Leonardo-Finmeccanica’s Osprey Active Electronically Scanned Array (AESA) radar has been picked to serve as look-out on-board the US Navy’s newly-upgraded unmanned helicopter, the MQ-8C Fire Scout. The helicopter will be launched from the decks of U.S. naval combat vessels to keep watch for distant threats.
The AESA radar will be carried on the unmanned MQ-8C Fire Scout helicopter, helping expand crews’ surveillance capabilities aboard U.S. combat ships
The contract will see Leonardo delivering an initial batch of 5 radars to the U.S. Navy’s procurement organisation, the Naval Air Systems Command (NAVAIR), for testing and evaluation work. NAVAIR then has an option to buy a larger quantity of the radars for use in real operations. Leonardo has already built a number of Osprey AESA radars so the primary task under this contract is integration with the MQ-8C Fire Scout in time for first production deliveries.
Using its electronic beam technology to scan from high in the sky, crews back on-board will be able to spot even those threats who think they are hiding safely beyond the range of standard ship-based sensors. Employing high-frequency radio waves to ‘see’, an Osprey-equipped MQ-8C Fire Scout can detect targets at extremely long ranges, at night and even in stormy weather conditions when visibility is extremely poor. The radar’s world-first flat-panel technology also means it can be installed within the mould line of the helicopter rather than having to use an underslung belly-pod.
Leonardo is an international leader in radar technology and the Osprey was selected in part because it is the world’s first radar to provide the needed coverage without moving parts or the need for a bulky external radome, all in a package light enough to fit on an MQ-8C Fire Scout. The MQ-8C Fire Scout is expected in future to be fully integrated with both variants of the U.S. Navy’s littoral combat ship and be used extensively on operations.
The U.S. Navy has chosen the 2-panel version of the Osprey which will provide a 240-degree instantaneous field of view and a range of digital modes including weather detection, air-to-air targeting and a Ground Moving Target Indicator (GMTI). The lack of moving parts inherent in the ‘E-Scan’ design means that repair and support costs are vastly reduced compared to alternative radar options. Osprey also provides an open architecture, meaning the U.S. Navy can insert new software independently.
Northrop Grumman Corporation is set to build 10 additional MQ-8C Fire Scout unmanned helicopters for the U. S. Navy, giving maritime commanders persistent, real-time Intelligence, Surveillance and Reconnaissance (ISR).
MQ-8C Fire Scout’s on the assembly line at Northrop Grumman’s Manufacturing Center in Moss Point, Mississippi (Photo by Northrop Grumman)
The additional build will bring the total number of MQ-8C Fire Scout air vehicles procured to 29, extending the range and endurance of naval operations.
«MQ-8C is meeting all of its performance objectives, and the system is delivering a greater naval warfighting capability», said Captain Jeff Dodge, program manager, Fire Scout, Naval Air Systems Command. «We are looking forward to moving the MQ-8C operational testing and deployment as a part of surface warfare mission packages».
The MQ-8C Fire Scout airframe is based on the reliable commercial Bell 407, a mature helicopter with more than 1,600 airframes produced and over 4.4 million flight hours. Modifications to the MQ-8C’s airframes are carried out at the Bell Helicopter facility in Ozark, Alabama, while final assembly is performed in Moss Point, Mississippi.
«In partnership with the U.S. Navy, we are dedicated to fielding this state-of-the-art, ship-based ISR platform as part of a strategy that provides warfighters ISR», said Leslie Smith, vice president, tactical autonomous systems, Northrop Grumman Aerospace Systems. «We are pleased to support the Navy with additional MQ-8C Fire Scouts with maritime dominance support through this procurement. Our team will strive to exceed expectations in affordability, quality and on-time delivery».
MQ-8C Fire Scout has completed operational assessment, a developmental flight test program and is now preparing for Milestone C. MQ-8C Fire Scout has accrued over 730 flight hours and flown 353 sorties.
