Category Archives: Missile Defense

Missile Defense System

MBDA Deutschland and Lockheed Martin, the TLVS bidders consortium (TLVS JV), have submitted an updated proposal to the German Federal Office of Bundeswehr Equipment, Information Technology and In-Service Support (BAAINBw). The proposal includes development, test, certification and delivery of Germany’s future Integrated Air and Missile Defense system.

MBDA and Lockheed Martin submit proposal for Germany’s next generation Integrated Air and Missile Defense System

«More than 80 subcontractors will support the TLVS program. At peak performance, more than 6,000 highly qualified employees will benefit from the implementation of TLVS, with the majority in Germany. A broad spectrum of industrial capabilities is to be involved covering system of systems engineering, cybersecurity, digitization, as well as cutting edge radar, optical and electrical engineering including small and medium suppliers. With these capabilities the TLVS program will ensure defense against advanced and future air and missile threats», said Thomas Gottschild, managing director MBDA Deutschland. «In the last months we made progress in further detailing the Integrated Master Schedule, relevant specifications as well as performance simulations to de-risk the future contract».

Current threats demand a mobile IAMD system that is full 360-degree capable and based on an open network-centric architecture. Only the TLVS system has these capabilities and the ability to rapidly adapt to the ever-changing threat environments.

«Supporting Germany’s essential security interests, the TLVS Joint Venture between MBDA Deutschland and Lockheed Martin builds on our proud legacy of partnership with Germany to create jobs, share technical expertise and deliver capabilities to benefit industry on both sides of the Atlantic», said Scott Arnold, vice president, Integrated Air and Missile Defense, Lockheed Martin Missiles and Fire Control. «TLVS is a demonstrated, modern system that can transform Germany’s defense capabilities and enable Germany as the NATO Framework Nation for Air & Missile Defense».

Designed to replace Germany’s aging, sectored Patriot systems designed in the late 1960s, the 2020 TLVS proposal provides protection from a broader threat spectrum with two mission-specific effectors, significantly enhanced sensor capabilities for long range engagements and a new communications and Battle Management system to support enhanced interoperability, data fusion and cyber resilience. TLVS will transform Germany’s defense capabilities and set an important precedent in how neighboring nations address persistent global threats for years to come.

Flight test

The U.S. Army successfully engaged multiple targets during a flight test using the Northrop Grumman Corporation (NOC) Integrated Battle Command System (IBCS). The test, conducted as part of the IBCS Limited User Test (LUT), demonstrated IBCS’ ability to maintain continuous track custody of the targets, despite contested environment conditions, by fusing data from multiple sensors.

A Northrop Grumman produced Engagement Operations Center (EOC) and Interactive Collaborative Environment (ICE) emplaced at White Sands Missile Range, New Mexico for the IBCS Limited User Test (Source U.S. Army)

«We are extremely pleased with how IBCS performed during this flight test», said Kenn Todorov, vice president and general manager, combat systems and mission readiness, Northrop Grumman. «We have been working on an extraordinary command and control system in partnership with the U.S. Army, and our goals are the same – to get this capability into the hands of the warfighter as soon as possible».

The first of two planned operational flight tests was conducted at White Sands Missile Range, New Mexico by the soldiers from the U.S. Army 3rd Battalion, 43rd Air Defense Artillery (ADA) Regiment. The test’s defense laydown included an Air and Missile Defense task force including two Battery and 1 Battalion engagement operations centers, two Patriot and Sentinel radars, and three Patriot Advanced Capability Three (PAC-3) launchers connected at the component level, to the IBCS Integrated Fire Control Network (IFCN).

The test began when two cruise missile surrogate threats were launched and flew at a low altitude in a maneuvering formation through a mountain range towards defended assets. IBCS fused real-time data from all sensors into a single, accurate composite track for each threat. The soldiers were presented with engagement solutions computed by IBCS which were then executed. The soldiers launched two PAC-3 missiles controlled by IBCS that successfully intercepted both threats. IBCS was able to perform all functions successfully despite being subjected to contested environment conditions designed to disrupt the IFCN network, demonstrating the resilience and survivability of the system.

