Category Archives: Ground Forces

It’s not PowerPoint

Boeing and Saab have proven that Boeing’s Small Diameter Bomb I (SDB I), originally developed for use by aircraft, can be adapted for launch from a ground artillery system. The companies recently tested the Ground Launched Small Diameter Bomb (GLSDB), integrating the SDB I and M26 rocket motor technologies for the Multiple Launch Rocket System. The testing showed that the bomb can withstand a rocket artillery launch without its performance being compromised.

The weapon can do both high and low angles of attack, fly around terrain to hit targets on the back of mountains, or circle back around to attack a target behind the launch vehicle
The weapon can do both high and low angles of attack, fly around terrain to hit targets on the back of mountains, or circle back around to attack a target behind the launch vehicle

«GLSDB combines two highly successful, combat-proven systems into an effective ground forces offensive capability», said Beth Kluba, vice president, Boeing Weapons and Missile Systems. «Boeing and Saab bring together deep knowledge of precision weapon systems and can quickly and cost-effectively deliver GLSDB domestically and around the world. Moreover, this is not developmental, it’s not PowerPoint. It’ hardware, it exists, and through our investment we’re able to bring this capability to the war fighter very quickly».

GLSDB allows the artillery system to reach targets from significantly longer distances, and engage hard-to-reach targets, while maintaining the Small Diameter Bomb’s flight maneuverability and accuracy. Under a teaming agreement signed last year, Boeing and Saab will offer GLSDB to current and future rocket artillery users. The rocket motor used during testing was provided by Nammo.

«Saab and Boeing have a history of successful cooperation that now extends into yet another technology area – precision weapons systems», said Görgen Johansson, Head of the Dynamics Business Area within Saab AB. «Together, we now offer a new and game-changing capability for the U.S. as well as the global market».

The weapon is designed to be launched out of a Multiple Launch Rocket System, used by a number of US allies already, avoiding the need to design a new launch system. That MLRS can hold six weapons per pod, with two pods per vehicle
The weapon is designed to be launched out of a Multiple Launch Rocket System, used by a number of US allies already, avoiding the need to design a new launch system. That MLRS can hold six weapons per pod, with two pods per vehicle

 

Ground Launched Small Diameter Bomb

The Ground Launched Small Diameter Bomb revolutionizes rocket artillery. GLSDB will provide the warfighter with a long-range, precision fires weapon capable of conducting reverse slope engagements and defeating targets ranging from hardened facilities to soft-skinned assets. With 360-degree target engagement ability, GLSDB provides commanders and planners with a highly flexible weapon that complements existing ballistic trajectory weapons.

GLSDB is an integration of combat proven systems, not a developmental program. It builds upon Boeing’s highly successful Small Diameter Bomb Increment I and existing Multiple Launch Rocket System (MLRS) rockets.

The SDB I is a 250-pound/113.3-kilogram class weapon with an Advanced Anti-Jam Global Positioning System aided Inertial Navigation System, combined with a multipurpose penetrating blast-and-fragmentation warhead and a programmable electronic fuze. The result of this integration is an innovative, low risk weapon that provides significantly more capability over current MLRS rockets.

More than 10,000 SDBs have been built at Boeing’s award-winning, modern production facility in St. Charles, Missouri. Since the first SDB delivery in April 2005, every weapon has been delivered on time and at cost.

The system essentially sticks a GBU-39B small diameter bomb, widely used by the US military and a number of international customers, on the front of a M26 rocket
The system essentially sticks a GBU-39B small diameter bomb, widely used by the US military and a number of international customers, on the front of a M26 rocket

 

General Characteristics

  • Increased range – extends range 60 km/37 miles beyond current Guided MLRS
  • Highly accurate
  • All angle, all aspect attack – even targets behind the launch point
  • Multiple rocket, multiple target, near simultaneous impact
  • All weather, 24/7 availability
  • Terrain avoidance, such as mountains
  • Cave breaching capability
  • Launches from hidden or protected positions to avoid detection
  • Programmable fuze provides impact and delay fuzing for deep penetration or proximity height-of-burst
  • SDB Focused Lethality Munition variant is also an option for low collateral damage
  • Laser SDB variant provides moving target capability

 

Key Performance Factors

  • Compatible with M270A1 MLRS and M142 HIMARS platforms
  • 150 km/93 miles range
  • 360-degree target engagement ability Six rockets per pod

 

Dimensions

  • Length: 154 in/3.9 m
  • Weight: 615 lbs/279 kg
The SDB I is a 250-pound/113.3-kilogram class weapon with an Advanced Anti-Jam Global Positioning System aided Inertial Navigation System, combined with a multipurpose penetrating blast-and-fragmentation warhead and a programmable electronic fuze
The SDB I is a 250-pound/113.3-kilogram class weapon with an Advanced Anti-Jam Global Positioning System aided Inertial Navigation System, combined with a multipurpose penetrating blast-and-fragmentation warhead and a programmable electronic fuze

Warhead

  • Penetrating blast fragmentation
  • Weight: 205 lbs/93 kg – 4340 steel cylindrical case with conical-shaped nose
  • Explosive Fill: 36 lbs/16 kg Insensitive Munition Certified
  • Fuse: Integrated Electronic Safe/Arm Fuse System Impact and Delayed Settings with Height of Burst Sensor
  • Size: 71 in/1.80 m (L) x 7.75 in/0.20 m (H) x 7.5 in/0.19 m (W)
  • Wingspan: 63.3 in/1.60 m (open), 7.5 in/0.19 m (stowed)

 

Guidance Set

  • Inertial Navigation System (INS)/Global Positioning System (GPS)
  • Anti-jam and Selective Availability Anti-Spoofing Module
  • Advanced Core Processor Two Module

 

Defence and security company Saab and Boeing have proven that Boeing’s Small Diameter Bomb I, originally developed for use by aircraft, can be adapted for launch from a ground artillery system

Tactical Mobility

BAE Systems has handed over the first CV9030 Infantry Fighting Vehicle (IFV) in serial production to the Norwegian Defence Logistics Organisation (FLO) on time and on budget. A rollout ceremony was held in Moelv, Norway, at the facilities of BAE Systems Hägglunds’ business partner CHSnor AS. More than 200 guests attended, representing FLO and the Norwegian Armed Forces, as well as BAE Systems Hägglunds and its Norwegian industrial partners.

