Category Archives: Navy

The Second FREMM

On June 12th in Brest, DCNS delivered the FREMM multi-mission frigate D652 Provence to the French Navy, as stipulated in the contract. This frigate is the second of the series ordered by OCCAR (l’Organisation Conjointe de Coopération en matière d’Armement – Organisation for Joint Armament) on behalf of the DGA (Direction Générale de l’Armement – French armament procurement agency).

The D652 Provence, the French navy’s second FREMM-class multipurpose frigate, leaves Lorient after being officially handed over. DCNS now has four similar frigates in various stages of completion, and additional orders are planned (DCNS photos)
The D652 Provence, the French navy’s second FREMM-class multipurpose frigate, leaves Lorient after being officially handed over. DCNS now has four similar frigates in various stages of completion, and additional orders are planned (DCNS photos)

Delivery of the FREMM multi-mission frigate Provence is the result of a design and construction process managed by DCNS in close cooperation with the French Navy, DGA and OCCAR teams. All DCNS sites, its partners and subcontractors took part to this technological and industrial success to ensure compliance with the industrial milestones, in particular the launching in September 2013 and the first sea outing in September 2014.

The delivery of the second series to the French Navy took place just a few weeks after the first successful firing in Europe of a naval cruise missile from the first-of-class, the FREMM D650 Aquitaine. The sale of a frigate to the Royal Moroccan Navy and the Egyptian Navy, as well as the announcement of the launch of the intermediate-size frigates programme, boost DCNS ambitions for international development thanks to a broader offer of first of rank surface ships.

«The delivery of the FREMM Provence represents an opportunity to applaud the industrial and technological prowess of DCNS and its subcontractors. It underlines our ability to produce first of rank combat ships that meet our client navies needs, such as those of Morocco and Egypt», stated Anne Bianchi, Director of FREMM programmes. «Today, we are proud to deliver this second ship to the French Navy».

DCNS designs, builds and maintains submarines and surface vessels
DCNS designs, builds and maintains submarines and surface vessels

 

SETIS, one of the most effective sea-proven combat systems on the market

The delivery of the FREMM Provence marks the culmination in the ramping up of SETIS (Ship Enhanced Tactical Information System), the latest-generation combat system developed by DCNS. The ship is now equipped with a cutting-edge solution that is perfectly integrated on board. Indeed, the successful firing of the naval cruise missile on May 19th 2015 from the FREMM Aquitaine is a demonstration of the anti-land warfare capabilities directed at targets located deep in enemy territory. Added to the anti-submarine, anti-surface and anti-air warfare capabilities, the FREMM has now reached its full technological capabilities.

«DCNS has successfully accomplished this essential step for the FREMM SETIS combat system. We are proud to have contributed to the successful firing of a cruise missile from a surface ship, a first in Europe. This result is a demonstration of DCNS expertise in the area of the design and integration of combat systems», stressed Anne Bianchi.

The FREMM D652 Provence delivered on 12 June 2015
The FREMM D652 Provence delivered on 12 June 2015

 

Four FREMM at different stages of construction at DCNS Lorient Shipyard

For DCNS, the FREMM programme currently involves the construction of ten frigates, eight of them for the French Navy. Six of these are to be delivered by 2019 and the remaining two frigates, equipped with extended anti-aircraft capabilities, will be delivered before 2022. Two other were sold for export clients: the Royal Moroccan Navy and the Egyptian Navy.

The delivery of the FREMM Provence takes place at a time when the FREMM programme is powering ahead on the DCNS site in Lorient. To date, three FREMM frigates are under construction and one is being prepared before being delivered:

The FREMM D650 Aquitaine, first in series, delivered in 2012.

The FREMM 701 Mohammed VI, for the Royal Moroccan Navy, delivered in 2014.

The FREMM D652 Provence, delivered on 12 June 2015.

The FREMM intended for the Egyptian Navy, formerly the FREMM D651 Normandie, will be delivered in summer 2015.

The FREMM D653 Languedoc will make its first sea outing in autumn 2015.

The FREMM D654 Auvergne is currently in the final stages of construction and will be launched in September 2015.

The FREMM D656 Bretagne is currently being assembled.

D651 «Normandie» FREMM multi-mission frigate (right side view)
D651 «Normandie» FREMM multi-mission frigate (right side view)

 

Technical characteristics of the FREMMs

The FREMM multi-mission frigate is one of the most technologically advanced and competitive ships on the market. Its versatility and manoeuvrability meet the operational requirements of numerous navies around the world. Equipped with high-tech sensors and weapons, integrated with the SETIS latest-generation combat system developed by DCNS, the frigate can counter all types of threats, whether air, surface, submarine or land-based.

The heavily armed FREMM frigate is equipped with the most effective weapons systems and equipment, such as the Herakles multifunction radar, the Aster and Exocet MM 40 missiles, or the MU 90 torpedoes. It is innovative and offers unequalled levels of interoperability and availability. This combat ship is capable of meeting the expectations of numerous navies.

Total length: 466 feet/142 m

Width: 65.6 feet/20 m

Displacement: 6,000 tonnes

Maximum speed: 27 knots/31 mph/50 km/h

Operation: 108 persons (including helicopter detachment)