The Limited User Test, which comprises several tests, is intended to simulate realistic warfighting operations and place performance stresses on the systems to ensure it will perform as intended under the most rigorous circumstances once deployed. This LUT is conducted to inform a Milestone C decision which will transition the IBCS program into the production and operational testing phase.

IBCS utilizes multiple sensors and effectors to extend the battlespace, engage threats providing 360° protection, increases survivability by enabling early detection and continuous tracking, and delivers transformational warfighting capabilities to defeat an increasingly complex threat.

Northrop Grumman solves the toughest problems in space, aeronautics, defense and cyberspace to meet the ever evolving needs of our customers worldwide. Our 90,000 employees define possible every day using science, technology and engineering to create and deliver advanced systems, products and services.

Iron Dome facility

Raytheon Missiles & Defense, a Raytheon Technologies business, and RAFAEL Advanced Defense Systems Ltd., an Israeli-based defense technology company, have signed a joint venture to establish an Iron Dome Weapon System production facility in the United States. The new partnership, called Raytheon RAFAEL Area Protection Systems, anticipates finalizing a site location before the end of the year.

Raytheon Missiles & Defense, RAFAEL team to establish U.S.-based Iron Dome Weapon System production facility

«This will be the first Iron Dome all-up-round facility outside of Israel, and it will help the U.S. Department of Defense and allies across the globe obtain the system for defense of their service members and critical infrastructure», said Raytheon Missiles & Defense Systems’ Sam Deneke, vice president of Land Warfare & Air Defense business execution.

The new facility will produce both the Iron Dome Weapon System, which consists of the Tamir interceptor and launcher, and the SkyHunter missile, a U.S. derivative of Tamir. Both Tamir and SkyHunter intercept incoming cruise missiles, unmanned aerial systems and short-range targets such as rockets, artillery, mortars and other aerial threats.

«We are excited about this new stage in our partnership with Raytheon and proud of our U.S. production», said Brigadier General (res.) Pini Yungman, executive vice president for Air and Missile Defense of RAFAEL Advanced Defense Systems. «We have long partnered on U.S. production of Iron Dome and are pleased to increase manufacturing and bring SkyHunter to the U.S».

Raytheon Missiles & Defense and RAFAEL have teamed for over a decade on Iron Dome, the world’s most-used system with more than 2,500 operational intercepts and a success rate exceeding 90 percent.

First SPY-6 Radar

Raytheon Missiles & Defense, a Raytheon Technologies business, delivered the first AN/SPY-6(V)1 radar array for installation on the future USS Jack H. Lucas (DDG-125), the U.S. Navy’s first Flight III guided-missile destroyer. The SPY-6 family of radars performs simultaneous air, missile and surface defense on seven types of U.S. Navy ships.

Raytheon Missiles & Defense, a Raytheon Technologies business, delivered the first AN/SPY-6(V)1 radar array for installation on the future USS Jack H. Lucas (DDG-125), the U.S. Navy’s first Flight III guided-missile destroyer

«SPY-6 will change how the Navy conducts surface fleet operations», said Captain Jason Hall, program manager for Above-Water Sensors for the U.S. Navy’s Program Executive Office for Integrated Warfare Systems. «Our ships will be able to see farther, react quicker and defend against threats in a way we couldn’t before».

The 14′ × 14’/4.27 m × 4.27 m modular array was transported by truck from the company’s automated 30,000-square-foot/2,787 square-meter Radar Development Facility in Andover, Massachusetts, to Huntington Ingalls Industries shipyard in Pascagoula, Mississippi.

«This is the start of what will be a steady stream of SPY-6 array deliveries to the shipyard», said Kim Ernzen, vice president of Naval Power at Raytheon Missiles & Defense. «Threats to Navy ships are getting smaller and faster. SPY-6 will extend the Navy’s reach against dangers like drones, ballistic missiles, aircraft and unmanned ships».

The SPY-6(V) family of radars delivers significantly greater range, increased accuracy, greater resistance to environmental and man-made electronic clutter, advanced electronic protection, and higher reliability than currently deployed radars.

Sentinel A4 Radar

Just four months after the initial contract award, the U.S. Army’s Sentinel A4 radar program already achieved several key milestones. In January, the U.S Army approved the program’s Systems Requirement Review (SRR), Systems Functional Review (SFR), and the Preliminary Design Review (PDR) for one of the subsystems.