The CV90 platform is engineered to provide optimum mobility and agility
The CV90 platform is engineered to provide optimum mobility and agility

BAE Systems Hägglunds’ contract, signed in 2012, includes the upgrade of the Norwegian Army’s existing fleet of 103 CV9030s and 41 new-build vehicles, giving the Army a total of 144 state-of-the-art CV90s in varying configurations. They will all include enhanced capabilities for future battlefield and conflict scenarios, such as in the areas of protection, survivability, situational awareness, intelligence, and interoperability.

«I’m really pleased that we are able to reach this key milestone», said Colonel Ragnar Wennevik, Norwegian Army CV90 project leader. «BAE Systems Hägglunds is an impressive supplier, and with the new CV9030, we are buying the world’s most advanced armored combat vehicle family. Already proven in combat, we are now taking it to the next generation with state-of-the-art survivability, lethality, digitalization, and mobility».

This program is a key element of the modernization of the Norwegian Army, providing them with the next-generation CV90, one of the world’s most advanced IFV and a low-risk proven solution. The Norwegian Army will incorporate five different configurations of the CV90 from 2015 onwards: 74 infantry fighting, 21 reconnaissance, 15 command, 16 engineering, and 16 multi-role and tow driver-training vehicles. The multi-role vehicles can fulfill different functions, including mortar carrier and logistics roles.

In 2014, BAE Systems rolled out three variants of the Norwegian vehicles in Sweden, which were subsequently handed over to Norwegian industry for completion, as part of in-country partnerships.

Both the Norwegian customer and BAE Systems Hägglunds have been extremely focused on meeting every milestone in the contract from the outset. This focus has ensured that the two parties have developed a strong relationship based on mutual respect and openness, which has ensured project success.

BAE Systems Hägglunds is working closely with Norwegian industry in a comprehensive industrial cooperation contract, which is part of the main vehicle contract. Companies such as Kongsberg Defence & Aerospace, Nammo Raufoss AS, CHSnor AS, Moelv, and Ritek AS Levanger are key parties to the contract. The turret upgrade work, for example, takes place at CHSnor AS, and yesterday’s handover was the first in a series of vehicle deliveries from CHSnor AS and Ritek through 2018.

«The Norwegian industrial cooperation is extensive and important to us, especially when industrial cooperation is one of the major factors for international success», said Tommy Gustafsson-Rask, managing director for BAE Systems Hägglunds. «We want to thank all industry partners for their commitment and dedication, and also our professional and supportive customer».

With a full range of armament options, the CV90 can be developed or configured to match any situation, from patrol to combat
With a full range of armament options, the CV90 can be developed or configured to match any situation, from patrol to combat

 

CV9030 Infantry Fighting Vehicle

Protection

The CV9030 has the most advanced protection kits available in the world, providing flexible solutions for any mission requirements. The platform utilises a modular approach to armour. Its base structure is designed to carry any add-on armour without adding parasitic weight to the overall vehicle.

It provides crew protection from the latest heavy weaponry including:

  • Improvised Explosive Devices (IEDs);
  • Anti-tank mines.

It also protects occupants from Chemical, Biological, Radiological, and Nuclear (CBRN) threats with a specialised filter system.

To meet modern day battlefield threats, the vehicle can be fitted with further protection including:

  • Different types of armour to protect against diverse threats, such as shaped charge warheads and RPG-7s;
  • A Defensive Aid Suite (DAS) that classifies targets, gives threat warnings via the Vehicle Information System (VIS) and supports the driver with speed corrections to reduce the risk of being hit;
  • Adaptive camouflage, which offers an active multi-spectral defence system, rendering the vehicle appearance to match its environment.

The technology also takes on the textures of other objects, minimising the vehicle’s radar and IR signature and further increasing crew survivability.

The CV90120 is also equipped with a modern 120-mm anti-tank gun and adaptive armour
The CV90120 is also equipped with a modern 120-mm anti-tank gun and adaptive armour

 

Mobility

Powered by a high torque V8 diesel engine, the CV9030 can reach speeds of 70 km/h/43.5 mph. The vehicle’s road range is also constantly improving, with new variants capable of travelling up to 900 km/559 miles.

While upgrades to the CV90’s armour have seen the platform’s curb weight rise from 23 to 35 tonnes, power-to-weight ratio has remained approximately the same thanks to stronger diesel engines.

The CV90’s track suspension has also been improved. The new track system allows the vehicle to travel effortlessly through both snow and sand, enabling:

  • Quieter movement and improved stealth;
  • Greater speed over rough terrain;
  • Higher ground clearance for protection against mines and improvised explosive devices.

The platform’s semi-active damping reduces the pitch accelerations of the vehicle by approximately 40 percent. For the crew this means:

  • A smoother ride for reduced fatigue;
  • Reduced vertical motion (increasing the gunner’s hit probability and ability to find targets);
  • Higher all-terrain speeds;
  • Increased life expectancy for components in the drive line.
The CV90’s C4I capability provides the crew with decision superiority, enabling your forces to stay one step ahead of the enemy
The CV90’s C4I capability provides the crew with decision superiority, enabling your forces to stay one step ahead of the enemy

 

Armament

As a first class combat vehicle, the CV9030 is compatible with a range of armaments to suit any mission requirements.

The vehicle is normally fitted with a two-man turret, which is equipped with the well-proven 30-mm Bushmaster II cannon. This can be supplied in different configurations, including unmanned and uses programmable ammunition to meet precise lethality performance needs.

The CV90 Mk-III incorporates a Munition Programmer for Air Burst Munition (ABM) and has a target-driven gunner Man Machine Interface (MMI). The Fire Control System also has the ability to choose:

  • The type of ammunition;
  • Offset;
  • Fuse setting;
  • Burst pattern.