Accommodation capacity: 145 men and women

Range: 6,000 nautical miles/6,905 miles/11,112 km at 15 knots/17 mph/28 km/h

Provence 's broader weapons and equipment fit includes: the Thales HERAKLES multifunction radar and ARTEMIS panoramic surveillance system; the Terma Scanter 2001 navigation and surveillance radars; Thales' UMS 4110 CL and CAPTAS 4 hull-mounted and towed sonar systems; the DCNS SETIS combat management system; Sagem's Vigy MM fire-control system; Thales' SIC 21 command-and-control information system; 16 Aster 15 surface-to-air missiles, 16 Missile de Croisiere Naval (MdCN) long-range cruise missiles, and eight Exocet MM 40 Block 3 anti-ship missiles, all from MBDA; Oto Melara's 76/62 Super Rapid gun; 19 Eurotorp MU90 lightweight torpedoes; Sagem's NGDS decoy launchers; and Thales Surfsat-L SATCOM terminals
Provence ‘s broader weapons and equipment fit includes: the Thales HERAKLES multifunction radar and ARTEMIS panoramic surveillance system; the Terma Scanter 2001 navigation and surveillance radars; Thales’ UMS 4110 CL and CAPTAS 4 hull-mounted and towed sonar systems; the DCNS SETIS combat management system; Sagem’s Vigy MM fire-control system; Thales’ SIC 21 command-and-control information system; 16 Aster 15 surface-to-air missiles, 16 Missile de Croisiere Naval (MdCN) long-range cruise missiles, and eight Exocet MM 40 Block 3 anti-ship missiles, all from MBDA; Oto Melara’s 76/62 Super Rapid gun; 19 Eurotorp MU90 lightweight torpedoes; Sagem’s NGDS decoy launchers; and Thales Surfsat-L SATCOM terminals

Christening of Gabby

The U.S. Navy christened its tenth Littoral Combat Ship (LCS), the future USS Gabrielle Giffords (LCS-10), during a midday ceremony June 13 at Austal USA shipyard in Mobile, Alabama. LCS 10 is named after former United States Representative Gabrielle Giffords.

The future USS Gabrielle Giffords (LCS-10), a Littoral Combat Ship built at the Austal USA shipyards in Mobile, Alabama, is christened during a ceremony Saturday, June 13, 2015, on the Mobile River
The future USS Gabrielle Giffords (LCS-10), a Littoral Combat Ship built at the Austal USA shipyards in Mobile, Alabama, is christened during a ceremony Saturday, June 13, 2015, on the Mobile River

«The christening of the future USS Gabrielle Giffords marks the beginning of what is certain to be a long life for this great ship», said Secretary of the Navy Ray Mabus. «It is also a celebration of the skill and dedication of the men and women who have built LCS 10 and the courage of her namesake. This ship truly embodies the Navy motto of Semper Fortis – Always Courageous».

During the event, Second Lady of the United States Doctor Jill Biden, the ship’s sponsor, smashed a champagne bottle on the bow as other dignitaries, including Austal USA President Craig Perciavalle and former U.S. Representative Gabrielle Giffords of Arizona and her husband Captain Mark Kelly, USN (Retired), were watching from the platform.

Though Gabby’s comments were brief, Giffords’ excitement shown through every word during Saturday’s christening ceremony. «Thank you to all the people who built this ship. She’s stealthy. She will defend freedom around the world. Go Navy», Giffords said.

The LCS class consists of the Freedom variant and Independence variant, each designed and built by different industry teams. The Freedom variant team is led by Lockheed Martin (for odd-numbered hulls, e.g., LCS-1). The Independence variant team is led by General Dynamics (LCS-2 and LCS-4) and Austal USA (for the subsequent even-numbered hulls). Purchased under the innovative block-buy acquisition strategy, there are 12 ships currently under construction.

While capable of open-ocean tasking, LCS is intended to operate in the littorals – shallow, coastal waters. As such, the ships can operate in water as shallow as 20 feet/6 meter deep and can travel at speeds in excess of 40 knots/46 mph/74 km/h. USS Freedom (LCS-1) and USS Fort Worth (LCS-3) recently demonstrated these critical capabilities as part of their operational deployments to U.S. 7th Fleet in the Asia-Pacific region.

The ship is Austal's fifth in a $3.5 billion, 10-ship Independence-class LCS contract with the Navy
The ship is Austal’s fifth in a $3.5 billion, 10-ship Independence-class LCS contract with the Navy

 

The Independence Variant of the LCS Class

Principal dimensions

Construction:                         Hull and superstructure – aluminium alloy

Length overall:                       417 feet/127.1 m

Beam overall:                          103 feet/31.4 m

Hull draft (maximum):        14.8 feet/4.5 m

 

Payload and capacities

Complement:                          Core Crew – 40

Mission crew – 36

Berthing:                                   76 in a mix of single, double & quad berthing compartments

Maximum mission load:   210 tonnes

Mission packages:               ASW, SUW, MIW

 

Propulsion

Main engines:                        2 × GE LM2500

2 × MTU 20V 8000

Waterjets:                                4 × Wartsila steerable

Bow thruster:                         Retractable azimuthing

It is 16th U.S. naval ship to be named for a woman and only the 13th since 1850 to be named for a living person
It is 16th U.S. naval ship to be named for a woman and only the 13th since 1850 to be named for a living person

Performance

Speed:                                         40 knots/46 mph/74 km/h

Range:                                         3,500 NM/4,028 miles/6,482 km

Operational limitation:      Survival in Sea State 8

 

Mission/Logistics deck

Deck area:                                  >21,527.8 feet2/2,000 m2

Launch and recovery:          Twin boom extending crane

Loading:                                       Side ramp

Internal elevator to hanger

 

Flight deck and hanger

Flight deck dimensions:      2 × SH-60 or 1 × CH-53

Hanger:                               Aircraft stowage & maintenance for 2 × SH-60

 

Weapons and sensors

Standard:

1 × 57-mm gun

4 × 12.7-mm/.50 caliber guns

1 × Surface-to-Air Missile (SAM) launcher

3 × weapons modules

The ship is a 417-foot trimaran designed to destroy mines, hunt submarines, interdict drugs and rush humanitarian relief to distant shores
The ship is a 417-foot trimaran designed to destroy mines, hunt submarines, interdict drugs and rush humanitarian relief to distant shores

Mobile Landing Platform

On June 12, 2015 General Dynamics NASSCO, a wholly owned subsidiary of General Dynamics (GD), delivered the U.S. Navy’s newest ship, the USNS Lewis B. Puller (MLP-3/AFSB-1). The ship is named in honor of the late U.S. Marine Corps Lieutenant General Lewis «Chesty» Puller, the most decorated Marine and the only one to be awarded five Navy Crosses. Construction on the USNS Lewis B. Puller began in 2013.