Sentinel A4 Array Subsystem (Photo Courtesy: Lockheed Martin)

«Traditionally, the SRR and PDR take place several months apart, but thanks to Lockheed Martin’s preparation, investment and our technically mature radar solution, we are able to support the Army’s need to field the system more rapidly», said Mark Mekker, director, Lockheed Martin Army radar programs. «We have achieved every milestone while working on a very aggressive timeline in order to deliver the radar on schedule».

Lockheed Martin’s open scalable radar architecture is the cornerstone of the radar system’s design and will allow for future upgrades that not only extend the life of the radar, but address threats to our warfighters that will evolve over the next 40 years.

The U.S. Army awarded Lockheed Martin a $281-million contract to develop the Sentinel A4 system in September 2019. The new air and missile defense radar will provide improved capability against cruise missiles, Unmanned Aerial Systems (UAS), rotary wing and fixed wing, and rocket, artillery, and mortar threats.

The radar will also provide enhanced surveillance, detection, and classification capabilities against current and emerging aerial threats in order to protect U.S. Army maneuver formations and high-value static assets to include: command and control nodes, tactical assembly areas and geo-political centers.

 

Proven Radar Experience

With broad and deep experience developing and delivering ground-based radar solutions to our customers, our high-performing, high-reliability, Solid State Radar (SSR) systems specialize in counter target acquisition, early warning, situational awareness, and integrated air and missile defense. Our radars are designed with the highest degree of commonality and fully integrated SSR systems. They can operate in all environments, are available in highly mobile configurations, and are deployed worldwide. It’s why Lockheed Martin’s ground-based radars are the choice of more than 45 nations on six continents.

$2.1 billion contract

Raytheon Company will produce and deliver Standard Missile 3 (SM-3) Block IB interceptors under a $2.1 billion, multi-year U.S. Missile Defense Agency contract. It is the first multi-year contract for the SM-3 program, and covers fiscal years 2019-2023.

Raytheon, Missile Defense Agency sign landmark $2 billion Standard Missile-3 contract

SM-3 is the only ballistic missile interceptor that can be launched on land and at sea. It is deployed worldwide and has achieved more than 30 exoatmospheric intercepts against ballistic missile targets.

«This procurement deal is a win-win for government and industry», said Doctor Mitch Stevison, Raytheon Strategic and Naval Systems vice president. «Efficiencies gained from this contract will allow us to reduce costs, continue to improve the SM-3 and deliver an important capability to our military».

The Block IB variant achieved full-rate production in 2017. The company has delivered more than 400 SM-3 rounds over the lifetime of the program.

Standard Missile

Raytheon Company’s Missile Systems business has reached a $1 billion, five-year strategic agreement to purchase propulsion systems from Aerojet Rocketdyne for Standard Missile products. The deal represents a supply chain centerpiece of multi-year Standard Missiles contracts that Raytheon recently received.

Raytheon, Aerojet Rocketdyne strike $1 billion strategic sourcing deal for Standard Missile programs

«Moving to multi-year, rather than annual-year contracting enables Raytheon and its supply chain to deliver even more value to our Missile Defense Agency and U.S. Navy customers, and the taxpayer», said Eugene Jaramillo, Raytheon Missile Systems vice president of Global Supply Chain Management. «These multi-year agreements also allow our suppliers to transform the way they do business with Raytheon».

Aerojet Rocketdyne provides propulsion systems spanning Raytheon’s Standard Missile family. For the SM-2 missile, SM-3 interceptor and SM-6 missile, Aerojet Rocketdyne supplies the majority of the solid rocket motors for these systems. Also, for SM-3, the company produces the Divert and Attitude Control System, a high-precision, quick-reaction propulsion system that positions the interceptor to defeat incoming ballistic missiles.

«Aerojet Rocketdyne has supported one or more variants of the Standard Missile program for more than three decades; we are proud of our contributions to these vital defense products», said Eileen Drake, Aerojet Rocketdyne CEO and president. «This significant agreement on multi-year contracts strengthens our current relationship and positions Aerojet Rocketdyne favorably for future business opportunities and continued growth».