This significantly decreases operator workload allowing the gunner to focus on the type of target that he wants to engage.

The vehicle’s hunter-killer function features an independent sight system for the commander, enabling him to search, engage or hand over targets to the gunner. The CV90’s state-of-the-art systems allow the crew to rapidly discover and identify targets in minimal time. This enables them to be the first to shoot, whether the target is on the ground or in the air.

Its advanced Human Machine Interfaces and ergonomics make the vehicle’s operation as easy and efficient as possible
Its advanced Human Machine Interfaces and ergonomics make the vehicle’s operation as easy and efficient as possible

 

Specifications

Top speed:                                        70 km/h/43.5 mph

Range:                                                 900 km/559 miles

Payload:                                             16 tonnes

Protection level:                            Standardization Agreement (STANAG)

Ballistic:                                              > 5

Mine:                                                    > 4a/4b

Trench crossing:                            2.6 m/8.5 feet

Step climbing:                                 1.1 m/3.6 feet

Fording:                                              1.5 m/4.9 feet

Remote Weapon Station (RWS):      7.62 – 40 mm Automatic Grenade Launcher (AGL)

Turret:                                                  25-120 mm/0.98-4.72 inch

No. of operators:                            3 + 7

Gradient:                                            60 %

Power to weight ratio:                17.1-24.2 kW/ton

Electrical power:                            570 A

Engine:                                                 Scania V8

Operating temperature:           C2-A1

Driveline

Steel or rubber tracks:     ≤ 28 tonnes

Steel:                                           > 28 tonnes

Semi active dampening

 

BAE Systems designed the CV9030 with a clear vision: to create a vehicle that provides high tactical and strategic mobility, air defense, anti-tank capability, high survivability and protection in any terrain or tactical environment

 

British Scout

General Dynamics UK has successfully completed the Critical Design Review (CDR) for the Scout Reconnaissance variant, as part of the Scout Specialist Vehicle (SV) programme. The completion of the Scout Reconnaissance variant CDR is a significant marker in the Scout SV programme, with the first Scout Reconnaissance pre-production prototype to be completed later this year.

Scout Specialist Vehicle
Scout Specialist Vehicle

The CDR covered the fully-integrated Scout Reconnaissance platform, including the platform hull design, the Lockheed Martin UK-developed turret, Electronic Architecture, onboard software solutions, sub-systems and variant-specific products, such as the Primary Sight.

In service, the Scout Reconnaissance variant will provide best-in-class protection and survivability, reliability and mobility and all-weather Intelligence, Surveillance, Target Acquisition and Recognition (ISTAR) capabilities. It will enable the soldier to be at the point of collection of accurate all-weather commander information within a network-enabled, fully-digitised platform.

Protected Mobility Reconnaissance Support (PMRS) variant
Protected Mobility Reconnaissance Support (PMRS) variant

Kevin Connell, vice president at General Dynamics UK – Land Systems, said: «The Scout Reconnaissance variant is the flagship of the Scout SV programme and will provide a step-change in ground-based ISTAR capability to the British Army. The completion of the Scout Reconnaissance variant CDR is a significant step in delivering a family of Scout SV platforms, which represent the future of Armoured Fighting Vehicles for the British Army».

The Scout Reconnaissance variant CDR is the final variant-specific CDR to be completed ahead of the pending Scout SV System CDR, which will examine all aspects of each Scout SV platforms under a single review.

Reconnaissance
Reconnaissance

Defence Minister, Philip Dunne, said: «The Scout programme has already passed several of its key milestones, including the live blast trials. This latest achievement shows great progress, with Scout SV vehicles well on their way to being ready for Army user trials in 2017. This is an exciting time for the armoured vehicles business in the UK and it is great news that the Scout programme is already securing approximately 2,400 jobs across the country».

The range of Scout SV variants will allow the British Army to conduct sustained, expeditionary, full-spectrum and network-enabled operations with a reduced logistics footprint. Scout SV can operate in combined-arms and multinational situations across a wide-range of future operating environments.

Recovery SV
Recovery SV

According to Nicholas de Larrinaga, Jane’s Defence Weekly correspondent, the UK has ordered a total of 589 of the vehicles, intended to replace the less capable CVR(T) family, at a cost of £3.5 billion ($5.420 billion). These are divided between two principal variant families: the 40-mm turret armed reconnaissance vehicle and the Protected Mobility Reconnaissance Support (PMRS) variant.

Command & Control
Command & Control

For use in crisis

It is said in The Jane’s Defence Weekly that Finland’s Special Forces have selected the Belgian FN SCAR-L assault rifle as a new standard firearm. The FN SCAR-L will be the first 5.56×45 mm NATO calibre firearm introduced to the Finnish Defence Forces (FDF). It will supplement the current RK 95 TP assault rifle chambered in the Russian 7.62×39 mm cartridge. Both weapons will be used in parallel by Finnish soldiers.

FN SCAR-L STD
FN SCAR-L STD

«We decided that the rifle for the Special Forces should be compatible with other nations for use in crisis management and national defence», said infantry inspector Colonel Jukka Valkeajärvi.

The weapon was approved after field tests. A contract for FN SCAR-L rifles and FN40GL-L under-barrel grenade launchers is to be signed in March. The Special Forces units are also seeking a new light machine gun chambered in 5.56×45 mm. The FN Minimi and the H&K MG4 are being tested at the Finnish Army training centre (Utin Jääkärirykmentti).

Finland launched its ‘reconnaissance weapon system’ for the Special Forces in March 2014. Under it, the country was looking for 200-300 rifles chambered in 5.56×45 mm and 50-75 grenade launchers chambered in 40×46 mm low velocity ammunition. Rifles are set to be equipped with additional accessories, including the tactical light and laser pointer Insight Model 7500 (AN/PEQ-2A). The contract is estimated to be worth €750,000 ($851,378) with all weapons to be delivered in 2015.