The USNS Lewis B. Puller (MLP-3/AFSB-1) sails past Point Loma during its Builders Trials on April 9th, 2015
The USNS Lewis B. Puller (MLP-3/AFSB-1) sails past Point Loma during its Builders Trials on April 9th, 2015

«Today’s delivery of the USNS Lewis B. Puller (MLP-3/AFSB-1) to the U.S. Navy symbolizes an immense culmination of efforts made by the hard-working men and women of the General Dynamics NASSCO shipbuilding team», said Kevin Mooney, vice president of operations at the General Dynamics NASSCO shipyard. «At NASSCO we are building and delivering affordable ships that are providing new and revolutionary capabilities for America’s Navy and Marine Corps».

The Afloat Forward Staging Base (ASFB) modifications add a 52,000 square-foot/4,831 square-meter flight deck, fuel and equipment storage, repair spaces, magazines, mission planning spaces and accommodations for up to 250 personnel. The ship is capable of supporting multiple missions including Air Mine Counter Measures (AMCM), counter-piracy operations, maritime security operations, humanitarian aid and disaster relief missions and Marine Corps crisis response. The ship is designed to support MH-53 and MH-60 helicopters, and will be upgraded to support MV-22 tilt rotor aircraft.

Earlier this year, NASSCO shipbuilders christened the ship with a ceremony at the company’s shipyard in San Diego. The commandant of the Marine Corps, General Joseph F. Dunford, Jr., was the ceremony’s principal speaker. Ms. Martha Puller Downs, daughter of General Puller, served as the ship’s sponsor.

The U.S. Navy has awarded NASSCO a contract for the detail design and construction of a fourth Mobile Landing Platform (MLP), to be configured as another Afloat Forward Staging Base. Construction of the fourth MLP-4/AFSB-2 is scheduled to begin in the fourth quarter of 2015.

The USNS Lewis B. Puller (MLP-3/AFSB-1) undergoes Builders Trials April 9th, 2015
The USNS Lewis B. Puller (MLP-3/AFSB-1) undergoes Builders Trials April 9th, 2015

 

General Characteristics

Builder:                                              NASSCO

Propulsion:                                      Commercial Diesel Electric Propulsion

Length:                                              785 feet/239.3 m

Beam:                                                 164 feet/50 m

Displacement:                               78,000 tons (fully loaded)

Draft:                        29.5 feet/9 m (fully loaded); 39 feet/12 m (load line)

Speed:                                                15 knots/17 mph/28 km/h

Range:                      9,500 nautical miles/10,932 miles/17,594 km

Crew:                                                 34 Military Sealift Command personnel

Accommodations:                      250 personnel

 

Ships:

USNS Montford Point (MLP-1)

USNS John Glenn (MLP-2)

USNS Lewis B. Puller (MLP-3/AFSB-1)

USNS (MLP-4/AFSB-2) – Under construction

General Dynamics NASSCO Delivers USNS Lewis B. Puller (MLP-3/AFSB-1)
General Dynamics NASSCO Delivers USNS Lewis B. Puller (MLP-3/AFSB-1)

Vikrant undocks

The largest and the first indigenously-built, 40,642-tonne aircraft carrier (IAC) to be christened as INS Vikrant on commissioning was undocked on Jun 10 at a simple ceremony held at the Cochin Shipyard Limited (CSL).

Vikrant, weighing about 22,000 tonnes now, will continue to be outfitted for over a year and a half now before the basin and sea trials begin ahead of delivery
Vikrant, weighing about 22,000 tonnes now, will continue to be outfitted for over a year and a half now before the basin and sea trials begin ahead of delivery

The ship, being built at CSL, would be required to undergo a series of fitment and trial processes and tests before it becomes ready for propulsion and inducted into the Indian Navy. Major outfitting work of the ship would be undertaken in the coming months. Prior to its delivery to the Indian Navy, the ship has to undergo basin trials and extensive sea trials. The basic design of the IAC was done by the Indian Navy’s Directorate of Naval Design.

The successful completion of aircraft carrier puts India in the elite group of four nations in the world who are capable of designing and constructing aircraft carriers. The other four countries are US, China, UK and France.

Almost 90 per cent of works below the fourth deck, all underwater works, is over
Almost 90 per cent of works below the fourth deck, all underwater works, is over

The ship has a length of over 860 feet/262 metres and breadth of 197 feet/60 metres. It has two take-off runways and a landing strip with three arrester wires, capable of operating Short Take-Off But Arrested Recovery (STOBAR) aircraft including the indigenous Light Combat Aircraft (LCA), as well as a range of helicopters with hangar facilities.

The ceremony of undocking of Vikrant was witnessed by Commodore Kartik Subramaniam, Chairman and Managing Director CSL. Also present during the undocking function were other officials of the shipyard.

Vikrant will now undergo minor structural work and outfitting for the next 18 months
Vikrant will now undergo minor structural work and outfitting for the next 18 months

The fifth Cutter

Huntington Ingalls Industries’ (HII) Ingalls Shipbuilding division delivered the National Security Cutter (NSC) USCGC Joshua James (WMSL-754) to the U.S. Coast Guard on Jun 05, 2015. In mid-July the ship will sail to her August 8 commissioning site in Boston.

The fifth U.S. Coast Guard NSC, James (WMSL 754), has successfully completed acceptance trials in early May 2015. The Ingalls-built NSC spent two full days in the Gulf of Mexico proving the ship’s systems (Photo by Lance Davis/HII)
The fifth U.S. Coast Guard NSC, James (WMSL 754), has successfully completed acceptance trials in early May 2015. The Ingalls-built NSC spent two full days in the Gulf of Mexico proving the ship’s systems (Photo by Lance Davis/HII)

«Ingalls shipbuilders continue to prove they’re committed to building the world’s best ships», said Jim French, Ingalls’ NSC program manager. «The National Security Cutter program continues to prove the benefits of continuous production, which allows us to learn and improve from ship to ship. From this learning, we are able to build quality ships affordably, safely and on schedule, all the while maintaining the industry standards. All of the Ingalls-built NSCs have been top quality, and James is no exception».

