Category Archives: Air

Production of LCH

Mr. Arun Jaitley, Minister of Finance, Defence and Corporate Affairs (DAC), declared the launch of production of HAL designed 5.8-ton category Light Combat Helicopter (LCH) and dedicated the HAL’s role changer design upgrade program of Hawk-I to the nation in HAL premises here, in Bengaluru, on August 26. Senior officials from Ministry of Defence, Indian Air Force and Hindustan Aeronautics Limited were present on the occasion.

Light Combat Helicopter designed and developed by Hindustan Aeronautics. Beyond the current initial order, the Indian Army has committed to ordering 114 LCHs, and the Indian Air Force another 65 (HAL photo)
Light Combat Helicopter designed and developed by Hindustan Aeronautics. Beyond the current initial order, the Indian Army has committed to ordering 114 LCHs, and the Indian Air Force another 65 (HAL photo)

Speaking on the occasion, Mr. Jaitely hailed HAL’s confidence in bringing Hawk-I and LCH indigenously. He said Defence Public Sector Undertaking (DPSU) work culture and performance have highest standards of professionalism. «We are moving in the right direction in evolving ourselves into a major manufacturing hub. In this context today’s experience has been encouraging», he said.

HAL’s Rotary Wing R&D Centre designed the LCH whereas Mission & Combat System R&D Centre (MCSRDC) designed the Hawk-I in association with the Aircraft Division.

The basic version of LCH has been cleared by Center for Military Airworthiness and Certification (CEMILAC). The DAC has accorded approval for procurement of 15 LCH from HAL under Indigenously Designed Developed and Manufactured (IDDM) category. Accordingly, the production is launched on August 26.

HAL designed the twin engine Light Combat Helicopter (LCH) of 5.8-ton class featuring narrow fuselage and tandem configuration for pilot and co-pilot/ weapon system operator. The helicopter has indigenous state of the art technologies like integrated dynamic system, bearing less Tail Rotor, anti-resonance vibration isolation system, crash worthy landing gear, smart glass cockpit, hinge less main rotor, Armour Protection and stealth features from visual, aural, radar and InfraRed (IR) signatures. The helicopter is equipped with 20-mm Turret gun, 70-mm Rocket, Air to Air Missile, Electro-Optical Pod (EO-Pod) and Helmet pointing system. The helicopter can carry out operational roles under extreme weather conditions at different altitudes from sea level, hot weather desert, cold weather and Himalayan altitudes. The LCH has demonstrated capability to land and take off from Siachen Range with considerable load, fuel and weapons that are beyond any other combat helicopter.

HAL produced its 100th Hawk jet trainer aircraft with designation as Hawk-I; (Hawk-India). HAL took up the indigenous role change development program to convert the jet trainer into a Combat-Ready platform. The aircraft is upgraded with indigenously designed avionics hardware, software and system architecture enhancing operational role from a trainer aircraft into a Combat-ready platform with improved quality and depth of training by Large Force Engagement (LFE) tactics through Electronic Virtual Training System (EVTS). Hawk-I is capable of delivering precision Munitions including Air to Ground and close combat weapons, self defence capabilities through Electronic Warfare (EW) systems, digital map generator and operational reliability through new Dual Hot stand-by Mission Computer Avionics architecture supported by indigenous high accuracy and high-altitude Radio Altimeter, Identification Friend or Foe (IFF) MKXII, Data Transfer system, CounterMeasure Dispensing System (CMDS) and Radar Warning Receiver (RWR). The aircraft was flown during 2017 Aero India at Bangalore with lot of appreciation from users. The integration of indigenous Head-Up display (HUD), Ring Laser Gyroscope (RLG) based Inertial Navigation System (INS) and Anti Airfield Missile is in advance stage.

Mr. Ashok Kumar Gupta, Secretary (Defence Production), outlined the contributions made by Defence PSUS. Mr. T. Suvarna Raju, CMD, HAL in his welcome address said maintaining its excellent track record HAL today has come-up with two new products that would strengthen India’s defence services.