FN SCAR-L CQC
FN SCAR-L CQC

 

FN SCAR-L

Early 2004, United States Special Operations Command (USSOCOM) issued a solicitation for a family of Special Forces Combat Assault Rifles, the so-called SCAR, designed around two different calibers but featuring high commonality of parts and identical ergonomics.

FN Herstal took part in the full and open competition and released prototypes of a brand new family of weapons within timeframe taking advantage of our long-standing firearms know-how.

From the first pre-selection tests, the FN SCAR system developed by FN Herstal has remained the first and only choice of USSOCOM.

FN40GL-L grenade launcher
FN40GL-L grenade launcher

 

Modular

The FN SCAR-L STD assault rifle is chambered in 5.56×45 mm NATO caliber and is fitted with a standard 14.5″ barrel.

The operator can replace the standard barrel with a short 10″ barrel for close quarter combat in less than five minutes. The rifle is then called FN SCAR-L CQC.

The FN SCAR-L STD assault rifle can be fitted with a FN40GL-L grenade launcher mounted on the lower rail of the rifle, for additional firepower.

Adaptable

The FN SCAR assault rifle features a foldable buttstock, an adjustable cheek piece (2 positions) and an adjustable length of pull (6 positions) to adapt to any operators.

Ambidextrous

The FN SCAR assault rifle features a reversible charging handle and an ambidextrous safety/firing selector and magazine release.

Right- and left-handed operators are at ease with any FN SCAR® assault rifle.

Compact

The FN SCAR-L STD weighs no more than 3.545 kg (without magazine) and does not exceed 653 mm in length with folded buttstock.

Accuracy

The FN SCAR assault rifle fires semi-automatic or full automatic maintaining high firing accuracy in either mode.

Wide range of Accessories

The FN SCAR assault rifle features an upper Picatinny rail for optional day or night sighting systems (in-line mounting possible) and lower and side rails for optional accessories (e.g. light, laser, foregrip).

Further accessories are available, such as sling, bipod, carrying bag and blank firing system.

Easy Field Stripping

The FN SCAR assault rifle consists of 5 major assemblies:

  • Buttstock;
  • Receiver;
  • Bolt carrier;
  • Trigger module;
  • Magazine.
5 major assemblies
5 major assemblies

 

Technical data

Calibre 5.56×45 mm NATO
Operating principle Gas operated, rotating bolt
Overall length 655 mm
Buttstock unfolded maximum overall length 903 mm
Buttstock unfolded minimum overall length 840 mm
Weight 3.5 kg (without magazine)
Barrel type Standard
Barrel length 14.5″
Buttstock type Foldable, adjustable for length of pull
Design type Traditional
Feed M16 type magazine
Firing mode Semi-auto, full auto
Length of pull 6 positions adjustable
Magazine capacity 30 rounds
Rate of fire 550-650 rounds/min
Sighting system Co-witnessed flip-up sights
Folded buttstock
Folded buttstock

TALON for a Tiger

The United Arab Emirates-made Nimr – Arabic for «Tiger» – armored vehicle could get a major firepower upgrade, under a pact between Raytheon and Abu Dhabi-based Nimr Automotive that would outfit the rugged four-wheeler with Laser-Guided Rockets (LGRs) previously found only on helicopters (Hydra-70) and other aircraft.

A Nimr armored vehicle fires a rocket equipped with the TALON guidance system in this artist's illustration
A Nimr armored vehicle fires a rocket equipped with the TALON guidance system in this artist’s illustration

The project to arm the Nimr with TALON rockets is the latest in a series of international partnerships that bring Raytheon’s advanced engineering and innovation to U.S. allies worldwide. The deal was announced at the International Defence Exhibition and Conference in Abu Dhabi (IDEX 2015).

«If you look at the world today, the countries we used to sell to, they’re not happy to buy products off the shelf any more», said Steven C. Schultz, director of business development for land warfare systems at Raytheon Missile Systems. «They want to be true partners in terms of co-production, co-development, and in many cases be the prime contractor for some of these international pursuits».

Nimr Automotive is part of a company owned by Tawazun, a United Arab Emirates (UAE) strategic investment firm. Raytheon and Tawazun previously partnered to develop TALON, which is used to modify older, unguided rockets into laser-seeking weapons.

TALON is a low-cost, digital semi-active laser guidance and control kit that is mounted directly to the front of legacy 2.75-inch Hydra-70 unguided rockets
TALON is a low-cost, digital semi-active laser guidance and control kit that is mounted directly to the front of legacy 2.75-inch Hydra-70 unguided rockets

Other recent international collaborations include:

  • A partnership with Abu Dhabi Ship Building that provided the United Arab Emirates Navy with the Rolling Airframe Missile (RAM) and the Evolved Sea Sparrow Missile (ESSM). RAM is a lightweight, self-guided missile that travels faster than the speed of sound. ESSM is the world’s premier international cooperative missile production program, with 18 industrial partners representing 10 nations.
  • An agreement that designated Turkish missile maker Roket Sanavii ve Ticaret A.S. as a supplier for Raytheon’s Patriot Guidance Enhanced Missile-Tactical (Patriot GEM-T). The company, also known as Roketsan, is the first major trans-Atlantic supplier for the system and is strategically located to support countries in Europe, Asia and the Middle East.
  • A $1.7 billion Direct Commercial Sales contract in Saudi Arabia to upgrade Patriot systems to the latest Configuration-3.
  • A partnership with Lockheed Martin to provide the United Arab Emirates with advanced Patriot air and missile defense, along with support and training.
  • The U.S. Army’s Warfighter Field Operations Customer Support contract, under which Raytheon trains helicopter pilots in Afghanistan. Students graduate as commercial-level pilots.
The UAE’s Nimr Automotive, Tawazun and Raytheon disclosed a project to arm the 6 X 6 version of the Nimr vehicle with the Raytheon-Tawazun Talon 70-mm laser-guided rocket
The UAE’s Nimr Automotive, Tawazun and Raytheon disclosed a project to arm the 6 X 6 version of the Nimr vehicle with the Raytheon-Tawazun Talon 70-mm laser-guided rocket

Bringing TALON to the Nimr vehicle will meet a critical need, should the UAE Armed Forces adopt the system, Schultz said.

