Category Archives: Air

Wireless Transmission

Northrop Grumman Corporation and the Defense Advanced Research Projects Agency (DARPA) have set a new standard for wireless transmission by operating a data link at 100 gigabits per second (Gbps) over a distance of 20 kilometers/12.4 miles in a city environment.

100G hardware will be flown aboard the Proteus demonstration aircraft developed by Northrop Grumman subsidiary Scaled Composites
100G hardware will be flown aboard the Proteus demonstration aircraft developed by Northrop Grumman subsidiary Scaled Composites

The two-way data link, which featured active pointing and tracking, was demonstrated January 19, 2018 in Los Angeles.

The blazing data rate is fast enough to download a 50 Gigabyte blue ray video in four seconds. The demonstration marked the successful completion of Northrop Grumman’s Phase 2 contract for DARPA’s 100 Gbps (100G) RF Backbone program.

The 100G system is capable of rate adaptation on a frame by frame basis from 9 Gbps to 102 Gbps to maximize data rate throughout dynamic channel variations. Extensive link characterization demonstrated short-term error-free performance from 9 to 91 Gbps, and a maximum data rate of 102 Gbps with 1 erroneous bit received per ten thousand bits transmitted.

The successful data link results from the integration of several key technologies. The link operates at millimeter wave frequencies (in this case, 71-76 gigahertz and 81-86 gigahertz) with 5 gigahertz of bandwidth, or data carrying capacity, and uses a bandwidth efficient signal modulation technique to transmit 25 Gbps data streams on each 5 gigahertz channel. To double the rate within the fixed bandwidth, the data link transmits dual orthogonally polarized signals from each antenna. Additionally, the link transmits from two antennas simultaneously (spatial multiplexing) and uses Multiple-Input-Multiple-Output (MIMO) signal processing techniques to separate the signals at two receiving antennas, thus again doubling the data rate within the fixed bandwidth.

According to Louis Christen, director, research and technology, Northrop Grumman, «This dramatic improvement in data transmission performance could significantly increase the volume of airborne sensor data that can be gathered and reduce the time needed to exploit sensor data».

«Next generation sensors such as hyperspectral imagers typically collect data faster, and in larger quantity than most air-to-ground data links can comfortably transmit», said Christen. «Without such a high data rate link data would need to be reviewed and analyzed after the aircraft lands».

By contrast, a 100G data link could transmit high-rate data directly from the aircraft to commanders on the ground in near real time, allowing them to respond more quickly to dynamic operations.

The successful 100G ground demonstration sets the stage for the flight test phase of the 100G RF Backbone program. This next phase, which started in June, demonstrates the 100G air-to-ground link up to 100 Gbps over a 100 km/62.1 miles range and extended ranges with lower data rates. The 100G hardware will be flown aboard the Proteus demonstration aircraft developed by Northrop Grumman subsidiary Scaled Composites.

Northrop Grumman’s 100G industry team includes Raytheon, which developed the millimeter wave antennas and related RF electronics and Silvus Technologies, which provides the key spatial multiplexing and MIMO signal processing technologies.

Northrop Grumman and DARPA 100 gigabits per second link demonstrated over 20 kilometer city environment on January 19, 2018 in Los Angeles
Northrop Grumman and DARPA 100 gigabits per second link demonstrated over 20 kilometer city environment on January 19, 2018 in Los Angeles

Qatar Contract

Leonardo announces that it has made effective the contract, signed on March 14, 2018, for the supply of 28 NH90 medium twin-engine multirole military helicopters to the Ministry of Defense of Qatar and has therefore booked the order in its backlog and received the advance payment relating to the contract. Leonardo acts as overall prime contractor with responsibility for the management of the entire programme valued at more than €3 billion to the NHI consortium.