Specifications
Length
41.4 feet/12.6 m
Width
7.8 feet/2.4 m
Blades Folded Hangar
7.8×34.7×10.9 feet/2.4×10.6×3.3 m
Height
10.9 feet/3.3 m
Rotor Diameter
35 feet/10.7 m
Gross Takeoff Weight
6,000 lbs/2,721.5 kg
Engine
Rolls-Royce M250-C47B with FADEC (Full Authority Digital Electronic Control)
Performance
Speed
140 knots/161 mph/259 km/h (maximum)
Operational Ceiling
17,000 feet/5,182 m
Maximum Endurance
14 hrs
Maximum Payload (Internal)
1,000 lbs/453.6 kg
Typical Payload
600 lbs/272 kg (11 hrs endurance)
Maximum Sling Load
2,650 lbs/1,202 kg
Engine Specifications
Power
651 shp/485.45 kW
Pressure ratio
9.2
Length
42.95 inch/1.09 m
Diameter
24.81 inch/0.63 m
Basic weight
274 lbs/124.3 kg
Compressor
1CF (centrifugal high-pressure)
Turbine
2HP (two-stage high-pressure turbine), 2PT (two-stage power turbine)
Following a successful Milestone Decision Authority (MDA) led review, the U.S. Navy’s MQ-4C Triton Unmanned Aircraft System (UAS) obtained positive Milestone C Low-Rate Initial Production (LRIP) approval. The decision marks the beginning of the production and deployment phase of the Department of Defense (DoD) acquisition process.
Following a successful Milestone Decision Authority (MDA) led review, the U.S. Navy’s MQ-4C Triton Unmanned Aircraft System (UAS) obtained positive Milestone C low-rate initial production approval
«Triton’s critical technology is mature, and the system development and design review phases have been successful», said Doug Shaffer, vice president, Triton programs, Northrop Grumman. «Completion of the full system Operational Assessment (OA) testing exercised in various real-world scenarios validated the system’s ability to protect the Navy’s fleet from evolving threats. We are extremely pleased with the maritime domain awareness products and results coming from Triton».
An integrated test team made up of Navy personnel from Air Test and Evaluation Squadrons VX-1 and VX-20, Unmanned Patrol Squadron, VUP-19 and Northrop Grumman demonstrated the true reliability of Triton going into Milestone C. The team analyzed and validated sensor imagery and performance at different altitudes and ranges. The aircraft system’s ability to classify targets and disseminate critical data was also examined as part of the OA testing. Successful evaluation of Triton’s time on station confirmed that it will meet flight duration requirements. Triton also transferred full motion video to a P-8A Poseidon in flight, proving a key capability to significantly enhance its ability to detect, track, classify and identify maritime threats.
Northrop Grumman is a leading global security company providing innovative systems, products and solutions in autonomous systems, cyber, Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR), strike, and logistics and modernization to customers worldwide.
MQ-4C Triton
Northrop Grumman’s MQ-4C Triton Unmanned Aircraft System provides real-time Intelligence, Surveillance and Reconnaissance over vast ocean and coastal regions. Supporting missions up to 24 hours, the high-altitude UAS is equipped with a sensor suite that provides a 360-degree view of its surroundings at a radius of over 2,000 NM/2,302 miles/3,704 km.
Triton builds on elements of the Global Hawk UAS while incorporating reinforcements to the airframe and wing, along with de-icing and lightning protection systems. These capabilities allow the aircraft to descend through cloud layers to gain a closer view of ships and other targets at sea when needed. The current sensor suite allows ships to be tracked over time by gathering information on their speed, location and classification.
Built to support the U.S. Navy’s Broad Area Maritime Surveillance program, Triton will support a wide range of intelligence gathering and reconnaissance missions, maritime patrol and search and rescue. The Navy’s program of record calls for 68 aircraft to be built.
The program portfolio includes the MQ-4C Triton UAS and the Broad Area Maritime Surveillance – Demonstrator (BAMS-D), advanced sensors and technology, and international programs
Key Features
Provides persistent maritime ISR at a mission radius of 2,000 NM/2,302 miles/3,704 km; 24 hours/7 days per week with 80% Effective Time On Station (ETOS)
Land-based air vehicle and sensor command and control
Afloat Level II payload sensor data via line-of-sight
Dual redundant flight controls and surfaces
51,000-hour airframe life
Due Regard Radar for safe separation
Anti/de-ice, bird strike, and lightning protection
Communications bandwidth management
Commercial off-the-shelf open architecture mission control system
Net-ready interoperability solution
Multi-Function Active Sensor Active Electronically Steered Array (MFAS AESA) radar:
2D AESA;
Maritime and air-to-ground modes;
Long-range detection and classification of targets.