«TALON fills a gap between heavy, expensive, anti-tank guided missiles and unguided rockets», Schultz said. «There are a lot of missions for something like TALON. That’s the niche we’re filling».

A launcher fires a rocket equipped with the TALON guidance system
A launcher fires a rocket equipped with the TALON guidance system

 

TALON Laser-Guided Rocket

The weapon integrates Raytheon’s extensive experience in digital semiactive laser technology and proven history in precision air-to-air and air-to-ground munitions development and production. TALON’s architecture and ease of employment make it a low-cost, highly-precise weapon for missions in urban environments, counterinsurgency and swarming boat defense missions.

TALON is certified for use on U.S. Army Apache helicopters and Apaches in international fleets needing an affordable upgrade to the Hydra-70 rocket.

TALON was codeveloped with the United Arab Emirates.

TALON is fully compatible with existing airborne and ground laser designators.

TALON requires no hardware or software modifications to the launcher or aircraft platform and can be deployed from any aircraft that fires 2.75-inch (70-mm) Hydra-70 unguided rockets using the standard M260/261 launchers.

 

TALON is a low-cost, semi-active laser guidance and control kit that connects directly to the front of 2.75-inch (70-mm) Hydra-70 unguided rockets currently in U.S. and international inventories

 

Tactical Ambulance

Oshkosh Defense, LLC, an Oshkosh Corporation company, introduced its MRAP (Mine-Resistant Ambush Protected) All-Terrain Vehicle (M-ATV) Extended Wheel Base Medical (EXM) variant at the International Defense Exhibition and Conference (IDEX) 2015, taking place February 22-26 in Abu Dhabi, United Arab Emirates. Oshkosh designed the M-ATV EXM to provide off-road mobility and MRAP-level protection to military medics on ambulatory missions in high-threat environments.

Dual-rear hatches minimize a medic’s exposure to threats, and the efficient litter assist system allows patients to be secured and loaded in less than two minutes
Dual-rear hatches minimize a medic’s exposure to threats, and the efficient litter assist system allows patients to be secured and loaded in less than two minutes

«There is no mission more important than keeping troops safe, including the medics and their patients on the battlefield», said U.S. Army Major General (Retired) John Urias, executive vice president of Oshkosh Corporation and president of Oshkosh Defense. «An increasing number of troops and medics are suffering injuries – often life threatening – while trying to deliver care and evacuate the injured in commercial-based ambulances. The Oshkosh M-ATV EXM combines best-in-class off-road mobility with a life-saving crew protection system for urgent medical care in landscapes that are too rugged for other ambulances».

The Oshkosh Defense M-ATV EXM provides urgent evacuation capabilities while shielding patients and medics from enemy fire. The M-ATV’s lightweight ramp and unique «easy glide» system can load two litter-bound patients – on any NATO-standard litter – in less than two minutes. The tactical ambulance has enough interior capacity to simultaneously transport two litter-bound patients, two ambulatory patients, a medic, commander and driver. The M-ATV EXM’s customizable internal configuration also enables equipment to be accessed quickly by a centrally positioned medic. The vehicle supports standard MRAP Medical Equipment Sets (MES) and requirements such as a universal mounting system, secured storage units, and Pouch Attachment Ladder System (PALS) mounted storage bags.

The M-ATV EXM is a variant of the Oshkosh Defense M-ATV Family of Vehicles, which includes two multi-mission models – the M-ATV Standard and M-ATV Extended. The M-ATV Standard model provides response and support capabilities for a range of offensive and defensive missions in off-road environments, and the M-ATV Extended model delivers increased capacity for additional troops and equipment to support multiple mission profiles. M-ATV EXM delivers gold-standard off-road mobility and optimal protection against Improvised Explosive Devices (IEDs) and other battlefield threats. Oshkosh’s proprietary TAK-4 independent suspension system provides superior ride quality, including a smoother drive in rough terrain to enable better patient care and preserve the longevity of medical equipment. The M-ATV’s crew protection system is designed for today’s most prevalent threats and can be customized to deliver the highest standards of MRAP-level protection. Furthermore, the M-ATV EXM’s silhouette is the same as the other M-ATV Extended Wheel Base variants, which prevents it from standing out as an obvious target in theater.

The M-ATV EXM is a fully functional ambulance with a flexible work area for a full suite of medical equipment and ample room to effectively treat patients
The M-ATV EXM is a fully functional ambulance with a flexible work area for a full suite of medical equipment and ample room to effectively treat patients

 

Oshkosh M-ATV EXM

Mission enablers

Purpose-built military ambulance with complete access to patients and medical equipment.

Fully customizable design for medical equipment.

MRAP-level protection and unmatched mobility for medical evacuation operations.

 

Features

  • Fully protected, single compartment crew capsule
  • Integrated blast protection
  • TAK-4 independent suspension system
  • Accommodates two crew members, one medic, two ambulatory patients and two litter-bound patients
  • Centrally positioned medic with easy access to patients and medical equipment
  • Vinyl floor covering in medic area is easy to clean and sanitize
  • Customizable work area supports standard MRAP Medical Equipment Sets (MES) with a universal mounting system
  • Dual-rear hatches with mechanical spring assist reduces opening size and minimizes load and close procedures
  • Loading ramp with forward locking mechanism glides and secures any NATO-standard litter into position
  • Complete all load, secure and close procedures for both litters in less than two minutes
  • Similar silhouette to other M-ATV Extended Wheelbase variants reduces the risk of medic crews becoming targets
  • Underbody Improvement Kit (UIK) integrated into EXM design
  • Optional Oshkosh-provided Gunner Protection Kit (GPK)
M-ATV Extended Wheel Base is designed with an extended wheelbase that delivers more capacity while maintaining high levels of protection, performance and agility to achieve the mission
M-ATV Extended Wheel Base is designed with an extended wheelbase that delivers more capacity while maintaining high levels of protection, performance and agility to achieve the mission

 