Qatar’s contract for 28 NH90 helicopters has come into force after Qatar made the first down payment on its $3.4 billion value; the order covers 16 TTHs tactical transports and 12 NFHs naval helicopters (MMI photo)
Qatar’s contract for 28 NH90 helicopters has come into force after Qatar made the first down payment on its $3.4 billion value; the order covers 16 TTHs tactical transports and 12 NFHs naval helicopters (MMI photo)

Alessandro Profumo, Leonardo CEO, stated: «We are proud to have made this important contract effective. We continue to be fully focused on executing our Industrial Plan aimed at ensuring long-term sustainable growth for the Group, also strengthening our commercial approach».

The Group Guidance for the full year 2018 is confirmed, as revised upwards on 30th of July in respect of higher order intake and FOCF to reflect the expected effectiveness of the NH90 Qatar contract, that had been only partially factored into Group Guidance, and the potential for certain export campaigns not to be full finalised by year-end.

Leonardo acts as overall prime contractor with responsibility for the management of the entire programme which includes 16 NH90 TTH for land operations, 12 NH90 NFH for naval missions, a comprehensive support, maintenance training services package and associated infrastructure. The programme could be further extended in the future with the addition of 6 + 6 units in a mix of TTH and NFH variants. Leonardo will be also responsible for the final assembly and delivery of the 12 NH90 NFH helicopters from its Venice – Tessera facility in Northern Italy and an eight-year support and training services package for crews and maintenance technicians. Meanwhile Airbus will be responsible for the final assembly of the16 NH90 TTH aircraft. Deliveries are expected to start before June 2022 and to continue through to 2025. Leonardo will also supply, contribute to and integrate various equipment, avionics and sensors.

Leonardo is responsible for or contributes to the design, production and integration of a wide range of NH90 critical components and systems. These include the rear fuselage, main gearbox, hydraulic system, Automatic Flight Control System (AFCS), plant management system, NFH mission system, power plant integration and final assembly of TTH and NFH aircraft for various customers at its Venice – Tessera facility in Northern Italy. Leonardo also integrates additional dedicated systems, avionics and sensors such as the Laser Obstacle Avoidance Monitoring (LOAM) system, radar, digital map generator, sonar and naval mission console. Weapon systems Leonardo contributes to comprise pintle mounted Gatling-type guns, torpedoes and air-to-surface missiles for Anti-Surface Warfare (ASuW) missions.

The largest military helicopter programme in Europe, the NH90 is the optimal choice for modern operations thanks to its fully composite airframe with a large cabin, its excellent power-to-weight ratio and its wide range of role equipment. It features a quadraplex fly-by-wire flight control system for reduced pilot workload and enhanced flight handling characteristics.

The NH90 is available in two main variants, one dedicated to naval operations, the NH90 NFH (NATO Frigate Helicopter) and the TTH (Tactical Transport Helicopter) for land-based operations. As of today, over 350 helicopters have been delivered in NFH and TTH variants to customers in 13 nations. Aircraft in service have logged nearly 180,000 flight hours in a wide range of weather and environmental conditions, over land and sea. 543 NH90s have been ordered by customers worldwide to date.

The twin-engine, medium-size NH90 helicopter programme is managed by NHIndustries, which is owned by Leonardo, Airbus, and Fokker.

Parker Solar Probe

A United Launch Alliance (ULA) Delta IV Heavy rocket carrying NASA’s Parker Solar Probe spacecraft lifted off from Space Launch Complex-37 on August 12 at 3:31 a.m. EDT. NASA selected ULA’s Delta IV Heavy for its unique ability to deliver the necessary energy to begin the Parker Solar Probe’s journey to the sun.

United Launch Alliance Successfully Launches NASA’s Parker Solar Probe Spacecraft
United Launch Alliance Successfully Launches NASA’s Parker Solar Probe Spacecraft

The Delta IV Heavy is the nation’s proven heavy lift launch vehicle, delivering high-priority missions for NASA, the U.S. Air Force and the National Reconnaissance Office. With its advanced cryogenic upper stage, Delta IV Heavy can deliver more than 14,000 pounds/6,350 kg directly to geosynchronous orbit, as well as a wide variety of complex interplanetary trajectories.