Work on the programs will be spread across Aerojet Rocketdyne sites in Orange County, Virginia, the Solid Rocket Motor Center of Excellence in Camden, Arkansas, and at its Advanced Manufacturing Facility in Huntsville, Alabama. Raytheon produces SM-2 in Tucson, and SM-3 and SM-6 in Huntsville.

Anywhere, Anytime

A United Launch Alliance (ULA) Atlas V rocket carrying the sixth Advanced Extremely High Frequency (AEHF) communications satellite for the U.S. Space Force’s Space and Missile Systems Center lifted off from Space Launch Complex-41 on March 26 at 4:18 p.m. EDT. This marks the 83rd successful launch of an Atlas V rocket, 138th launch for ULA and first mission for the U.S. Space Force.

Lockheed Martin’s sixth Advanced Extremely High Frequency (AEHF-6) protected communications satellite is encapsulated in its protective fairings (Photo credit: United Launch Alliance)

The AEHF-6 satellite will bring additional capabilities and resilience to the constellation which already ensures «always-on» communications and the ability to transmit data anywhere, anytime. Once on orbit, AEHF-6 will complete the constellation, as well as mark the first launch under U.S. Space Force control. AEHF-6 will launch from Cape Canaveral, Florida on a United Launch Alliance (ULA) rocket in an Atlas V 551 configuration.

«While this is the final AEHF satellite launch, it really brings the constellation to full strength, capability and truly marks the beginning of the AEHF system’s full lifecycle», said Mike Cacheiro, vice president for Protected Communications at Lockheed Martin. «Still, it is a bittersweet moment for everyone involved, knowing this is our last launch for the AEHF program. Myself, as well as all of the employees who have supported the program at Lockheed Martin are incredibly grateful for our continued partnership with the U.S. Space Force’s Space and Missiles Systems Center».

AEHF-6 is part of the AEHF system – a resilient satellite constellation providing global coverage and a sophisticated ground control system. Together the constellation provides survivable, protected communications capabilities for national leaders and tactical warfighters operating across ground, sea and air platforms. The anti-jam system also serves international allies to include Canada, the Netherlands, United Kingdom and now Australia.

Lockheed Martin developed and manufactured AEHF-6 at its satellite production facility located in Sunnyvale, California. In January, the satellite shipped to Cape Canaveral Air Force Station courtesy of a Super Galaxy C-5 aircraft from the 60th Air Mobility Wing at Travis Air Force Base.

Lockheed Martin is the prime contractor for the AEHF system, and the AEHF team is led by the Production Corps, Medium Earth Orbit Division, at the Space Force’s Space and Missile Systems Center, at Los Angeles Air Force Base.

Glide Body

The Department of Defense successfully tested a hypersonic glide body in a flight experiment conducted from the Pacific Missile Range Facility, Kauai, Hawaii, March 19 at approximately 10:30 p.m. local time (HST).

A Common Hypersonic Glide Body (C-HGB) launches from Pacific Missile Range Facility, Kauai, Hawaii, at approximately 10:30 p.m. local time, March 19, 2020, during a Department of Defense flight experiment. The U.S. Navy and U.S. Army jointly executed the launch of the C-HGB, which flew at hypersonic speed to a designated impact point. Concurrently, the Missile Defense Agency (MDA) monitored and gathered tracking data from the flight experiment that will inform its ongoing development of systems designed to defend against adversary hypersonic weapons. Information gathered from this and future experiments will further inform DOD’s hypersonic technology development. The department is working in collaboration with industry and academia to field hypersonic warfighting capabilities in the early- to mid-2020s (U.S. Navy photo/Released)

The U.S. Navy and U.S. Army jointly executed the launch of a Common Hypersonic Glide Body (C-HGB), which flew at hypersonic speed to a designated impact point.

Concurrently, the Missile Defense Agency (MDA) monitored and gathered tracking data from the flight experiment that will inform its ongoing development of systems designed to defend against adversary hypersonic weapons.

Information gathered from this and future experiments will further inform DOD’s hypersonic technology development, and this event is a major milestone towards the department’s goal of fielding hypersonic warfighting capabilities in the early- to mid-2020s.