General Characteristics

Engine:                                             Caterpillar C7, 7.2 L, 276 kW, 1254-N-m

Transmission:                              Allison 3500 SP/6-speed automatic

Transfer Case:                             2-speed, full time 4-wheel drive with locking differential

Axles/Suspension:                     Oshkosh TAK-4 independent suspension system

Tires:                                                 16.00R20

Seating Capacity:                       7 soldiers (5 seated troops and 2 litter-bound patients)

Vehicle Curb Weight:              16,500 kg/36,300 lbs

Payload Capacity:                      2,000 kg/4,400 lbs

OGPK (Objective Gunners Protective Kit) Turret-Ready: Turret ring and gunner sling with 360° rotation

Suspension (Durability) Profile:        70% off-road/30% on-road

CTIS (Central Tire Inflation System):        2 channel system • 4 terrain settings with integrated driveline lock-up control

 

 

Extended Range
AMRAAM

Raytheon Company has begun development on an extended range variant of the combat-proven Advanced Medium Range Air to Air Missile (AMRAAM). Designed specifically for ground-based air defense, AMRAAM-ER will enable intercepts at longer range and higher altitudes (Source: Raytheon Company).

NASAMS is a highly adaptable medium range solution for any operational air defense requirement. The system provides the air defender with a tailorable, state-of-the-art defense system that can maximize their ability to quickly identify, engage and destroy current and evolving enemy aircraft, unmanned aerial vehicle or emerging cruise missile threats
NASAMS is a highly adaptable medium range solution for any operational air defense requirement. The system provides the air defender with a tailorable, state-of-the-art defense system that can maximize their ability to quickly identify, engage and destroy current and evolving enemy aircraft, unmanned aerial vehicle or emerging cruise missile threats

«With AMRAAM-ER, Raytheon is rewriting the book on ground-based air defense. The new missile will be even faster and more maneuverable than the current AMRAAM», said Mike Jarrett, Raytheon vice president of Air Warfare Systems. «By leveraging many existing AMRAAM components, Raytheon can deliver AMRAAM-ER quickly and affordably with very low risk».

Raytheon will integrate AMRAAM-ER into the NASAMS (Norwegian Advanced Surface to Air Missile System) launcher.

Designed specifically for ground-based air defense, AMRAAM-ER will enable intercepts at longer distances and higher altitudes
Designed specifically for ground-based air defense, AMRAAM-ER will enable intercepts at longer distances and higher altitudes

NASAMS is the latest and most modern Medium Range Air Defense system. In partnership with Kongsberg, Raytheon has delivered more than 70 fire units to seven countries. It is the most commonly used Short and Medium Range Air Defense System in NATO.

«Combined with the NASAMS launcher, AMRAAM-ER will provide a new level of protection to customers», said Ralph Acaba, vice president of Integrated Air and Missile Defense at Raytheon’s Integrated Defense Systems business. «NASAMS is one of the most easily manned, trained, and maintained systems in the world».

Combined with the NASAMS launcher, AMRAAM-ER will provide a new level of protection
Combined with the NASAMS launcher, AMRAAM-ER will provide a new level of protection

Fielded in Norway for more than a decade, NASAMS is operationally deployed in the U.S. National Capital Region, Spain, Finland, the Netherlands, and an undisclosed country. It is also in production for Oman under a contract received last year.

Raytheon plans to flight test AMRAAM-ER before the end of the year.

 

The AMRAAM is a versatile and proven weapon with operational flexibility in a wide variety of scenarios, including air-to-air and surface-launch engagements. In the surface launch role, AMRAAM is the baseline weapon on the NASAMS launcher.

 

Global Umbrella

Across the globe, a variety of air and missile defense threats are evolving and proliferating. At the same time, adversaries are exploiting weaknesses in America’s air and missile defense system, said Brigadier General Christopher L. Spillman, commandant of the Army Air Defense Artillery School. Spillman and other missile defense experts met during an Association of the United States Army panel, February 12, to discuss how the United States could better attain networked mission command.

Like a missile defense dashboard, IBCS would one day control existing interceptor, missile and artillery systems along with futuristic laser, microwave and electromagnetic pulse weapons still in development
Like a missile defense dashboard, IBCS would one day control existing interceptor, missile and artillery systems along with futuristic laser, microwave and electromagnetic pulse weapons still in development

Adversaries are employing their own ballistic missile capabilities and coordinating them with cruise missile and unmanned aerial system threats, Spillman said, calling their efforts «complex and integrated». The Army needs to regain its air-defense advantage and «move beyond our current limited-point-defense», Spillman added. The reason for the urgency in addressing Air and Missile Defense, or AMD, vulnerabilities is due in large part to the current «inflexible, stove-piped command and control systems».

Major General Ole A. Knudson, program executive for the Program and Integration, Missile Defense Agency, said each military service has its own AMD architecture, but those architectures are not «entirely compatible» with one another.

That architecture, Spillman said, is much more complex than a just a physical network of fiber, relays, routers and servers. It also involves connectivity between sensors, radars, launchers and shooters. The systems need to communicate seamlessly across the battlespace to more effectively engage the enemy and reduce risk from errors, including those that result in fratricide.

Barry J. Pike, deputy program executive officer, program executive office missile and space, said that fixing AMD integration weak points is so important because it is «a foundational capability the Army provides» to combatant commanders, as outlined in the recently released Army Operating Concept.

A Ground-based Interceptor roars into the sky carrying a Raytheon-built Exoatmospheric Kill Vehicle on June 22, 2014. The kill vehicle destroyed a simulated ballistic missile high over the Pacific Ocean (Missile Defense Agency photo)
A Ground-based Interceptor roars into the sky carrying a Raytheon-built Exoatmospheric Kill Vehicle on June 22, 2014. The kill vehicle destroyed a simulated ballistic missile high over the Pacific Ocean (Missile Defense Agency photo)

 

IAMD-Battle Command System Solution

The services are working together now to integrate AMD networks and mission-command functions through an effort known as Integrated Air and Missile Defense – Battle Command System, or IBCS, Spillman said. He noted that IBCS will give combatant commanders and AMD «a flexibility that doesn’t exist today. It will transform the force».