James will join the rest of the Legend-class fleet as the fifth National Security Cutter Ingalls has built for the Coast Guard. The Legend-class NSC is meant to replace the 378-foot/115-m Hamilton-class cutters, which were first introduced in the 1960s. NSCs are 418 feet/127 m long with a 54-foot/16-m beam and displace 4,500 tons with a full load. They have a top speed of 28 knots/32 mph/52 km/h, a range of 12,000 nautical miles/13,809 miles/22,224 km, an endurance of 60 days and a crew of 120.

«This is a great day for our nation, for our Coast Guard, for Ingalls Shipbuilding and for the plankowner crew of the Coast Guard Cutter Joshua James», said Captain Andrew Tiongson, the ship’s commanding officer. «A lot of people worked thousands of hours to get this point, and we thank you».

The fifth National Security Cutter is named to honor Captain Joshua James of the U.S. Life-Saving Service, who is credited with saving over 600 lives and is considered one of the most celebrated lifesavers in the world.

The Legend-class NSC is capable of meeting all maritime security mission needs required of the high-endurance cutter. The cutter includes an aft launch and recovery area for two rigid hull inflatable boats and a flight deck to accommodate a range of manned and unmanned rotary-wing aircraft. It is the largest and most technologically advanced class of cutter in the Coast Guard, with robust capabilities for maritime homeland security, law enforcement, marine safety, environmental protection and national defense missions.

The Legend-class of cutters plays an important role in enhancing the Coast Guard’s operational readiness, capacity and effectiveness at a time when the demand for their services has never been greater.

The fifth Ingalls-built U.S. Coast Guard National Security Cutter, USCGC Joshua James (WMSL-754), sailed the Gulf of Mexico last week for her successful builder’s sea trials. Photo by Lance Davis/HII
The fifth Ingalls-built U.S. Coast Guard National Security Cutter, USCGC Joshua James (WMSL-754), sailed the Gulf of Mexico last week for her successful builder’s sea trials. Photo by Lance Davis/HII

 

Facts

Displacement:                              4,500 long tons

Length:                                             418 feet/127 m

Beam:                                                54 feet/16 m

Speed:                                               28 knots/32 mph/52 km/h

Range:                                               12,000 NM/13,809 miles/22,224 km

Endurance:                                     60 days

Crew:                                                 120

Equipped with:

Mk-110 57-mm turret mounted gun;

6 × 12.7-mm/.50 caliber machine guns;

3D air search radar;

2 level 1, class 1 aircraft hangers;

A stern launch ramp for mission boats.

 

Ship list

USCGC Bertholf (WMSL-750)

USCGC Waesche (WMSL-751)

USCGC Stratton (WMSL-752)

USCGC Hamilton (WMSL-753)

USCGC James (WMSL-754)

USCGC Munro (WMSL-755)

USCGC Kimball (WMSL-756)

USCGC Midgett (WMSL-757)

 

Australian Romeo

Two of the Royal Australian Navy’s (RAN) MH-60R Seahawk helicopters were loaded onto a Royal Australian Air Force (RAAF) C-17 at Air Test and Evaluation Squadron (HX) 21 at Naval Air Station (NAS) Patuxent River, Maryland, for delivery to their new home in Australia May 27, 2015. These two Seahawks mark the halfway point for the U.S. Navy’s foreign military sales agreement with the Commonwealth of Australia for training and production of 24 MH-60R Seahawk helicopters, which began in June 2011.

Two more MH-60R Seahawk helicopters inside a RAAF C-17 transport aircraft for their delivery to the Royal Australian Navy, which has now received half of the 24 Seahawks it has on order (Naval Air Systems Command photo)
Two more MH-60R Seahawk helicopters inside a RAAF C-17 transport aircraft for their delivery to the Royal Australian Navy, which has now received half of the 24 Seahawks it has on order (Naval Air Systems Command photo)

«As they come off the production line, the Australians have picked them up two at a time», said Commander Scott Stringer, HX-21 MH-60R government flight test director. «This is a multi-year plan that should carry into mid-2016. We are delivering brand new aircraft to the Australians. They still have that new car smell with very few flight hours».

RAN squadron 725 is in the process of establishing MH-60R operations at NAS Nowra, New South Wales. Later this year, HX-21 and RAN squadron 725 are scheduled to test unique modifications on the MH-60Rs. These modifications are based on unique RAN requirements and include the addition of an instrument landing system and a crash-survivable data recorder. The collaborative U.S. and RAN test and evaluation of the MH-60R modifications also allows for an open exchange of professional views and experiences.

Because of interoperability – how the two navies have trained and operated together – Stringer explained how he could foresee a U.S. Navy H-60 pilot seamlessly operating during a cross-deck tour on an Australian ship or vice versa.

«We have six people supporting the MH-60R acquisition and sustainment effort at Pax River and share office space with the RAAF Classic Hornet and Super Hornet sustainment team», said Commander Andrew Dawes, RAN MH-60R project resident team lead. «This is something we take a great deal of pride in and greatly appreciate the support that everyone at NAS Pax River is providing in this process».

The mission of HX-21 is to conduct the highest quality developmental flight test and evaluation of rotary-wing and tilt-rotor aircraft, airborne systems in support of all U.S. Navy and U.S. Marine Corps training, operational combat and operational combat support missions.

A pair of U.S. Navy Sikorsky MH-60R Seahawks, NE 712 166556 and NE 700 166541 of HSM-77 'Sabrehawks', cruise past the USS Sterett (DDG-104) in the Pacific Ocean
A pair of U.S. Navy Sikorsky MH-60R Seahawks, NE 712 166556 and NE 700 166541 of HSM-77 ‘Sabrehawks’, cruise past the USS Sterett (DDG-104) in the Pacific Ocean

 

MH-60R Seahawk (Romeo)

The MH-60R «Romeo» is the most capable and mature Anti-Submarine (ASW)/Anti-Surface Warfare (ASuW) multi-mission helicopter available in the world today. Together with its sibling, the MH-60S «Sierra», the Seahawk variants have flown more than 650,000 hours across a 500+ aircraft fleet. The MH-60R Seahawk is deployed globally with the U.S. Navy fleet and a growing number of allied international navies.

