advantage».

Extensive industry research comparing the costs of parabolic antennas to phased arrays over time show that while parabolic antennas have a lower upfront cost, they become much more expensive to maintain. Phased arrays avoid the mechanical maintenance and keyhole effects of parabolic antennas while providing graceful degradation and electronic agility in matching aperture performance to constellation demands.

«One electronically steered antenna can replace multiple dishes, enabling better performance, connectivity and affordability», said Rob Freedman, vice president and general manager, Tactical Solutions, Ball Aerospace.

«Software modems deployed in virtual machines gives MBMM an advantage because it is easy to scale signal processing on a much faster timeline than previously», said Frank Backes, senior vice president of Kratos Federal Space.

Future operational MBMM systems will offer new cyber resilience while reducing long-term sustainment costs for the Air Force. MBMM may eventually support multiple orbits from Low Earth Orbit (LEO) to Geosynchronous Equatorial Orbit (GEO) and can perform multiple missions at the same time, including Command & Control (C2), launch pad and ascent operations, radar and mission data transmission. The Lockheed Martin/Ball team is one of several teams building prototypes for the government.

S-Band radar

Lockheed Martin completed a rigorous Critical Design Review (CDR) on September 28 with the Missile Defense Agency (MDA) for the Long Range Discrimination Radar (LRDR), demonstrating compliance to all technical performance measures and requirements. The radar system will support a layered ballistic missile defense strategy to protect the U.S. homeland from ballistic missile attacks.

Lockheed Martin’s new SSRIS in Moorestown, New Jersey, provides significant risk reduction for the development of the Long Range Discrimination Radar (LRDR) and future solid state radar systems. Lockheed Martin made the investment to build the new test site (Photo courtesy Lockheed Martin)
Lockheed Martin’s new SSRIS in Moorestown, New Jersey, provides significant risk reduction for the development of the Long Range Discrimination Radar (LRDR) and future solid state radar systems. Lockheed Martin made the investment to build the new test site (Photo courtesy Lockheed Martin)

The MDA awarded the $784 million contract to Lockheed Martin in 2015 to develop, build and test LRDR, and the company is on track on an aggressive schedule to deliver the radar to Clear, Alaska in 2020. Teams from Lockheed Martin, MDA Sensors Directorate and the Command and Control, Battle Management, and Communications or C2BMC have worked interfaces closely to ensure seamless integration.

Successfully executing CDR validates that the LRDR system is ready to proceed into fabrication, demonstration, and test and that the hardware and software component have achieved Technology Readiness Level (TRL) 7 and Manufacturing Readiness Level 7.

With the completion of CDR, the program now begins the start of low rate manufacturing which began in October. In preparation for full rate manufacturing starting in mid-2018, Lockheed Martin will be utilizing production hardware in combination with prototype systems, tactical back-end processing equipment as well as tactical software to demonstrate system performance in an operational environment to achieve system TRL 7. Lockheed Martin will be performing a series of tests in the Solid State Radar Integration Site (SSRIS) including a closed loop satellite track test.

«We remain committed to support the MDA’s Ballistic Missile Defense and Homeland Defense Missions», said Chandra Marshall, LRDR program director, Lockheed Martin. «I am extremely proud of the team for their dedication and commitment to the successful execution of the LRDR program.  This team has achieved every milestone, including this CDR, on schedule since contract award in 2015».

Marshall continued, «I am extremely pleased with the progress the entire LRDR team has made in the two years since contract award. With the success of CDR, LRDR is on track for Initial Operating Capability or IOC in 2020».

In addition to CDR, Lockheed Martin conducted a Facilities Design Review in October for the LRDR equipment shelter design. Lockheed Martin will run a full and open competition for the construction of the equipment shelter in Clear, Alaska and will begin construction of the shelter in the first half of 2019. The MDA team is preparing the site for Radar System Installation and checkout mobilization, constructing the Mission Control Facility and starting the foundation for the LRDR equipment shelter.

Similar to Lockheed Martin’s Space Fence radar system, LRDR is a high-powered S-Band radar incorporating solid-state Gallium Nitride (GaN) components. LRDR adds the capability of discriminating threats at extreme distances using the inherent wideband capability of the hardware coupled with advanced software algorithms.

LRDR is a strategic national asset of the MDA’s Ballistic Missile Defense System and will provide 24/7/365 acquisition, tracking and discrimination data to enable defense systems to lock on and engage ballistic missile threats, a capability that stems from Lockheed Martin’s decades of experience in creating ballistic missile defense systems for the U.S. and allied governments.

Lockheed Martin is well positioned to provide low risk, scalable radar solutions that address critical homeland defense needs; providing a persistent capability to keep pace with evolving threats, delivering unmatched discrimination capability in the Pacific architecture, and increasing the defensive capability of Ground Based Interceptors.

Work on LRDR is primarily performed in New Jersey, Alaska, Alabama, Florida and New York.

As a proven world leader in systems integration and development of air and missile defense systems and technologies, Lockheed Martin delivers high-quality missile defense solutions that protect citizens, critical assets and deployed forces from current and future threats. The company’s experience spans radar and signal processing, missile design and production, hit-to-kill capabilities, infrared seekers, command and control/battle management, and communications, precision pointing and tracking optics, as well as threat-representative targets for missile defense tests.

The Long Range Discrimination Radar (LRDR) is a high-powered S-Band radar incorporating solid-state Gallium Nitride (GaN) components capable of discriminating threats at extreme distances. LRDR is a strategic national asset of the Missile Defense Agency’s Ballistic Missile Defense System (BMDS) and will provide 24/7/365 acquisition, tracking and discrimination data to enable separate defense systems to lock on and engage ballistic missile threats (Image courtesy Lockheed Martin)
The Long Range Discrimination Radar (LRDR) is a high-powered S-Band radar incorporating solid-state Gallium Nitride (GaN) components capable of discriminating threats at extreme distances. LRDR is a strategic national asset of the Missile Defense Agency’s Ballistic Missile Defense System (BMDS) and will provide 24/7/365 acquisition, tracking and discrimination data to enable separate defense systems to lock on and engage ballistic missile threats (Image courtesy Lockheed Martin)