«The unique requirements of this mission made the Delta IV Heavy the perfect launch vehicle to deliver Parker Solar Probe into orbit with the highest precision», said Gary Wentz, ULA vice president of Government and Commercial Programs. «Congratulations to our team and mission partners, we are proud to launch this exceptional spacecraft that will provide invaluable scientific information benefiting all of humankind».

This mission was launched aboard a Delta IV Heavy, which is comprised of three common core boosters each powered by an Aerojet Rocketdyne (AR) RS-68A liquid hydrogen/liquid oxygen engines producing a combined total of more than 2.1 million pounds/952,544 kg of thrust. The second stage was powered by an AR RL10B-2 liquid hydrogen/liquid oxygen engine. Due to the extremely high energy required for this mission, the Delta IV Heavy’s capability was enhanced by a powerful third stage provided by Northrop Grumman.

This was the 37th launch of the Delta IV rocket, and the 10th in the Heavy configuration. It also marks ULA’s sixth launch in 2018 and the 129th successful launch since the company was formed in December 2006.

ULA’s next launch is the ICESat-2 mission for NASA on what will be the final Delta II mission. The launch is scheduled for September 15 at Space Launch Complex-2 at Vandenberg Air Force Base, California.

With more than a century of combined heritage, United Launch Alliance is the nation’s most experienced and reliable launch service provider. ULA has successfully delivered more than 125 satellites to orbit that aid meteorologists in tracking severe weather, unlock the mysteries of our solar system, provide critical capabilities for troops in the field and enable personal device-based GPS navigation.

52nd Super Galaxy

Lockheed Martin delivered the 52nd C-5M Super Galaxy strategic transport modernized under the U.S. Air Force’s Reliability Enhancement and Re-engining Program (RERP) on August 2 at the company’s Marietta, Georgia, facility.

Lockheed Martin delivered the 52nd C-5M Super Galaxy
Lockheed Martin delivered the 52nd C-5M Super Galaxy

The delivery completes the RERP upgrade, which extends the service life of the C-5 fleet out until the 2040s.

«With the capability inherent in the C-5M, the Super Galaxy is more efficient and more reliable, and better able to do its job of truly global strategic airlift», said Patricia Pagan, Lockheed Martin Air Mobility and Maritime Missions Strategic Airlift director, «I am very proud of the contractor-government team than carried out the C-5 fleet modernization effort. We’ve worked very hard to ensure the C-5Ms are the absolute best strategic airlifters possible for our armed forces».

An Air Force Reserve Command aircrew from the 439th Airlift Wing at Westover Air Reserve Base, Massachusetts, ferried the final C-5M Super Galaxy to Stewart Air Force Base, New York, where the aircraft will undergo interior paint restoration. Once that work is complete, the aircraft will be flown to Westover where it will be the eighth C-5M Super Galaxy assigned to the base.

Lockheed Martin began RERP development work in 2001. RERP incorporates more than 70 improvements that improve reliability, efficiency, maintainability and availability. RERP included changes or modifications to the airframe structure; environmental and pneumatic systems; hydraulic systems, electrical system; fuel system; landing gear; and flight controls.

The heart of the system is the GE F138 turbofan engine (known as a CF6-80C2L1F in the commercial world) de-rated to 50,000 pounds/22,680 kg of thrust on the C-5M Super Galaxy. This engine provides 22 percent more thrust than the out-of-production TF39 turbofans on the earlier C-5A/B/C aircraft. The engines also allow the C-5M Super Galaxy to meet the FAA’s (Federal Aviation Administration) Stage 4 noise reduction requirements.

These changes, taken together, result in a 22 percent increase in thrust, a shorter takeoff roll; a 58 percent improvement in climb rate; allows the C-5M Super Galaxy to cruise – at maximum gross weight – in the Communication/Navigation/Surveillance/Air Traffic Management (CNS/ATM) flight environment; and greatly enhanced fuel efficiency and less tanker support demand.