The journey from the start of MH-60R Seahawk flight-testing through the first deployment, in 2009, of 11 MH-60R helicopters aboard the USS Stennis, represents 1,900 flight hours, the equivalent of 500 labor years, and a considerable financial commitment by Lockheed Martin.

The MH-60R Seahawk, manufactured by Sikorsky Aircraft Corp, and equipped with advanced mission systems and sensors by Lockheed Martin Mission Systems and Training (MST), is capable of detecting and prosecuting modern submarines in littoral and open ocean scenarios.

In addition, MH-60R Seahawk is capable of conducting stand-alone or joint Anti-Surface Warfare missions with other «Romeo» or MH-60S «Sierra» aircraft. Secondary missions include electronic support measures, search and rescue, vertical replenishment, and medical evacuation.

The advanced mission sensor suite developed and integrated by Lockheed Martin includes:

  • APS-147 Multi-mode radar (including Inverse Synthetic Aperture Radar);
  • AQS-22 Airborne Low Frequency Dipping Sonar (ALFS) subsystem and sonobuoys;
  • ALQ-210 Electronic Support Measures with an integrated helo threat warning capability;
  • AAS-44 Forward Looking Infrared Electro-Optical device;
  • Integrated self-defense;
  • A weapons suite including torpedoes and anti-ship missiles.
Two multi-mission MH-60R Seahawk helicopters fly in tandem during section landings at Naval Air Station Jacksonville, Florida. The new Seahawk variant has many improvements, such as the glass cockpit, improved mission systems, new sensors and advanced avionics. (U.S. Navy photo by Mass Communication Specialist 2nd Class Shannon Renfroe/Released)
Two multi-mission MH-60R Seahawk helicopters fly in tandem during section landings at Naval Air Station Jacksonville, Florida. The new Seahawk variant has many improvements, such as the glass cockpit, improved mission systems, new sensors and advanced avionics. (U.S. Navy photo by Mass Communication Specialist 2nd Class Shannon Renfroe/Released)

Lockheed Martin MST also produces the Common Cockpit avionics, fielded on both the MH-60R «Romeo» and MH-60S «Sierra». The 400th Common Cockpit will be installed on the first Royal Australian Navy MH-60R. In 2012, the Common Cockpit exceeded 600,000 flight hours across an operational fleet of 360 aircraft. The digital, all-glass cockpit features four large, flat-panel, multi-function, night-vision-compatible, color displays. The suite processes and manages communications and sensor data streaming into MH-60 multi-mission helicopters, presenting to the crew of three actionable information that significantly reduces workload while increasing situational awareness.

The U.S. Navy is committed to a long-term preplanned product improvement program, also known as P3I, to keep the MH-60R Seahawk current throughout its life. Recent upgrades have included vital software and mission management systems in the Situational Awareness Technology Insertion (SATI) package as well as design upgrades to the Identification Friend-or-Foe Interrogator Subsystem. Combined with the aircraft’s Automatic Radar Periscope Detection and Discrimination system, the MH-60R’s range of detection will expand – enhancing situational awareness and advanced threat detection – while interference with civil air traffic control systems will diminish.

The MH-60R Electronic Surveillance Measures (ESM) system, which provides aircrew with valuable threat-warning capabilities, has benefited from the installation and maintenance of an ESM autoloader, and the development of Mission Data Loads, which comprise a database of possible threats within a specific region of operations.

Smaller elements are included as well, including the integration of a new multi-function radio called the ARC210 Gen 5 (which sister-aircraft MH-60S «Sierra» will also receive), crucial spare assemblies and integration of other core technologies. The Gen 5 radio will provide MH-60R Seahawk aircrew with flexible and secure communication.

Survivability and crashworthiness are not just attributes of the Seahawk helicopter, they are inherent to the design. A strict military standard makes the Seahawk helicopter a rugged and extremely durable helicopter that delivers safety. Safety that has been proven in real missions, around the world. Some of our aircraft have over thirty years of service and continue to support operations in the most rigorous of environments known to man.

Capable of launching eight Hellfire missiles from right and left extended pylons
Capable of launching eight Hellfire missiles from right and left extended pylons

 

Airframe

  • Marinized airframe structure for improved survivability
  • Multi-functional and durable cabin flooring
  • Two jettisonable cockpit doors
  • Single cabin sliding door
  • Recovery, Assist, Secure and Traverse (RAST) System
  • Automatic main rotor blade fold
  • Built-in work platforms, engine cowlings and hydraulic deck
  • External rescue hoist
  • 6,000 lbs/2,721.55 kg external cargo hook
  • Active vibration control system

 

Cockpit

  • Enhanced Advanced Flight Control System (AFCS) with naval modules and coupled hover capability
  • Four 8×10 inch (20.3×25.4 cm) full color, night vision device capable, sunlight readable, multi-function mission and flight displays
  • Secure Very High Frequency/Ultra High Frequency (VHF/UHF) communication
  • Inertial navigation system
  • Satellite communication
  • Data link
  • AAS-44 Forward Looking Infrared/Night Vision (FLIR/NVG) capability
Proven network centric warfare capabilities achieve greater effectiveness
Proven network centric warfare capabilities achieve greater effectiveness

 

Powerplant and fuel system

  • Two fully marinized T700-GE401C engines
  • Auxiliary power unit
  • Fuel dump system
  • Sealed tub design
  • Hover in-flight refueling
  • Auxiliary external fuel tanks, 120 gallons each

 

Dynamic System

  • Automatic main rotor blade fold
  • Manual pylon and stabilator fold
  • Dual redundant and isolated flight controls
  • Rotor brake
  • Ballistically tolerant transmission and drive system