MTS-B multi-spectral targeting system:
Electro-optical/infrared;
Auto-target tracking;
High resolution at multiple field-of-views;
Full motion video.
AN/ZLQ-1 Electronic Support Measures:
All digital;
Specific Emitter Identification.
Automatic Identification System:
Provides information received from VHF broadcasts on maritime vessel movements.
The cooperation between Schiebel, manufacturer of the world’s most capable Vertical Take-Off and Landing (VTOL) Unmanned Aircraft Systems (UAS), the CAMCOPTER S-100, and the German company Diehl Defence has been strengthened recently.
The Vertical Take-Off and Landing (VTOL) UAS needs no prepared area or supporting launch or recovery equipment
«Celebrating a milestone like the 10th anniversary of the CAMCOPTER S-100 with more than 300 units sold is a good moment to reflect on where we are today and where we will go in the future. Today we are the world’s leading producer of unmanned helicopters and we plan on further strengthening our position», explains Hans Georg Schiebel, owner of the Vienna-based company.
«The renewal of the teaming agreement is the result of the longstanding cooperation between Diehl Defence and Schiebel. We consider Schiebel a highly competent partner and believe the CAMCOPTER S-100 is the best possible product for all remotely piloted aircraft operations of the German Navy», says Helmut Rauch, member of the Division Board of Diehl Defence.
Schiebel and its partner Diehl Defence represent a strong and complementary team, ideally positioned to meet the demanding requirements of the German customer. Diehl Defence possesses broad know-how in the integration of different defence systems and surveillance equipment into German Navy vessels while Schiebel produces the UAS.
With an impressive track record of supporting maritime customers, the CAMCOPTER S-100 system has meanwhile been successfully proven on over 30 different vessels on all the world’s oceans, demonstrating its outstanding capabilities day and night, in all weather conditions, a proven track record that is unmatched. It is currently deployed with a number of important naval clients in conventional littoral reconnaissance roles; however, the CAMCOPTER S-100 has likewise proven to be hugely successful in the Search and Rescue role. Working with the NGO Migrant Offshore Aid Station (MOAS) in the Mediterranean, around 25 000 migrants have been found and rescued since 2014.
In 2008, Schiebel completed extensive flight trials onboard the German Navy’s K130 Class Corvettes Braunschweig and Magdeburg in the Baltic Sea. The S-100 completed more than 130 takeoffs and landings in a total flight time of just 20 hours, achieving results well in excess of expectations and trial requirements. Since then – amongst others – several developments have since taken place to enhance the UAS further. Especially for naval use with the availability of a new heavy fuel engine.
It operates day and night, under adverse weather conditions, with a range out to 200 km, both on land and at sea
TECHNICAL DATA
Autonomy
fully autonomous take-off, waypoint navigation and landing
Navigation
redundant INS and GPS
Power plant
50 HP rotary engine
Data/video link
fully digital, compressed video (up to four simultaneous feeds)
Typical D/L range
27, 54 or 108 NM/31, 62 or 124 miles/50, 100 or 200 km
Dash speed
120 knots/138 mph/222 km/h
Cruise speed
55 knots/63 mph/102 km/h (for best endurance)
Endurance
>6 hours with 75 lbs/34 kg payload plus optional external fuel tank extending endurance to >10 hours
Airlander 10 has successfully completed its first flight. All objectives of the planned flight were accomplished and the aircraft is now safely back at its masting site. Airlander 10 took off from the historic Cardington Airfield in Bedfordshire, England at approximately 19:45 on Wednesday 17th of August, after a short flight it landed at 20:00, before dark. The two Test Pilots were ecstatic about the flight and the flight performance of Airlander 10 during its time in the air.
The Airlander 10 made its 15 minute first flight on 17 August, 2016
Cardington, Bedfordshire, UK – The first flight of Airlander 10 is a historic success and marks the commencement of Airlander 10’s Flight Test Programme which is expected to last for a number of months. After this the aircraft will begin a series of Trials and Demonstrations with prospective customers.