FAA approval

On August 16th General Atomics Aeronautical Systems, Inc. (GA-ASI) flew a MQ-9B SkyGuardian Remotely Piloted Aircraft (RPA) from Laguna Airfield at Yuma Proving Grounds, Arizona, through National Airspace, to its Gray Butte Flight Operations facility near Palmdale, California. The MQ-9B is a STANAG 4671 (NATO airworthiness standard for Unmanned Aircraft Systems)-compliant version of the Predator B product line. The 275-mile/443-km trip lasted approximately one hour, 45 minutes and required Federal Aviation Administration (FAA) approval to fly through various classes of non-restricted airspace.

Flight through Multiple Classes of Non-Segregated Airspace Represents another Step towards Certification
Flight through Multiple Classes of Non-Segregated Airspace Represents another Step towards Certification

«This flight is another milestone in our progression towards delivering an RPA system that meets NATO airworthiness requirements for Unmanned Aircraft Systems (UAS)», said Linden Blue, Chief Executive Officer (CEO), GA-ASI. «MQ-9B SkyGuardian will be the first RPA system of its kind with a design-assurance level compliant with international type-certification standards, and can therefore be integrated more easily than legacy RPAs into civil airspace operations around the world».

A weaponized variant of the system is being acquired by the UK Royal Air Force (RAF) under the MQ-9B PROTECTOR program. A maritime patrol variant, SeaGuardian, is designed to support open-ocean and littoral surface surveillance. All variants are designed to fly in excess of 35 hours with airspeeds up to 210 knots/242 mph/389 km/h, and to reach altitudes of more than 40,000 feet/12,192 m.

Development of MQ-9B began in 2012 as a company-funded effort. Program highlights include first flight in November 2016 and an endurance flight in May 2017 of 48.2 hours.

Qualification testing for type-certification will continue over the next two years, with deliveries to the RAF expected to begin early next decade.

Tracking Data

A United Launch Alliance (ULA) Atlas V rocket carrying the NASA’s Tracking Data and Relay Satellite-M (TDRS-M) lifted off from Space Launch Complex-41 August 18 at 8:29 a.m. EDT. The TDRS-M is the third and final mission in the series of these third-generation space communication satellites to orbit, as part of the follow-on fleet being developed to replenish NASA’s space Network.

The TDRSS is capable of providing near continuous high bandwidth (S, Ku and Ka band) telecommunications services for Low Earth orbiting spacecraft (including the International Space Station) and expendable launch vehicles like ULA’s Atlas V and Delta IV rockets that use the network to receive and distribute telemetry data during flight
The TDRSS is capable of providing near continuous high bandwidth (S, Ku and Ka band) telecommunications services for Low Earth orbiting spacecraft (including the International Space Station) and expendable launch vehicles like ULA’s Atlas V and Delta IV rockets that use the network to receive and distribute telemetry data during flight

«ULA uses the TDRS system as a primary means of receiving and distributing launch vehicle telemetry data during every flight. In fact, the TDRS-K and TDRS-L spacecraft, launched by ULA in 2013 and 2014 tracked today’s launch», said Laura Maginnis, ULA vice president of Government Satellite Launch. «We are absolutely honored to have delivered this core NASA capability and critical national resource for our country».

All six of the newest TDRS satellites have been delivered to orbit on Atlas V vehicles.

This mission was launched aboard an Atlas V 401 configuration vehicle, which includes a 13-foot/4-meter extended payload fairing. The Atlas booster for this mission was powered by the RD AMROSS RD-180 engine, and the Centaur upper stage was powered by the Aerojet Rocketdyne RL10C engine. This is ULA’s 5th launch in 2017 and the 120th successful launch since the company was formed in December 2006.

«Congratulations to our entire ULA team and mission partners at NASA on another successful launch that will enable so many to explore and operate in space», said Maginnis.

The Tracking and Data Relay Satellite System (TDRSS) is a space-based communication system used to provide tracking, telemetry, command and high-bandwidth data return services. Microwave communications equipment and gimbaled antennae are the primary payload of each TDRS. The system is capable of providing near continuous high-bandwidth telecommunications services for Low Earth orbiting spacecraft and expendable launch vehicles including the International Space Station (ISS).

With more than a century of combined heritage, United Launch Alliance is the nation’s most experienced and reliable launch service provider. ULA has successfully delivered more than 115 satellites to orbit that aid meteorologists in tracking severe weather, unlock the mysteries of our solar system, provide critical capabilities for troops in the field and enable personal device-based GPS navigation.