First flight of a modified aircraft to the C-5M Super Galaxy standard came in Marietta, Georgia, on June 19, 2006. The first operational C-5M Super Galaxy was delivered to Dover Air Force Base, Delaware, on February 9, 2009. A total of 49 C 5Bs, two C-5C aircraft, and one original C-5A was modified under RERP.

The C-5M Super Galaxy holds 89 FAI-certified (Fédération Aéronautique Internationale) world aviation records, the most by any aircraft type. These records include time-to-climb with payload, altitude with payload, and greatest payload carried.

The C-5 Galaxy has been operated solely by the U.S. Air Force since 1970 and is the largest strategic airlifter in the U.S. Air Force’s fleet. The C-5 Galaxy is capable of carrying two 78-ton M1A1 main battle tanks or helicopters and other large equipment intercontinental distances. Fully loaded, a C-5 Galaxy has a gross weight of more than 800,000 pounds/362,874 kg. All of the C-5s were built at Lockheed Martin’s Marietta site.

In addition to Westover, C-5Ms are assigned to active duty and Air Force Reserve Command units at Dover Air Force Base, Delaware (436th and 512th Airlift Wings) and Travis Air Force Base, California (60th and 349th Air Mobility Wings). The C-5 aircrew training squadron is part of the 433rd Airlift Wing, the Reserve wing at Joint Base San Antonio-Lackland, Texas.

The heart of the system is the GE F138 turbofan engine
The heart of the system is the GE F138 turbofan engine

 

C-5M Super Galaxy

The C-5M Super Galaxy aircraft is a game changer to the warfighter and America’s premier global direct delivery weapons system. It is also the Air Force’s only true strategic airlifter. While setting 86 world records in airlift, the C-5M Super Galaxy established new benchmarks in carrying more cargo faster and farther than any other airlifter.

A venerable workhorse, the recognized improvements in performance, efficiency and safety it provides validate the tremendous value to the taxpayer in modernizing proven and viable aircraft. As the only strategic airlifter with the capability of carrying 100 percent of certified air-transportable cargo, the C-5M Super Galaxy can carry twice the cargo of other strategic airlift systems. The C-5M Super Galaxy also has a dedicated passenger compartment, carrying troops and their supplies straight to the theater. It can be loaded from the front and back simultaneously, and vehicles can also be driven directly on or off the Galaxy. This means the C-5M Super Galaxy can be loaded quickly and efficiently.

The C-5M Super Galaxy has been a vital element of strategic airlift in every major contingency and humanitarian relief effort since it entered service. The C-5M Super Galaxy is the only strategic airlifter capable of linking America directly to the warfighter in all theatres of combat with mission capable rates excess of 80 percent. With more than half of its useful structural life remaining, the C-5M Super Galaxy will be a force multiplier through 2040 and beyond.

The C-5 is capable of carrying two 78-ton M1A1 main battle tanks
The C-5 is capable of carrying two 78-ton M1A1 main battle tanks

 

General Characteristics

Primary Function Outsize cargo transport
Prime Contractor Lockheed-Georgia Co.
Crew Seven: pilot, co-pilot, 2 flight engineers and 3 loadmasters
Length 247.8 feet/75.53 m
Height 65.1 feet/19.84 m
Wingspan 222.8 feet/67.91 m
Power Plant 4 × General Electric CF6-80C2 turbofans
Thrust 50,580 lbs/22,942.7 kgf/225 kN
Normal cruise speed Mach 0.77/518 mph/834 km/h
Unrefueled Range with 120,000 lbs/54,431 kg 5,250 NM/9,723 km
Max takeoff weight (2.2 g) 840,000 lbs/381,018 kg
Operating weight 400,000 lbs/181,437 kg
Fuel capacity 332,500 lbs/150,819 kg
Max payload (2.0 g) 285,000 lbs/129,274 kg
Cargo Compartment
Length 143.7 feet/43.8 m
Width 19 feet/5.79 m
Height 13.48 feet/4.11 m
Pallet Positions 36
Unit Cost $90 million (fiscal 2009 constant dollars)
Deployed 2009
Inventory
16 C-5Ms have been delivered through December 2013
52 C-5Ms are scheduled to be in the inventory by fiscal 2017

 

Latvian Black Hawk

According to Defense News, Latvia has been cleared by the U.S. State Department to buy four UH-60M Black Hawk helicopters, in a move to bolster the NATO nation’s ability to move forces around the alliance’s eastern flank.