Airlander 10 has been widely hailed as an innovation that will have a hugely positive impact on the world by providing low carbon aviation and brand new capabilities in the sky. Customer interest is strong due to these game-changing capabilities of the Airlander – it offers a stable platform with huge amounts of power and space for search & rescue or communications equipment, and also offers a unique passenger experience.
Chief Test Pilot Dave Burns said, «It was privilege to fly the Airlander for the first time and it flew wonderfully. I’m really excited about getting it airborne. It flew like a dream».
A confirmatory Pre-flight test began at 09:00 this morning and once Technical Director Mike Durham, Chief Test Pilot David Burns and Ground Operations Chief Alex Travell were all in agreement, clearance was granted for First Flight to commence. These three have been working together for almost thirty years, which illustrates the depth of experience and know-how within Hybrid Air Vehicles.
The four massive but quiet engines were started approximately 30 minutes before takeoff. Once airborne, Chief Test Pilot David Burns, accompanied by Test Pilot Simon Davies, flew the majestic Airlander within a 5 nautical mile/6-mile/9.6 km area around Cardington Airfield, just to the south of Bedford, in England. Airlander climbed to a height of 500 feet/152 m and reached a maximum speed of 35 knots/40 mph/65 km/h. Due to a later than anticipated take-off time the Airlander was limited to a 19-minute flight so we could land safely before darkness fell.
All test objectives were met during the flight. These included the safe launch, flight and landing of the Airlander 10 and a series of gentle turns at increasing speed. Some technical tests on its hull pressure were also undertaken.
The Airlander is expected to be a showcase of UK innovation and is already being used in the UK Government’s «GREAT Britain» campaign to highlight the strength of the aerospace sector and the innovation in engineering this country is capable of creating. As the Airlander approaches first flight, customer interest has increased, particularly in the defence and security sector, and this, together with UK Government support should secure 400 new aerospace jobs as well as valuable export opportunities for the UK economy. The next step is to ensure the UK Government runs a trial in order to demonstrate the potential of this amazing aircraft to the world and secure the lucrative exports, and grow further jobs in Bedfordshire and in the supply chain across the UK (80% of Airlander’s supply chain is British). This will help ensure the £6m of UK Government grants received thus far lead to orders. Hybrid Air Vehicles Ltd is also looking to raise equity through High Net Worth individuals and Institutional Investors to fund some aspects of the Flight Test Programme.
Astro Aerospace, a Northrop Grumman Corporation company, has completed the Preliminary Design Review (PDR) of the AstroMesh radar antenna reflector for the NASA-Indian Space Research Organisation (ISRO) Synthetic Aperture Radar (NISAR) satellite. The antenna reflector, furnished by Astro Aerospace, is part of the NISAR L-band synthetic aperture radar managed by NASA’s Jet Propulsion Laboratory (JPL).
NISAR will be the first radar imaging satellite to use dual L-Band and S-Band frequencies, providing an unprecedented, detailed view of Earth (Credit: NASA JPL)
Scheduled to launch in 2021, NISAR will be the first radar imaging satellite to use dual L-Band and S-Band frequencies, providing an unprecedented, detailed view of Earth. NISAR is designed to observe some of the planet’s most complex processes, including ecosystem disturbances, ice-sheet dynamics, and natural hazards such as earthquakes, tsunamis, volcanoes and landslides. Data collected from NISAR will reveal information about the evolution and state of Earth’s crust, help scientists better understand our planet’s processes and changing climate, and aid future resource and hazard management. The mission is a partnership between NASA and ISRO.
With 100 percent on orbit success since 1958, Astro Aerospace brings unmatched expertise in space hardware and deployable structures to NISAR. Astro Aerospace utilizes its proprietary AstroMesh deployable mesh reflector for NISAR’s 39.4-foot/12-meter aperture antenna, building an ultralight and extremely stiff reflector that is ideally suited for high frequency communications and radar applications.
The NISAR instrument design review represents a major program milestone. With the preliminary design review successfully completed, the program will move into detailed design and fabrication.