 

Electrical

  • ALQ-210 Electronic Support Measures
  • Integrated avionics with 1553 data bus
  • Environmental control system
Sailors aboard the littoral combat ship USS Freedom (LCS-1) signal an MH-60R Sea Hawk helicopter assigned to Helicopter Maritime Strike Squadron (HSM) 77 to land during a joint maritime exercise. (U.S. Navy photo by Mass Communication Specialist 3rd Class Sebastian McCormack/Released)
Sailors aboard the littoral combat ship USS Freedom (LCS-1) signal an MH-60R Sea Hawk helicopter assigned to Helicopter Maritime Strike Squadron (HSM) 77 to land during a joint maritime exercise. (U.S. Navy photo by Mass Communication Specialist 3rd Class Sebastian McCormack/Released)

 

Specifications

Airframe dimensions
Operating length 64.83 feet/19.76 m
Operating width 53.66 feet/16.35 m
Operating height 16.70 feet/5.10 m
Folded Length 41.05 feet/12.51 m
Folded width 11.00 feet/3.37 m
Folded height 12.92 feet/3.94 m
Main rotor diameter 53.66 feet/16.35 m
Tail rotor diameter 11.00 feet/3.35 m
Accommodations
Cabin Length 10.8 feet/3.2 m
Cabin Width 6.1 feet/1.8 m
Cabin Height 4.4 feet/1.3 m
Cabin Area 65 feet2/6.0 m2
Cabin Volume 299 feet3/8.5 m3
Powerplant and fuel system
Number of Engines 2
Engine Type T700-GE401C
Maximum Take Off 3,426 shp/2,554 kW
One Engine Inoperative Shaft horsepower 1,911 shp/1,425 kW
Performance
Maximum Take-Off Gross Weight 23,500 lbs/10,682 kg
Mission Gross Weight (Surface Warfare) 21,290 lbs/9,657 kg
Mission Endurance (Surface Warfare) 3.30 hours
Maximum Speed 180 knots/207 mph/333 km/h
Maximum Cruise Speed 144 knots/166 mph/267 km/h
Hovering In Ground Effect (HIGE) Ceiling 14,847 feet/4,525 m
Hover Out of Ground Effect (HOGE) Ceiling 9,945 feet/3,031 m
All Engine Operable (AEO) Service Ceiling 11,282 feet/3,438 m
Weapons Anti-ship missiles, torpedoes, 50 cal. guns

Lieutenant Eugene Cleary, Royal Australian Navy, describes this «formidable ASW and Anti-surface platform». Designed for maritime dominance and deployed with the U.S. Navy, the MH-60R Seahawk is the world’s most advanced multi-mission helicopter. The «Romeo» has also been selected by the Royal Danish Navy

Offshore Patrol Vessel

The United Kingdom Secretary of State formally started construction of HMS Medway, the second of three River Class Batch 2 vessels (Offshore Patrol Vessel – OPV), by operating the plasma steel-cutting machine at an event attended by representatives from the Royal Navy, the local community and BAE Systems employees.

Construction of the first of class vessel HMS Forth is now well underway with its first unit transferred into the Ship Build Outfit Hall in Glasgow
Construction of the first of class vessel HMS Forth is now well underway with its first unit transferred into the Ship Build Outfit Hall in Glasgow

Defence Secretary, Michael Fallon, said: «These new ships are an important part of the £160 billion we are investing over the next decade in the equipment our armed forces need. The contract will benefit the dedicated workers of the Clyde, their families and the local economy in Glasgow. And the investment will ensure these shipyards continue to develop into world class engineering facilities at the heart of a thriving British naval shipbuilding capability».

Mick Ord, Managing Director at BAE Systems Naval Ships, said: «This is a proud day for everyone working on this important programme to deliver three new ships to the Royal Navy. The pace of progress on the River Class vessels reinforces the naval design, engineering and manufacturing skills we have in the UK. We are working closely with our Trade Unions, the Ministry of Defence and partners in the supply chain as we continue to build on our proud shipbuilding heritage. With investments in new technologies, cutting-edge processes, new ways of working and improved facilities we are transforming the way we design and build warships. This will enable us to deliver equipment of the highest quality at the lowest possible cost, helping to secure the long-term future of our highly skilled industry in the UK».

Construction of the first of class vessel HMS Forth is now well underway with its first unit transferred into the Ship Build Outfit Hall in Glasgow last week. The vessel is now being assembled alongside the final sections of the second Queen Elizabeth Class aircraft carrier, which will be delivered to Rosyth during the course of this year.

BAE Systems completed the delivery of three OPVs to the Brazilian Navy in 2013 based on a similar design to those now under construction for the Royal Navy
BAE Systems completed the delivery of three OPVs to the Brazilian Navy in 2013 based on a similar design to those now under construction for the Royal Navy

The 90.5-meter Offshore Patrol Vessel is based on a proven BAE Systems design, which is already in service with the Brazilian Navy and Royal Thai Navy. Engineers at BAE Systems have modified the design to meet the requirements of the Royal Navy in support of UK interests both at home and abroad. The OPVs will be globally deployable and capable of ocean patrol with a range of in excess of 5,500 nautical miles/6,329 miles/10,186 km and a maximum speed of 24 knots/27.6 mph/44.4 km/h.

The vessels will include a modified flight deck capable of operating the latest Merlin helicopters, larger stores and more accommodation for embarked troops. They will also be the first ships to be built with a BAE Systems designed operating system called Shared Infrastructure, which will be rolled out across the Royal Navy’s surface fleet over the next 10 years. Shared Infrastructure is a state-of-the-art system that will revolutionize the way ships operate by using virtual technologies to host and integrate the sensors, weapons and management systems that complex warships require. Replacing multiple large consoles dedicated to specific tasks with a single hardware solution, reduces the amount of spares required to be carried onboard and will significantly decrease through-life costs.