A Louisiana National Guard UH-60 Black Hawk is used to assess flooding on June 5, 2015. Latvia wants to purchase four of the Sikorsky-made helicopters (1st Lieutenant Rebekah Malone/Army National Guard)
A Louisiana National Guard UH-60 Black Hawk is used to assess flooding on June 5, 2015. Latvia wants to purchase four of the Sikorsky-made helicopters (1st Lieutenant Rebekah Malone/Army National Guard)

The sale has an estimated price tag of $200 million, which covers the four rotorcraft, 10 engines and associated equipment.

As with all announcements by the Defense Security Cooperation Agency, the sale must pass through the Senate, at which point negotiations can begin; total quantities and dollar totals often change from the original DSCA announcement and final sale.

«This proposed sale will support the foreign policy and national security of the United States by helping to improve the security of a NATO ally», according to a DSCA statement. «These UH-60 helicopters will allow for interoperability with U.S. and NATO forces in rapid response to a variety of missions, and quick positioning of troops with minimal helicopter assets».

«The sale of these UH-60 helicopters to Latvia will significantly increase its capability to provide troop lift, border security, anti-terrorist, medical evacuation, search and rescue, re-supply/external lift, and combat support in all weather», the statement noted.

The prime contractor for the helicopter is Sikorsky’s location in Stratford, Connecticut; the engines will be produced by General Electric Aviation Company in Lynn, Massachusetts. There are no industrial offsets associated with the potential deal.

Desired stable orbit

Northrop Grumman Corporation announced that NASA’s Transiting Exoplanet Survey Satellite (TESS) has successfully reached its desired stable orbit and begun science operations. The spacecraft was built and operated by Northrop Grumman. The TESS spacecraft instrument is the set of four wide-field cameras designed and built by Massachusetts Institute of Technology (MIT) and MIT Lincoln Lab. The principal goal of the TESS mission is to use its four wide-field cameras to detect planets around bright host stars in the solar neighborhood so that detailed characterizations of the planets and their atmospheres can be performed through follow-up observations from telescopes on Earth and in space. As the first-ever satellite to perform an exoplanet survey of nearly the entire sky, TESS will identify planets ranging from Earth-sized to Jupiter-sized, orbiting a wide range of stellar types at various orbital distances.

NASA’s Transiting Exoplanet Survey Satellite (TESS) was designed, manufactured and tested by Northrop Grumman in the company’s Dulles, Virginia, satellite manufacturing facility. The company is also responsible for handling mission operations for the observatory
NASA’s Transiting Exoplanet Survey Satellite (TESS) was designed, manufactured and tested by Northrop Grumman in the company’s Dulles, Virginia, satellite manufacturing facility. The company is also responsible for handling mission operations for the observatory

The TESS spacecraft was designed, manufactured and tested by Northrop Grumman at the company’s satellite manufacturing facility in Dulles. The company is also responsible for handling mission operations for the observatory. TESS was launched April 18, 2018, from Cape Canaveral Air Force Station, Florida. After launch, the observatory went through a series of tests and began preparation for a series of in-space maneuvers, including a lunar gravity assist, to reach its targeted highly-elliptical orbit. This lunar flyby was executed May 17 and the final period-adjustment maneuver was performed May 29.

«The TESS observatory is in excellent condition after completing the journey to its final orbit», said Steve Krein, vice president, science and environmental satellite programs, Northrop Grumman. «TESS is another example of our ability to deliver successful scientific space missions that shape our knowledge of the known universe. We are proud to provide critical mission operations for TESS as it continues a historic journey to identify new planets outside our solar system».