«We are proud to support JPL and the NISAR program on this important Earth science program», said John A. Alvarez, general manager, Astro Aerospace. «Thank you to the entire Astro NISAR team who worked tirelessly to ensure a successful PDR».
NISAR follows the successful engineering, deployment and spin up of JPL’s Soil Moisture Active Passive (SMAP) satellite, launched January 31, 2015. Astro supplied the 19.7-foot/6-meter AstroMesh antenna for SMAP, the largest spinning reflector ever created.
Since 1958, Astro Aerospace, part of Northrop Grumman’s Aerospace Products business unit, has helped enable complex missions to Earth’s orbit, Mars and beyond with its innovative deployable space structures and mechanisms. The business unit’s products have been successfully deployed on hundreds of space flights with a 100 percent success rate, a testament to Northrop Grumman’s commitment to reliability, quality and affordability.
Northrop Grumman is a leading global security company providing innovative systems, products and solutions in autonomous systems, cyber, Command, Control, Communications, Computers, Intelligence, Surveillance and Reconnaissance (C4ISR), strike, and logistics and modernization to customers worldwide.
Ahead of this years’ Farnborough International Airshow, engineers and scientists at BAE Systems and the University of Glasgow have outlined their current thinking about military aircraft and how they might be designed and manufactured in the future.
Lifting the lid on future military aircraft technologies
The concepts have been developed collaboratively as part of BAE Systems’ «open innovation» approach to sharing technology and scientific ideas which sees large and established companies working with academia and small technology start-ups.
During this century, the scientists and engineers envisage that small Unmanned Air Vehicles (UAVs) bespoke to specific military operations, could be «grown» in large-scale labs through chemistry, speeding up evolutionary processes and creating bespoke aircraft in weeks, rather than years.
A radical new machine called a Chemputer could enable advanced chemical processes to grow aircraft and some of their complex electronic systems, conceivably from a molecular level upwards. This unique UK technology could use environmentally sustainable materials and support military operations where a multitude of small UAVs with a combination of technologies serving a specific purpose might be needed quickly. It could also be used to produce multi-functional parts for large manned aircraft.
Flying at such speeds and high altitude would allow them to outpace adversary missiles. The aircraft could perform a variety of missions where a rapid response is needed. These include deploying emergency supplies for Special Forces inside enemy territory using a sophisticated release system and deploying small surveillance aircraft.
«The world of military and civil aircraft is constantly evolving and it’s been exciting to work with scientists and engineers outside BAE Systems and to consider how some unique British technologies could tackle the military threats of the future», said Professor Nick Colosimo, a BAE Systems Global Engineering Fellow.
Regius Professor Lee Cronin at the University of Glasgow, and Founding Scientific Director at Cronin Group PLC – who is developing the Chemputer added; «This is a very exciting time in the development of chemistry. We have been developing routes to digitize synthetic and materials chemistry and at some point in the future hope to assemble complex objects in a machine from the bottom up, or with minimal human assistance. Creating small aircraft would be very challenging but I’m confident that creative thinking and convergent digital technologies will eventually lead to the digital programming of complex chemical and material systems».
BAE Systems has developed some of the world’s most innovative technologies and continues to invest in research and development to generate future products and capabilities.
During this century, scientists and engineers from BAE Systems and The University of Glasgow envisage that small Unmanned Air Vehicles (UAVs) bespoke to military operations, could be ‘grown’ in large-scale labs through chemistry, speeding up evolutionary processes and creating bespoke aircraft in weeks, rather than years
Northrop Grumman Corporation’s delivery of the fully integrated Optical Telescope Element (OTE) for NASA’s James Webb Space Telescope marks another major milestone toward the October 2018 launch of the largest telescope ever built for space.
The spacecraft, or bus, of NASA’s James Webb Space Telescope is designed and developed at Northrop Grumman. The bus recently reached a major milestone, successfully completing first time power-on, showcasing the spacecraft’s ability to provide observatory power and electrical resources for the Webb telescope
Northrop Grumman delivered the OTE in March to NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Northrop Grumman is under contract to Goddard and leads the industry team that designs and develops the Webb Telescope, its sunshield and spacecraft. Northrop Grumman has completed the integration, testing and delivery of the telescope.