Barry Pike said that with IBCS, the Army hopes to partner with industry to build non-proprietary network capabilities that are modular, and that have open-system architecture that uses existing industry standards. The idea is to have common human-system interface requirements that allow standardization, more rapid development, cost reduction and future add-ons, he said. Testing is well underway on integration efforts with the other services, Pike said.

Raytheon’s newest variant, the SM-3 Block IB, is launched from a U.S. Navy ship during testing
Raytheon’s newest variant, the SM-3 Block IB, is launched from a U.S. Navy ship during testing

Daniel J. Verwiel, vice president and general manager of integrated air and missile defense for Northrop Grumman Information Systems, said that IBCS efforts will ultimately lead to handing off AMD «to the best possible shooter», be it from a ship or the shore.

Spillman said that at the same time the Army develops the IBCS, it will also need to prepare to train Soldiers to use it. Soldiers will need adequate time to train on new systems and leaders will have to be the ones who successfully execute any new implementation.

Spillman said AMD, with all its weaknesses, is deployed worldwide in support of combatant commanders to shape the environment, enable projection of national power, defend the homeland and reassure allies.

Around 58% of the AMD force is forward-deployed or forward-stationed, he said.

 

NATO intelligence reports indicate the threat of ballistic missiles is increasing in number and complexity. By 2018, all of Europe could be at risk.

 

MMC: Replacement
of the Milan

The French Defence Procurement Agency (Direction Générale de l’Armement) successfully carried out the first firing of MMP (Missile de Moyenne Portée or Medium Range Missile), the successor to the Milan weapon system. Carried out at the DGA Techniques Terrestres site in Bourges (central France), the firing test served to confirm MMP’s excellent accuracy in locking onto a target at a distance of more than 4,000 m and that was hidden from view at launch. This success is the result of the coordinated efforts of both state (DGA and French Army) and industrial (MBDA France) participants.

MMP (Missile de Moyenne Portée or Medium Range Missile) in operation
MMP (Missile de Moyenne Portée or Medium Range Missile) in operation

MMP is a high technology, new generation missile forming one of the French MoD’s (Ministry of Defence) new programmes within the Military Planning Act 2014-2019 aimed at modernising the French Army.

This versatile missile, conceived by MBDA France, is currently in its development phase following the notification of a development contract by the DGA on 3rd December 2013. It will enable the armed forces to neutralise, with a high level of precision, the many different types of target that might be confronted during operations, ensuring that collateral damage is kept to a minimum and at the same time maximizing the safety of the operator. The delivery date of the system to the French Army is scheduled for 2017. According to Jane’s Defence Weekly, in total the army has ordered 2,850 missiles and 400 firing posts from MBDA, with the missile not only intended to arm infantry personnel but also intended to be vehicle-launched from platforms such as the army’s upcoming Jaguar 6×6 reconnaissance vehicle.

Further test firings have already been programmed by the DGA Techniques Terrestres to take place during the first quarter of 2015.

MMP on MPCV Turret at Eurosatory 2014
MMP on MPCV Turret at Eurosatory 2014

 

MMP (Missile de Moyenne Portée)

MBDA is currently developing MMP (Missile Moyenne Portée), the medium range, ground combat as a successor to MILAN (the eponymous anti-tank system supplied to over 40 armies around the world). MMP is a fifth generation weapon system responding to the requirements outlined within the French Army’s FELIN and SCORPION programmes. FELIN is a programme aimed at developing the necessary equipment for the French infantryman of the future while SCORPION will advance the integration and coordination of the range of equipment deployed by future French ground forces, calling for wide-ranging digitisation and platform interoperability. In this respect, MMP is also relevant to other ground forces around the world that are in the process of preparing for the requirements of the battlefield well into the future.

MMP’s entirely new concept takes into consideration the experience gained from recent conflicts, where the need to master the delivery of military effects without collateral damage has been shown to be a major operational requirement.

MMP is man portable (the missile in its tube weighs only 15 kg), easy to set up and operate by a two-man team. It is the ideal combat support weapon for the modern soldier who might be called upon to fight either out in the open battlefield or from confined spaces within a complex urban environment. The system can be used either in conjunction with a lightweight, portable digital firing post (weighing only 11 kg, battery included) or alternatively, mounted on a typical armoured vehicle.

High level of day and night, all-weather reconnaissance and identification capability
High level of day and night, all-weather reconnaissance and identification capability

Its shaped tandem warhead (MMP features a unique selectable charge depending on the intended target) provides lethality at ranges of up to 4 km against a wide range of stationary or moving ground targets from bunkers and machine gun posts to tanks equipped with the latest Explosive Reactive Armour (ERA).

Equipped with a non-cooled, dual-mode visible/infrared seeker, MMP is able to engage both hot and cold targets. To ensure operator survivability, MMP’s «fire-and-forget» capability allows the operator to fire and disengage immediately without having to wait for the missile to strike its intended target. However, in a complex environment where collateral damage is a concern, MMP’s optic fibre link enables MITL (Man-In-The-Loop) operation.

Combined with a navigation function integrated within the missile, the optical link via the missile allows for a full NLOS (Non Line Of Sight) operation as well, a function further enhanced within a modern info-centric environment. These are the features that combine to create a true 5th generation combat support weapon.

MMP represents the first missile within a family of ground and air-platform launched surface combat missiles. These missiles will share not only the same airframe diameter but also significant elements of technology in line with MBDA’s GMA (General Missile Architecture) strategy, a strategy aimed at reducing both cost and development risk.