An Atlas V rocket lifts off from Cape Canaveral’s Space Launch Complex-41 with NASA’s Tracking and Data Relay Satellite-M (TDRS-M). The addition of TDRS-M to the Space Network (SN) provides the ability to support space communication for an additional 15 years

Inmarsat 6’s Reflectors

Astro Aerospace, a Northrop Grumman Corporation business, completed a successful Preliminary Design Review (PDR) of the nine-meter L-band reflectors for two Airbus Inmarsat-6 series satellites.

Northrop Grumman’s Astro Aerospace Completes Preliminary Design Review for Inmarsat 6’s L-band Reflectors
Northrop Grumman’s Astro Aerospace Completes Preliminary Design Review for Inmarsat 6’s L-band Reflectors

The success of the PDR is a significant milestone for the Inmarsat-6 program. With the preliminary design of the L-band reflectors now set, Astro Aerospace will continue maturing the design in preparation for the Critical Design Review (CDR) later this year.

«We are proud to support Airbus Defence and Space and the Inmarsat program», said John A. Alvarez, general manager, Astro Aerospace. «Astro Aerospace’s unique AstroMesh technology is particularly well suited for Inmarsat-6’s L-band capacity, which is significantly greater than the capacity of previous satellites and capable of supporting a new generation of more advanced L-band services. AstroMesh deployable mesh reflectors are made of the lightest and stiffest materials available, making them well suited for such missions. I also want to thank the combined Astro-Airbus-Inmarsat team that worked tirelessly to ensure a successful PDR».

Astro Aerospace (www.northropgrumman.com/astro) is the leading pioneer of space deployable technology and structures that have enabled critical complex missions to Earth’s orbit, Mars and beyond. Astro Aerospace’s hardware is characterized by its light weight structural design and robust deployment kinematics. Since 1958, Astro Aerospace has successfully deployed technology on hundreds of space flights with a 100 percent success rate, a testament to Northrop Grumman’s commitment to reliability, quality and affordability.

Sunshield Layers

The five sunshield layers responsible for protecting the optics and instruments of NASA’s James Webb Space Telescope are now fully installed. Northrop Grumman Corporation, which designed the Webb telescope’s optics, spacecraft bus, and sunshield for NASA Goddard Space Flight Center, integrated the final flight layers into the sunshield subsystem.

Sunshield Layers Fully Integrated on NASA’s James Webb Space Telescope
Sunshield Layers Fully Integrated on NASA’s James Webb Space Telescope

Designed by Northrop Grumman Aerospace Systems in Redondo Beach, California, the sunshield layers work together to reduce the temperatures between the hot and cold sides of the observatory by approximately 570 degrees Fahrenheit/299 degrees Celsius. Each successive layer of the sunshield, which is made of Kapton, is cooler than the one below.

«This is a huge milestone for the Webb telescope as we prepare for launch», said Jim Flynn, Webb sunshield manager, Northrop Grumman Aerospace Systems. «The groundbreaking tennis-court sized sunshield will protect the optics from heat making it possible to gather images of the formation of stars and galaxies more than 13.5 billion years ago».

«All five sunshield membranes have been installed and will be folded over the next few weeks», said Paul Geithner, deputy project manager – technical for the Webb telescope at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

The Webb telescope’s sunshield will prevent the background heat from the Sun, Earth and Moon from interfering with the telescope’s infrared sensors. The five sunshield membrane layers that were manufactured by the NeXolve Corporation in Huntsville, Alabama, are each as thin as a human hair. The sunshield, along with the rest of the spacecraft, will fold origami-style into an Ariane 5 rocket.

The Webb telescope is the world’s next-generation space observatory and successor to the Hubble Space Telescope. The most powerful space telescope ever built, the Webb Telescope will observe distant objects in the universe, provide images of the first galaxies formed and see unexplored planets around distant stars. The Webb Telescope is a joint project of NASA, the European Space Agency and the Canadian Space Agency.

As Thick as a Pen Cap

On August 3, Lockheed Martin revealed the first images from an experimental, ultra-thin optical instrument, showing it could be possible to shrink space telescopes to a sliver of the size of today’s systems while maintaining equivalent resolution.