The manufacturing contract for the three 2,000-tonne ships was announced in August 2014 and construction of first of class HMS Forth began in October 2014. The production of HMS Trent, the third River Class ship, is expected to begin by the end of this year. The first ship is due to be delivered to the Royal Navy in 2017.

The three vessels are ideal for performing maritime security in British territorial waters
The three vessels are ideal for performing maritime security in British territorial waters

 

As the first steel is cut for HMS Medway, take a look back at the progress across the River Class Batch 2 Offshore Patrol Vessel programme

Korea’s Minelayer

Hyundai Heavy Industries (HHI), the world’s biggest shipbuilder, announced on May 27 it launched its second minelayer MLS-II Nampo for the Korean Navy.

The OTO Melara 76-mm Compatto cannon system is compact enough to be installed on relatively small warships
The OTO Melara 76-mm Compatto cannon system is compact enough to be installed on relatively small warships

The launching ceremony of the RoKS Nampo (570) was attended by Mr. Baek Seung-joo, Vice Minister of National Defense of Republic of Korea; Mr. Kwon Oh-gap, President & CEO of HHI; and 100 other guests.

The MLS-II Nampo is both HHI and Korea’s second minelayer following MLS-560 Wonsan that was delivered in 1997 and are currently in operation. The MLS-II Nampo which can carry 120 crew measures 374 feet/114 m in length, 55.77 feet/17 m in width and 91.86 feet/28 m in depth with a displacement of 3,000 tons.

The next-generation stealth minelayer is specially built to lay a large number of mines precisely at the designated spots in a short period of time. The MLS-II Nampo is scheduled to be delivered to the Korean Navy by October 2016 after outfitting work, sea trials and final inspections.

HHI has been playing a key role in strengthening the defense capabilities of the Korean Navy by delivering a total of 71 naval ships including 12 frigates/patrol ships, 3 destroyers, 3 submarines, and 2 Aegis destroyers.

SAAM – Surface-to-Air Anti-Missile (Aster 15 missile); TACM – Torpedo & Acoustics Countermeasures
SAAM – Surface-to-Air Anti-Missile (Aster 15 missile); TACM – Torpedo & Acoustics Countermeasures

John F. Kennedy

Huntington Ingalls Industries (HII) received a $3.35 billion contract award for the detail design and construction of the nuclear-powered aircraft carrier USS John F. Kennedy (CVN-79), the second ship in the Gerald R. Ford class of carriers. The work will be performed at the company’s Newport News Shipbuilding division. The company also received a $941 million modification to an existing construction preparation contract to continue material procurement and manufacturing in support of the ship.

A composite photo illustration representing the Ford-class aircraft carrier, USS John F. Kennedy (CVN-79)
A composite photo illustration representing the Ford-class aircraft carrier, USS John F. Kennedy (CVN-79)

Contract work includes aircraft carrier construction, ship design activities, engineering services, procurement of materials and hardware to support construction and logistics activities.

«These awards are important, not only for the shipbuilders at Newport News Shipbuilding, but for the thousands of suppliers nationwide who provide the steel, pipe, cable, paint and equipment that goes into this cutting-edge defense platform – and for the sailors who will sail her», said Mike Shawcross, Newport News Shipbuilding’s vice president, John F. Kennedy (CVN-79) carrier construction. «We look forward to continuing to implement lessons learned from the first-of-the-class ship, USS Gerald R. Ford (CVN-78), in the construction of Kennedy and delivering the next great carrier to the Navy».

John F. Kennedy’s first steel was cut in December 2010. Since then, more than 450 of the ship’s 1,100 structural units have been constructed under a construction preparation contract that will be used to start erecting the hull. The ship’s keel-laying ceremony is scheduled for August 22.

John F. Kennedy will continue the legacy of highly capable U.S. Navy nuclear-powered aircraft carrier platforms. Ford-class enhancements incorporated into the design include flight deck changes, improved weapons handling systems and a redesigned island, all resulting in increased aircraft sortie-generation rates. The Ford class also features new nuclear power plants, increased electrical power-generation capacity, allowance for future technologies, and reduced workload for sailors, translating to a smaller crew size and reduced operating costs for the Navy.

This massive building block set will become an aircraft carrier - John F. Kennedy (CVN-79)
This massive building block set will become an aircraft carrier – John F. Kennedy (CVN-79)

 

General Characteristics

Builder Newport News Shipbuilding, Virginia
Propulsion 2 A1B nuclear reactors, 4 shafts
Length 1,092 feet/333 m
Beam 134 feet/41 m
Flight Deck Width 256 feet/78 m
Flight Deck Square 217,796 feet2/20,234 m2
Displacement approximately 100,000 long tons full load
Speed 30+ knots/34.5+ mph/55.5+ km/h
Crew 4,539 (ship, air wing and staff)
Armament ESSM (Evolved Sea Sparrow Missile), RAM (Rolling Airframe Missile), Mk-15 Phalanx CIWS (Close-In Weapon System)
Aircraft 75+
Ships USS Gerald R. Ford (CVN-78);USS John F. Kennedy (CVN-79)
The carrier, under construction at Newport News Shipbuilding, is the second Ford-class nuclear-powered aircraft carrier and the second U.S. Navy carrier named for the 35th U. S. President
The carrier, under construction at Newport News Shipbuilding, is the second Ford-class nuclear-powered aircraft carrier and the second U.S. Navy carrier named for the 35th U. S. President

Forward Deployed

The guided-missile cruiser USS Chancellorsville (CG-62) departed from San Diego May 28 for Yokosuka, Japan, where the ship will join U.S. 7th Fleet’s Forward Deployed Naval Forces. Chancellorsville will enhance presence in 7th Fleet as part of the U.S. Navy’s long-range plan to send the most advanced and capable units to the Asia-Pacific region.