The Webb telescope’s 18 hexagonal gold coated beryllium mirrors are supported by the telescope structure. The OTE hardware is made of the most precise graphite composite material system ever created, and contributes to the Webb Telescope’s ability to provide an unprecedented exploratory view into the formation of the first stars and galaxies formed over 13.5 billion years ago.
The precision manufacturing and integration of the 21.5-foot/6.5-meter telescope structure allow it to withstand the pressure and weight of the launch loads when stowed inside the 15-foot/4.6-meter-diameter fairing of the Ariane 5 rocket. The cutting-edge design and transformer like capabilities of the telescope structure allow it to fold-up and fit inside the launch vehicle, and then deploy once the Webb telescope reaches its ultimate destination, one million miles away from earth. Furthermore, throughout travel and deployment, the telescope simultaneously maintains its dimensional stability while also operating at cryogenic or extremely cold temperatures, approximately 400 degrees below zero Fahrenheit/240 degrees below zero Celsius. The telescope is the world’s first deployable structure of this size and dimensional stability ever designed and built.
«The significant milestone of completing and delivering the OTE to NASA’s Goddard Space Flight Center, marks the completion of the telescope, and attests to the commitment of our hardworking team», said Scott Texter, telescope manager, Northrop Grumman Aerospace Systems. «The telescope structure is one of the four main elements of this revolutionary observatory. The other elements include: the spacecraft, sunshield and the Integrated Science Instrument Module (ISIM), the latter of which is also complete. All of the elements require a collaborative team effort. We are all committed to the cause and excited about the upcoming phases of development as we prepare for launch in October 2018».
The next step in the progress of the telescope structure includes its integration with the ISIM to combine the OTE and ISIM, referred to as the OTIS. The OTIS will undergo vibration and acoustic testing by the end of this year, and then travel to NASA’s Johnson Space Center in Houston, to undergo optical testing at vacuum and operational cryogenic temperatures, around 40 kelvin/233 degrees below zero Celsius. The OTIS will be delivered to Northrop Grumman’s Space Park facility in Redondo Beach, towards the end of 2017, where it will be integrated with the sunshield and spacecraft.
The James Webb Space Telescope is the world’s next-generation space observatory and successor to the Hubble Space Telescope. The most powerful space telescope ever built, the Webb Telescope will observe the most distant objects in the universe, provide images of the first galaxies formed and see unexplored planets around distant stars. The Webb Telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency.
The Lockheed Martin and NASA Orion team has successfully proof-pressure tested the Orion spacecraft’s Exploration Mission-1 (EM-1) crew module. The crew module is the living quarters for astronauts and the backbone for many of Orion’s systems such as propulsion, avionics and parachutes.
Lockheed Martin engineers and technicians prepare the Orion pressure vessel for a series of tests inside the proof pressure cell in the Neil Armstrong Operations and Checkout Building at NASA’s Kennedy Space Center in Florida (Photo credit: NASA/Kim Shiflett)
In order to certify the structural integrity of the crew module it was outfitted with approximately 850 instruments and subjected to 1.25 times the maximum pressure the capsule is expected to experience during its deep space missions. That means about 20 pounds per square inch/137,895 pascals of pressure was distributed over the entire inner surface of the spacecraft trying to burst it from within. As a next step, the team will use phased array technology to inspect all of the spacecraft’s welds in order to ensure there are no defects.
Once the primary structure of the crew module has been verified, the team will begin the installation of secondary structures such as tubes, tanks and thrusters. Once those pieces are in place, the crew module will be moved into the clean room and the propulsion and environmental control and life support systems will be installed.
«Our experience building and flying Exploration Flight Test-1 has allowed us to improve the build and test process for the EM-1 crew module», said Mike Hawes, Lockheed Martin Orion vice president and program manager. «Across the program we are establishing efficiencies that will decrease the production time and cost of future Orion spacecraft».
During EM-1 Orion will be launched atop NASA’s Space Launch System (SLS) for the first time. The test flight will send Orion into lunar distant retrograde orbit – a wide orbit around the moon that is farther from Earth than any human-rated spacecraft has ever traveled. The mission will last about three weeks and will certify the design and safety of Orion and SLS for future human-rated exploration missions.