SPIDER Experiments Infographic
SPIDER Experiments Infographic

Weighing 90 percent less than a typical telescope, the Segmented Planar Imaging Detector for Electro-Optical Reconnaissance (SPIDER) opens a path for extremely lightweight optical instruments, allowing for more hosted payloads or smaller spacecraft. More broadly, the sensor technology has applications for aircraft and other vehicles – anywhere that depends on small optical sensors. The future could see UAVs with imagers laid flat underneath their wings, and cars could have imaging sensors that are flush against their grills.

The SPIDER project has roots in research funded by the Defense Advanced Research Projects Agency (DARPA). Lockheed Martin independently completed this phase of research at its Advanced Technology Center (ATC).

«This is generation-after-next capability we’re building from the ground up», said Scott Fouse, ATC vice president. «Our goal is to replicate the same performance of a space telescope in an instrument that is about an inch thick. That’s never been done before. We’re on our way to make space imaging a low-cost capability so our customers can see more, explore more and learn more».

The system uses tiny lenses to feed optical data divided and recombined in a Photonic Integrated Circuit (PIC), which was originally designed for telecommunications at the University of California, Davis. Using these chips in a different way, Lockheed Martin researchers unlocked new potential for ultra-thin telescopes using a technique called interferometric imaging.

The tests involved a PIC aligned to a series of 30 lenses, each smaller than a millimeter across. An optical system simulated the distance from space to the ground, where scenes were illuminated and rotated. The first image included a standard bar test pattern, and the second image showed the overhead view of a complex rail yard.

The lenses and PIC comprise one section of a full instrument to be assembled in the next project phase. The team plans to increase the resolution and field of view in future phases.

The initial findings from this project were presented today at the Pacific Rim Conference on Lasers and Electro-Optics (CLEO-Pacific Rim) in Singapore.

SPIDER’s first results shown here, with targets of two images on the left of each pair and the image reconstructions using SPIDER on the right (in millimeters). The first test used a standard optical test pattern, and the second test used an aerial photo of a train yard. The team continues to increase the system’s resolution from these first, baseline images
SPIDER’s first results shown here, with targets of two images on the left of each pair and the image reconstructions using SPIDER on the right (in millimeters). The first test used a standard optical test pattern, and the second test used an aerial photo of a train yard. The team continues to increase the system’s resolution from these first, baseline images

Presidential Helicopter

On August 3, Lockheed Martin announced the first flight of a VH-92A configured test aircraft in support of the U.S. Marine Corps’ VH-92A Presidential Helicopter Replacement Program. The July 28 flight signals the start of the 250-hour flight test program, which will take place at Lockheed Martin facilities in Owego, New York.

On July 28, the VH-92A configured test aircraft completed its first flight in support of the U.S. Marine Corps’ VH-92A Presidential Helicopter Replacement Program
On July 28, the VH-92A configured test aircraft completed its first flight in support of the U.S. Marine Corps’ VH-92A Presidential Helicopter Replacement Program

The aircraft achieved its first flight, and later that same day completed a second flight at Sikorsky Aircraft in Stratford, Connecticut. Total flight time for the two sorties was one hour and included hover control checks, low speed flight, and a pass of the airfield.

«This first flight of the VH-92A configured test aircraft is an important milestone for the program», said Spencer Elani, director VH-92A program at Sikorsky. «Having independently tested the aircraft’s components and subsystems, we are now moving forward to begin full aircraft system qualification via the flight test program».

As the flight test program proceeds, this test aircraft (Engineering Development Model 1, or EDM-1) will be joined by an additional test aircraft (EDM-2) over the course of the 12-month flight test program. EDM-2 is on track for its first flight later this year.

The VH-92A aircraft is based on Sikorsky’s successful and FAA-certified S-92A commercial aircraft, which recently surpassed one million flight hours. The S-92A aircraft, assembled in Coatesville, Pennsylvania, is being modified to include integration of government-defined missions systems and an executive interior.

«With this successful first flight on the books, we look forward to completion of Sikorsky’s flight test program, operational testing and production of this aircraft to support the Office of the President of the United States», said U.S. Marine Corps Colonel Robert Pridgen, program manager for the Naval Air System Command’s Presidential Helicopter’s Program Office.