Rapid reaction operation, firing sequence reversibility
Rapid reaction operation, firing sequence reversibility

 

Features

  • Lightweight weapon system, easily man-portable
  • High level of day and night, all-weather reconnaissance and identification capability
  • Confined space firing capability
  • Rapid reaction operation, firing sequence reversibility
  • Lethality against a wide target set: hot and cold targets, including latest MBTs (Main Battle Tanks)
  • Collateral damage risk minimization

 

MMP missile

  • Dual-band seeker (uncooled IR and TV channel)
  • MEMS IMU (MicroElectroMechanical Systems Inertial Measurement Unit) for inertial navigation
  • Two-stage main propulsion system (soft launch)
  • Multipurpose tandem warhead capable of defeating 1,000 mm of RHA (Rolled Homogeneous Armour), 2,000 mm of concrete
  • Maintenance free
The missile also intended to be vehicle-launched
The missile also intended to be vehicle-launched

 

MMP interactive firing post

  • Fully digitized
  • Latest generation IR band 2 and day camera
  • Laser range finder
  • GPS and magnetic compass
  • Autonomous operation and NCW (Network-Centric Waveform) compatible
  • Modular to facilitate integration on combat vehicles

 

MMP training simulators

  • Gunnery training simulator for indoor training
  • Combat firing simulator for technical firing instruction and tactical training in the field

 

Range: 4,000 m

Real time data-link

Three operating modes:

  • Fire-and-Forget;
  • Man-In-The-Loop with fibre-optic data-link;
  • Lock-On-After-Launch (NLOS and using third party target coordinates).
Lightweight weapon system, easily man-portable
Lightweight weapon system, easily man-portable

 

Dual-band seeker:

  • Uncooled IR;
  • TV channel.

 

Missile

Weight (incl. tube):                    15 kg

Length:                                              1.3 m in tactical canister

Diameter:                                        140 mm

Range:                                                4,000 m

Real time data-link (fibre-optic)

 

Interactive firing post:

  • Weight (incl. tripod and battery): 11 kg;
  • Autonomous with battery or can be connected to external power sources.

 

The latest (fifth) generation land combat missile system designed for dismounted infantry as well as for integration on combat vehicles. Featuring both fire-and-forget and man-in-the-loop operation, network-enabled MMP also receives third party target coordinates for indirect firing scenarios. MMP’s design includes the growth potential necessary for a future family of missiles for modern land combat.

Smart gun

More firepower, improved accuracy and smart integrated accessories that connect to command and control networks are the headline features of the new integrated assault rifle concept that Defence Research and Development Canada (DRDC) and Colt Canada have developed for the Canadian Armed Forces (CAF).

Canada’s proposed “smart gun” design combines a 5.56-mm automatic rifle using case-telescope ammunition and either a 40-mm grenade launcher or a 12-gauge (18-mm) shotgun, increasing firepower and improving tactical flexibility
Canada’s proposed “smart gun” design combines a 5.56-mm automatic rifle using case-telescope ammunition and either a 40-mm grenade launcher or a 12-gauge (18-mm) shotgun, increasing firepower and improving tactical flexibility

The prototype, in development since 2009 through the Soldier Integrated Precision Effects Systems (SIPES) project, includes a firing mechanism to shoot lightweight cased telescoped ammunition, a secondary effects module for increased firepower and a NATO standard power and data rail to integrate accessories like electro-optical sights and position sensors.

In order to support the multi-role nature of the weapon, the prototype’s secondary effects module features the ability to install either a three round 40-mm grenade launcher, or a 12-gauge (18-mm) shotgun. When optimized, the integrated weapon prototype could weigh less than a C7 equipped with a M203 grenade launcher, reducing the burden on soldiers.

«In the medium term, this weapon concept represents a lethal, flexible general-purpose platform», said Lieutenant-Colonel Serge Lapointe, from the Soldier Systems group in Director Land Requirements – Soldier Systems (DLR 5) of the Canadian Army. «It will be able to operate in all theatres of operations in the most complex terrain including urban areas, mountains, jungles, deserts and the Arctic».

When optimized, the integrated weapon prototype could weigh less than a C7 equipped with a M203 grenade launcher, reducing the burden on soldiers
When optimized, the integrated weapon prototype could weigh less than a C7 equipped with a M203 grenade launcher, reducing the burden on soldiers

The development of the weapon prototype posed a considerable challenge. DRDC scientists analyzed advanced material technologies that could replace the metal used in heavy components. The lightweight case telescoped ammunition was tested extensively with the support of the Munitions Experimental Test Centre in Valcartier, Quebec to assess its long-term aging behaviour. Scientists also studied how to increase the rifle’s accuracy using technology that can automatically detect targets and assist with engaging them. Questions related to the sensors needed to accurately geo-locate targets for target data sharing were also investigated.

How the soldier interacts with the weapon was also the subject of numerous human factor trials. Ergonomic and weapon prototype handling tests were performed by Human Systems Inc., under the supervision of DRDC scientists, with CAF soldiers from military bases in Petawawa and Edmonton. The testing was crucial to developing optimal design criteria to meet the CAF’s needs for the Small Arms Modernization project.

In addition, lessons learned by both DRDC personnel and the CAF during their deployment in Afghanistan revealed critical elements that informed the prototype weapon development process with respect to its design and functionality.

In order to support the multi-role nature of the weapon, the prototype’s secondary effects module features the ability to install either a three round 40-mm grenade launcher, or a 12-gauge shotgun
In order to support the multi-role nature of the weapon, the prototype’s secondary effects module features the ability to install either a three round 40-mm grenade launcher, or a 12-gauge shotgun

«The results of the first phase of the project have shown that DRDC expertise can be used to provide the Canadian Armed Forces with solid scientific data so they can make more informed decisions for their major acquisition projects», said Dr. Guy Vézina, the Director General for S&T Army, DRDC.

The new weapon prototype is a promising development for the soldier of the future. The integration of electronic components will allow soldiers to generate or receive data from the command and control network. In the next phase of development, automated target detection and assisted target engagement will be the subject of an in-depth study in the Future Small Arms Research (FSAR) project.

Finally, the development of the integrated weapon prototype and the continuing analysis of promising technologies should facilitate the acquisition of the next generation of small arms by the CAF. The data collected and the analyses documented so far by DRDC scientists will be used in conjunction with the data and analyses that will be generated in the FSAR project to develop the technical criteria that will form part of the statement of operational requirement documentation for the CAF Small Arms Modernization project.