The four TESS cameras developed by MIT project partners are integrated with Northrop Grumman’s LEOStar-2 bus, a flight-proven and flexible satellite platform that accommodates a wide variety of missions. The company has several other satellites in production for upcoming NASA missions including the Earth science ICESat-2 and Landsat-9 satellites and the JPSS-2, -3 and -4 weather spacecraft which use the larger LEOStar-3 bus, as well as the Ionospheric Connection Explorer (ICON) LEOStar-2 satellite to be launched later this year.

TESS is a NASA astrophysics explorer mission led by the Massachusetts Institute of Technology (MIT) in Cambridge, Massachusetts, and managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Dr. George Ricker of MIT’s Kavli Institute for Astrophysics and Space Research serves as principal investigator for the mission. Additional partners besides Northrop Grumman include NASA’s Ames Research Center in California’s Silicon Valley; the Harvard-Smithsonian Center for Astrophysics in Cambridge, Massachusetts; MIT’s Lincoln Laboratory in Lexington, Massachusetts; and the Space Telescope Science Institute in Baltimore, Maryland. More than a dozen universities, research institutes and observatories worldwide are participants in the mission.

GPS Navigation

The U.S. Army has selected BAE Systems to provide touch screen Computer Display Units (CDU) as an upgrade to the company’s ASN-128 Doppler GPS Navigation System on Black Hawk helicopters. The self-contained, all-weather, day or night navigation system enables Black Hawk pilots to view real-time flight plan data.

U.S. Army Black Hawks to receive upgraded Doppler navigation systems
U.S. Army Black Hawks to receive upgraded Doppler navigation systems

This task order, which was awarded to BAE Systems under a current $226 million indefinite delivery/indefinite quantity contract, will bring touch-screen navigation system control to UH-60A/L Black Hawks. The Army plans to use the ASN-128 systems through 2035, and the upgrades will support safer operation for pilots by minimizing heads-down tasks.

«We’ve been a supplier for the ASN-128 program since 1978», said Alan Dewar, director of Communications and Navigation Solutions at BAE Systems. «The full touch screen with moving map capability will improve safety for pilots, assisting our customer’s mission success».

The CDUs will be produced at BAE Systems’ facility in Wayne, New Jersey, with circuit card production in Austin, Texas. Additional CDU delivery orders may follow as part of the Army’s upgrade plan. The initial order of 250 CDUs will be delivered in 2019 and 2020.

BAE Systems’ AN/ASN-128 operates on more than 15,000 helicopters in 35 nations. The company’s Doppler Navigation Systems provide accurate, independent, jam-resistant navigation in friendly and hostile environments and in operational situations where interference with GPS is likely. The system automatically selects Doppler navigation in GPS-denied environments.

Japan Coast Guard

Japan Coast Guard (JCG) has signed with Airbus Helicopters for an HCare Smart full-by-the-hour material management contract, for a period of five years. Beginning in July, the contract will cover comprehensive maintenance support, including parts-bythe-hour for JCG’s H225 fleet. With the provision of all the parts needed for the maintenance of the rotorcraft in one single contract, this will yield better cost control and forecasting, as well as more efficient day-to-day management for JCG.

The H225 offers the industry’s best speed, range, payload and reliability in an 11-tonne-category twin-turbine rotorcraft
The H225 offers the industry’s best speed, range, payload and reliability in an 11-tonne-category twin-turbine rotorcraft

Earlier this year, JCG has placed an additional order of H225 helicopter, bringing its overall H225 fleet to a total of ten units by March 2021. The newly-signed HCare Smart contract will cover the entirety of ten H225s currently on order, of which five are already in service.