The U.S. Navy awarded a $1.24 billion fixed-price incentive Engineering and Manufacturing Development (EMD) contract with production options to Sikorsky on May 7, 2014. The EMD contract will produce a total of six aircraft: two test aircraft and four production aircraft. The production options for the remaining 17 aircraft will be finalized in FY19.

The VH-92A will enter into service in 2020. The VH-92A will transport the president and vice president of the United States and other officials. Sikorsky brings unmatched experience and a proven track record to this mission having flown every U.S. commander-in-chief since President Dwight D. Eisenhower. The VH-92A will continue this legacy for decades to come.

Add Muscle to Chinook

Boeing will build and test three U.S. Army CH-47F Block II Chinook helicopters as part of a modernization effort that will likely bring another two decades of work to the company’s Philadelphia site.

Boeing will build and test three U.S. Army CH-47F Block II Chinook helicopters as part of a modernization effort that will likely bring another two decades of work to the company's Philadelphia site (Boeing illustration)
Boeing will build and test three U.S. Army CH-47F Block II Chinook helicopters as part of a modernization effort that will likely bring another two decades of work to the company’s Philadelphia site (Boeing illustration)

A recent $276 million Army contract will fund those helicopters, which will validate technology advancements that will increase the iconic helicopter’s lifting power.

«The Army’s only heavy-lift helicopter exists to deliver decisive combat power for our ground commanders», said Colonel Greg Fortier, U.S. Army project manager for Cargo Helicopters. «The Cargo family is anxious to build upon Col. Rob Barrie’s efforts to establish this critical program and deliver an adaptive air vehicle. Increasing payload capacity today enhances battlefield agility and prepares the Chinook for even greater performance gains in the future».

An improved drivetrain will transfer greater power from the engines to the all-new, swept-tip Advanced Chinook Rotor Blades, which have been engineered to lift 1,500 additional pounds on their own. The current configuration of six fuel tanks – three on each side – will become two, allowing the aircraft to carry more fuel and shed weight. Additionally, the fuselage’s structure will be strengthened in critical areas to allow the aircraft to carry additional payload.

«This latest upgrade for the Chinook fleet is a tribute to the robustness of its original design and exemplifies its 55-year legacy of technological advancements», said Chuck Dabundo, vice president, Cargo Helicopters and program manager, H-47. «The fact that the U.S. Army continues to use and value this platform and they are intending to continue to upgrade it to keep it flying for decades to come is a testament of the capabilities the Chinook team continues to bring».

Boeing will begin building the test aircraft next year. The test program begins in 2019 and first delivery of the Block II Chinook is expected in 2023. Eventually, the Army will upgrade more than 500 Chinooks to Block II configuration.

Deep Space Gateway

Refurbishing a shuttle-era cargo container used to transfer cargo to the International Space Station, Lockheed Martin is prototyping a deep space habitat for NASA at Kennedy Space Center. This prototype will integrate evolving technologies to keep astronauts safe while onboard and operate the spacecraft autonomously when unoccupied.

Lockheed Martin artist rendering of the NextSTEP habitat docked with Orion in cislunar orbit as part of a concept for the Deep Space Gateway. Orion will serve as the habitat’s command deck in early missions, providing critical communications, life support and navigation to guide long-duration missions
Lockheed Martin artist rendering of the NextSTEP habitat docked with Orion in cislunar orbit as part of a concept for the Deep Space Gateway. Orion will serve as the habitat’s command deck in early missions, providing critical communications, life support and navigation to guide long-duration missions

Under a public-private partnership, NASA recently awarded Lockheed Martin a Phase II contract for the Next Space Technologies for Exploration Partnerships (NextSTEP) habitat study contract. As part of Phase II, the team will continue to refine the design concept developed in Phase I and work with NASA to identify key system requirements for the Deep Space Gateway. Included in this work, the team will build a full-scale habitat prototype in the Space Station Processing Facility at NASA’s Kennedy Space Center and a next-generation deep space avionics integration lab near Johnson Space Center.

«It is easy to take things for granted when you are living at home, but the recently selected astronauts will face unique challenges», said Bill Pratt, Lockheed Martin NextSTEP program manager. «Something as simple as calling your family is completely different when you are outside of low Earth orbit. While building this habitat, we have to operate in a different mindset that’s more akin to long trips to Mars to ensure we keep them safe, healthy and productive».