«This test builds on the success we had with Flight Experiment 1 in October 2017, in which our C-HGB achieved sustained hypersonic glide at our target distances», said Vice Admiral Johnny R. Wolfe, Director, Navy’s Strategic Systems Programs, which is the lead designer for the C-HGB. «In this test we put additional stresses on the system and it was able to handle them all, due to the phenomenal expertise of our top notch team of individuals from across government, industry and academia. Today we validated our design and are now ready to move to the next phase towards fielding a hypersonic strike capability».

Hypersonic weapons, capable of flying at speeds greater than five times the speed of sound (Mach 5), are highly maneuverable and operate at varying altitudes. This provides the warfighter with an ability to strike targets hundreds and even thousands of miles away, in a matter of minutes, to defeat a wide range of high-value targets. Delivering hypersonic weapons is one of the department’s highest technical research and engineering priorities.

«This test was a critical step in rapidly delivering operational hypersonic capabilities to our warfighters in support of the National Defense Strategy», said U.S. Army LTG L. Neil Thurgood, Director of Hypersonics, Directed Energy, Space and Rapid Acquisition, whose office is leading the Army’s Long Range Hypersonic Weapon program and joint C-HGB production. «We successfully executed a mission consistent with how we can apply this capability in the future. The joint team did a tremendous job in executing this test, and we will continue to move aggressively to get prototypes to the field».

The C-HGB – when fully fielded – will comprise the weapon’s conventional warhead, guidance system, cabling, and thermal protection shield. The Navy and Army are working closely with industry to develop the C-HGB with Navy as the lead designer, and Army as the lead for production. Each service will use the C-HGB, while developing individual weapon systems and launchers tailored for launch from sea or land.

The similarities in hypersonic weapon design for sea and land variants provide economies of scale for future production as we build the U.S. hypersonics industrial base.

«Hypersonic systems deliver transformational warfighting capability», said Mr. Mike White, Assistant Director, Hypersonics, OUSD Research and Engineering (Modernization). «The glide body tested today is now ready for transition to Army and Navy weapon system development efforts and is one of several applications of hypersonic technology underway across the Department. These capabilities help ensure that our warfighters will maintain the battlefield dominance necessary to deter, and if necessary, defeat any future adversary».

Additionally, MDA is working closely with Army and Navy in sharing data that will inform their development of enhanced capabilities for a layered hypersonic defense to support warfighter need and outpace the adversary threat.

Department of Defense Tests Hypersonic Glide Body

Seeker technology

BAE Systems has been awarded a contract from Lockheed Martin to design and manufacture next-generation infrared seekers for the Terminal High Altitude Area Defense (THAAD) weapon system, providing critical targeting technology that helps protect the U.S. and its allies from ballistic missiles. The sensor design work will improve the missile defense system’s ability to neutralize more threats and improve its manufacturability.

Next-generation seeker technology will help protect the U.S. and its allies from ballistic missiles

«The THAAD seeker is a key product in our precision munitions portfolio that’s recognized for its proven intercept capabilities. It demonstrates our ability to deliver advanced targeting and guidance systems for critical precision munitions», said Barry Yeadon, THAAD program director at BAE Systems. «This award is a testament to our ongoing success with the program, and enables us to advance our proven design and take the program into the future in support of the Missile Defense Agency’s mission».

The THAAD weapon system intercepts hostile ballistic missiles with kinetic force during their final, or terminal, phase of flight. BAE Systems’ seeker provides infrared imagery that guides interceptors to their intended targets, destroying enemy warheads inside or outside the Earth’s atmosphere. The company has been developing and producing missile defense seeker technology for more than four decades, and has delivered more than 500 THAAD seekers to date.

THAAD is an integral part of the MDA’s mission to field an integrated, layered, ballistic missile defense system. Its high-altitude intercept capability mitigates the effects of enemy weapons before they reach the ground, and its non-explosive kinetic impact minimizes the risk of detonation. THAAD is a highly effective system for addressing ballistic missile threats.

BAE Systems’ THAAD seekers are assembled, integrated, and tested at the company’s facilities in Nashua, New Hampshire and Endicott, New York. Portions of the design work for the next-generation seeker technology will be conducted in Huntsville, Alabama, where the company is actively hiring and building a state-of-the-art facility. The THAAD seeker program provides an opportunity for engineers to join a cutting-edge design program at its early stages in the Rocket City.