The Marine Corps’ first two Kaman K-MAX Helicopters arrived at Marine Corps Air Station (MCAS) Yuma, Arizona, May 7, 2016. The Kaman K-MAX Helicopter is very unique in many ways, such as its purpose and design. It is a helicopter with interlinking rotors whose primary mission is to provide cargo load operations with a maximum payload of 6,000 pounds/2,722 kg.
The K-MAX will be added to MCAS Yuma’s already vast collection of military air assets, and will utilize the station’s ranges to strengthen training, testing and operations across the Marine Corps
«The most unique thing is this aircraft can fly itself», said Jerry McCawley, a Chief Pilot and Flight Safety Engineer with Lockheed Martin. «These two particular aircraft were over in Afghanistan for almost three years flying unhanded, and moving almost five million pounds of cargo, keeping numerous convoys off the road, preventing any roadside attacks».
The K-MAX will utilize MCAS Yuma’s training ranges in both Arizona and California, and will soon have an integral part in testing and operations.
As MCAS Yuma continues expanding its scope of operations, the K-MAX will continue revolutionizing expeditionary Marine air-ground combat power in all environments.
«It’s very resilient and can fly day or night», said McCawley. «It’s out here in Yuma for future test and development with the Marines. It’s great now, and it’s only going to get better».
The K-MAX will be added to MCAS Yuma’s already vast collection of military aircraft, strengthening training, testing and operations across the Marine Corps.
The rugged K-MAX multi-mission helicopter that Lockheed Martin and Kaman Aerospace have transformed into an Unmanned Aerial Truck proves why it is the best for unmanned battlefield cargo resupply missions
K-MAX Unmanned Aerial System
Lockheed Martin Corporation and Kaman Aerospace Corporation have successfully transformed Kaman’s proven K-MAX power lift helicopter into an Unmanned Aircraft System (UAS) capable of autonomous or remote controlled cargo delivery. Its mission: battlefield cargo resupply for the U.S. military.
The K-MAX UAS is a transformational technology for a fast-moving battlefield that will enable Marines to deliver supplies either day or night to precise locations without risk of losing life in the process. The aircraft can fly at higher altitudes with a larger payload than any other rotary wing UAS. With its four-hook carousel, the K-MAX UAS can also deliver more cargo to more locations in one flight
The team has flown the K-MAX UAS more than 750 hours in autonomous mode since joining forces in 2007. The rugged system can lift and deliver a full 6,000 lbs/2,722 kg of cargo at sea level and more than 4,000 pounds/1,814 kg at 15,000 feet/4,572 m density altitude.
The K-MAX continues to exceed expectations as an unmanned platform. The aircraft has met all unmanned milestones to date and continues to excel in the commercial logging and firefighting industries. The aircraft will remain optionally piloted for ease of National Airspace Operations, occasional manned mission flexibility, ferry flights, rapid integration of new mission equipment, and allow rapid return-to-service activities.
The manned version of the K-MAX is used for repetitive lift operations by commercial operators for the construction and logging industries. To date, the fleet has accumulated more than 255,000 flight hours since 1994.
In January, 2010, the Unmanned K-MAX helicopter demonstrated autonomous and remote control flight over both line-of-sight and satellite-based beyond line-of-sight data link
Technical characteristics
Weights and Measurements
Max gross weight (with external load)
12,000 lbs/5,443 kg
Max take-off weight
7,000 lbs/3,175 kg
Empty weight
5,145 lbs/2,334 kg
Useful load
6,855 lbs/3,109 kg
Cargo hook capacity
6,000 lbs/2,722 kg
Lift Performance – ISA (International Standard Atmosphere) +15°C (59°F)
Sea Level
6,000 lbs/2,722 kg
5,000 feet/1,524 m
5,663 lbs/2,574 kg
10,000 feet/3,048 m
5,163 lbs/2,347 kg
15,000 feet/4,572 m
4,313 lbs/1,960 kg
Hover Performance – 4,000 feet/1,219 m, 35°C (95°F)