A full-scale prototype of the deep space habitat will be built by refurbishing the Donatello Multi-Purpose Logistics Module (MPLM). Donatello was one of three large modules, flown in the space shuttle payload bay, that were used to transfer cargo to the International Space Station. The team will also rely heavily on mixed reality prototyping using virtual and augmented reality. Through this approach, the team can reduce cost and schedule, as well as identify and solve issues early in the design phase.

«We are excited to work with NASA to repurpose a historic piece of flight hardware, originally designed for low Earth orbit exploration, to play a role in humanity’s push into deep space», said Pratt. «Making use of existing capabilities will be a guiding philosophy for Lockheed Martin to minimize development time and meet NASA’s affordability goals».

The work will occur over 18 months and will build upon the concept study performed in Phase I. Phase II will also focus on mixed reality and rapid prototyping, and working on concept refinement and risk reduction. The new results, which will be provided to NASA, will further the understanding of the systems, standards and common interfaces needed to make living in deep space possible.

The Deep Space Gateway will rely on many of Orion’s advanced capabilities that can be used while astronauts are there, and utilizes capabilities common to Lockheed Martin-built planetary spacecraft like Juno and MAVEN while it’s unoccupied. Employing NASA’s space-proven Orion spacecraft as the Deep Space Gateway command deck early on allows for a safe and practical approach for the incremental build-up of deep space exploration capabilities.

Additionally, Lockheed Martin will build a Deep Space Avionics Integration Laboratory in Houston to demonstrate command and control between the Deep Space Gateway and Orion. The lab will help reduce risk associated with critical data interfaces between Deep Space Gateway elements and provide an environment for astronauts to train for various mission scenarios.

«Because the Deep Space Gateway would be uninhabited for several months at a time, it has to be rugged, reliable and have the robotic capabilities to operate autonomously. Essentially it is a robotic spacecraft that is well-suited for humans when Orion is present», said Pratt. «Lockheed Martin’s experience building autonomous planetary spacecraft plays a large role in making that possible».

Counter-UAS program

As the use of unmanned aircraft systems rises across the world, researchers from around the Defense Department are testing new ways to counter the new threats they could present.

Defenders from the 455th Expeditionary Security Forces Squadron and a researcher from the Air Force Research Lab teamed up to bring a new program to Bagram Airfield (U.S. Air Force photo/Staff Sergeant Benjamin Gonsier)
Defenders from the 455th Expeditionary Security Forces Squadron and a researcher from the Air Force Research Lab teamed up to bring a new program to Bagram Airfield (U.S. Air Force photo/Staff Sergeant Benjamin Gonsier)

The 455th Expeditionary Security Forces Squadron (ESFS) teamed up with a researcher from the Air Force Research Laboratory (AFRL) to teach Airmen how to pilot drones and use them to train coalition forces on how to react to them on the battlefield.

«This is a brand-new program for the 455th AEW, where we are able to test our counter-UAS systems coming into BAF, in addition to running base-wide exercises», said 1st. Lieutenant Ryan Wilkerson, a researcher attached to the 455th ESFS.

Wilkerson, who is not a defender by trade, is deployed out of the AFRL, Rome Research Site, New York, and came to test the program at Bagram Airfield, where the challenge is present in real-world scenarios.

A few defenders assisted Wilkerson, serving as drone pilots and using their own down time to practice piloting and learn tactics the enemy may use.

«It’s exciting to be able to pilot these aircraft for a program no one has ever been a part of before», said Senior Airman Christopher Gallman, with the 455th ESFS joint defense operations center. «I can’t wait to see where it is going and to be able to help out the total force».

The drone pilots wear aviator sunglasses and have an aura of swagger around them, as they take pride in being at the forefront of tactical development.

«It’s fun and enjoyable, and knowing how beneficial it is to not only the base, but all of the force, makes flying the drone worth doing», Gallman said.

Training never ends, and while service members train to deploy, training still continues while deployed.

«This allows us to be better prepared», Wilkerson said. «The best way to train is to actually put something in the air and see how people react. We train how we fight, so this is the most efficient way to counter this growing concern amongst coalition partners».

Tactics used by the enemy are constantly evolving, which is why Airmen are constantly adapting to face threats head-on, ready to engage anything that comes their way.