USS Chancellorsville is named for the Confederate victory over Union forces under Robert E. Lee at the Battle of Chancellorsville, Virginia
USS Chancellorsville is named for the Confederate victory over Union forces under Robert E. Lee at the Battle of Chancellorsville, Virginia

«It is Navy policy to forward deploy our most capable ships and there is no ship more capable than Chancellorsville», said Captain Curt Renshaw, Chancellorsville’s commanding officer. «That capability is not just a result of recent modernization, but is also a function of the readiness of the crew; and this crew has worked very hard to prepare for this day to ensure we are able to arrive immediately prepared for any mission».

USS Chancellorsville (CG-62) completed a combat systems update through the Navy’s Cruiser Modernization program, making her among the most capable ships of her class. She is fitted with the latest Aegis Baseline 9 combat system, and will be the first to be forward deployed with that capability.

The Cruiser Modernization program is designed to upgrade in-service ships to keep pace with evolving threats while enabling ships to meet service life requirements and future operational commitments. Cruiser modernization enhances overall combat systems capability through numerous system improvements.

Future missions will include maritime security operations and cooperative training exercises with allies and partners in the Asia-Pacific region. This ship, along with her counterparts in the Japan Self-Defense Forces, makes up part of the core capabilities needed by the alliance to meet our common strategic objectives.

Chancellorsville carries guided missiles and rapid-fire cannons, with anti-air, anti-surface and anti-subsurface capabilities
Chancellorsville carries guided missiles and rapid-fire cannons, with anti-air, anti-surface and anti-subsurface capabilities

Guided Missile Cruisers – CG

Modern U.S. Navy guided missile cruisers perform primarily in a Battle Force role. These ships are multi-mission [Air Warfare (AW), Undersea Warfare (USW), Naval Surface Fire Support (NSFS) and Surface Warfare (SUW)] surface combatants capable of supporting carrier battle groups, amphibious forces, or of operating independently and as flagships of surface action groups. Cruisers are equipped with Tomahawk cruise missiles giving them additional long range Strike Warfare (STRW) capability. Some Aegis Cruisers have been outfitted with a Ballistic Missile Defense (BMD) capability.

Technological advances in the Standard Missile coupled with the Aegis combat system in the Ticonderoga class cruisers have increased the Anti-Air Warfare (AAW) capability of surface combatants to pinpoint accuracy from wave-top to zenith. The addition of Tomahawk in the CG-47 has vastly complicated unit target planning for any potential enemy and returned an offensive strike role to the surface forces that seemed to have been lost to air power at Pearl Harbor.

The Cruiser Modernization program aims to improve the Ticonderoga class by modernizing the computing and display infrastructure, and the Hull, Mechanical and Electrical (HM&E) systems. Weapons and sensor sets will also be improved, in order to upgrade their anti-submarine capabilities, add short-range electro-optical systems that can monitor the ships surroundings without the use of radar emissions, as well as routine machinery upgrades to improve all areas of ship functionality.

Family and friends bid farewell from the pier as the Ticonderoga-class guided-missile cruiser USS Chancellorsville (CG-62) departs Naval Base San Diego bound for Yokosuka, Japan to join the forward-deployed naval forces in the Western Pacific (U.S. Navy photo by Mass Communication Specialist 1st Class Trevor Welsh/Released)
Family and friends bid farewell from the pier as the Ticonderoga-class guided-missile cruiser USS Chancellorsville (CG-62) departs Naval Base San Diego bound for Yokosuka, Japan to join the forward-deployed naval forces in the Western Pacific (U.S. Navy photo by Mass Communication Specialist 1st Class Trevor Welsh/Released)

General Characteristics

Builder Ingalls Shipbuilding: 52-57, 59, 62, 65-66, 68-69, 71-73
Bath Iron Works: 58, 60-61, 63-64, 67, 70
Date Deployed 22 January 1983: USS Ticonderoga (CG-47)
Unit Cost About $1 billion each
Length 567 feet/172.82 m
Beam 55 feet/16.76 m
Displacement 9,600 long tons (9,754 metric tons) full load
Propulsion 4 General Electric LM 2500 gas turbine engines
2 shafts
80,000 shaft horsepower/60 MW total
Speed 30+ knots/34.5 mph/55.5 km/h
Crew 330: 30 Officers, 300 Enlisted
Armament Mk-41 Vertical Launching System Standard Missile (MR)
Vertical Launch ASROC (VLA) Missile
Tomahawk Cruise Missile
Mk-46 torpedoes (from two triple mounts)
2 Mk-45 127-mm/5-inch/54 caliber lightweight guns
2 Phalanx Close-In-Weapons systems
Aircraft 2 SH-60 Seahawk (LAMPS III)
She also carries two Seahawk Light airborne multi-purpose system (LAMPS) helicopters, focused on anti-submarine warfare
She also carries two Seahawk Light airborne multi-purpose system (LAMPS) helicopters, focused on anti-submarine warfare

 

Ships

USS Bunker Hill (CG-52), San Diego, California

USS Mobile Bay (CG-53), San Diego, California

USS Antietam (CG-54), Yokosuka, Japan

USS Leyte Gulf (CG-55), Norfolk, Virginia

USS San Jacinto (CG-56), Norfolk, Virginia

USS Lake Champlain (CG-57), San Diego, California

USS Philippine Sea (CG-58), Mayport, Florida

USS Princeton (CG-59), San Diego, California

USS Normandy (CG-60), Norfolk, Virginia

USS Monterey (CG-61), Norfolk, Virginia

USS Chancellorsville (CG-62), San Diego, California

USS Cowpens (CG-63), San Diego, California

USS Gettysburg (CG-64), Mayport, Florida

USS Chosin (CG-65), Pearl Harbor, Hawaii

USS Hue City (CG-66), Mayport, Florida

USS Shiloh (CG-67), Yokosuka, Japan

USS Anzio (CG-68), Norfolk, Virginia

USS Vicksburg (CG-69), Mayport, Florida

USS Lake Erie (CG-70), Pearl Harbor, Hawaii

USS Cape St. George (CG-71), San Diego, California

USS Vella Gulf (CG-72), Norfolk, Virginia

USS Port Royal (CG-73), Pearl Harbor, Hawaii