Olivier Tillier, Managing Director of Airbus Helicopters Japan said: «This being the first and most large-scale adoption of the HCare Smart programme in the Japanese parapublic market, makes it exceptionally meaningful for Airbus. JCG has been a long-standing customer for more than two decades, and it is fast becoming the largest Super Puma operator in Japan today. We are strongly confident that our highly adaptive HCare Smart programme will deliver high fleet availability, reduce aircraft down-time and reinforce the capabilities of JCG’s fleet. Our Airbus Helicopters team in Japan is fully committed to ensure that JCG’s fleet is always performing at its maximum readiness level, while ensuring the highest level of safety for all missions».

JCG currently operates three AS332s and five H225s. Over the last 25 years, its Airbus fleet has been involved in a multitude of activities, ranging from security enforcement and territorial coastal activities to disaster relief missions in Japan.

Airbus Helicopters’ HCare services provide the most comprehensive aftermarket service coverage, grouped into five domains. Among them, HCare material management offers three different service packages – HCare Infinite, with a full availability commitment; HCare Smart, with four by-the-hour options; and HCare Easy, with on-request catalogue services.

 

Characteristics

CAPACITY
Troop transport 2 pilots + 1 chief of stick + 28 seats
VIP transport 2 pilots + 8 to 12 passengers
Casualty evacuation 2 pilots + up to 11 stretchers + 4 seats
Sling load 4,750 kg/10,472 lbs
EXTERNAL DIMENSIONS
Length 16.79 m/55.08 feet
Width 3.96 m/13 feet
Height 4.60 m/15.09 feet
WEIGHT
Maximum Take-Off Weight (MTOW) 11,000 kg/24,251 lbs
MTOW in external load configuration 11,200 kg/24,690 lbs
Empty weight 5,715 kg/12,600 lbs
Useful load 5,285 kg/11,651 lbs
Maximum cargo-sling load 4,750 kg/10,472 lbs
Standard fuel capacity 2,247 kg/4,954 lbs
ENGINES 2 TURBOMECA MAKILA 2A1
Take-off power per engine 1,567 kW/2,101 shp
PERFORMANCE AT MAXIMUM GROSS WEIGHT, ISA*, SL**
Maximum speed (Vne***) 324 km/h/175 knots
Fast cruise speed (at MCP****) 262 km/h/142 knots
Rate of climb 5.4 m/s/1,064 feet/min
Service ceiling (Vz = 0.508 m/s = 100 feet/min) 3,968 m/13,019 feet
Hover ceiling OGE***** at ISA*, MTOW, take-off power 792 m/2,600 feet
Maximum range without reserve at Economical Cruise Speed 909 km/491 NM
Endurance without reserve at 148 km/h/80 knots >4 h 20 min

* International Standard Atmosphere

** Sea Level

*** Never Exceed Speed

**** Mode Control Panel

***** Out of Ground Effect

Einstein Box

Lockheed Martin Skunk Works and the Defense Advanced Research Projects Agency (DARPA) recently performed a series of flight tests demonstrating how a System of Systems (SoS) approach enables seamless – and rapid – integration across air, space, land, sea and cyber in contested environments.

DARPA, Lockheed Martin demonstrates technologies to enable a connected warfighter network
DARPA, Lockheed Martin demonstrates technologies to enable a connected warfighter network

The demonstrations held at the Naval Air Warfare Center in China Lake, California, were part of a five-year DARPA program called System of Systems Integration Technology and Experimentation (SoSITE). The flight tests demonstrated interoperability between a ground station, flying test bed, a C-12 and flight test aircraft, and proved the ability to transmit data between those systems using STITCHES, a novel integration technology.

The test used the Skunk Works developed Enterprise Open System Architecture Mission Computer version 2 (EMC2), known as the «Einstein Box», as the open computing environment, providing security protections between systems. The Einstein Box enables rapid and secure experimentation before deploying the capability to operational systems. The team successfully demonstrated four key capabilities:

  • The ability to automatically compose and transmit messages between systems, including those using legacy datalinks;
  • The first use of Non-Enterprise Data Links to create new, rich information exchanges in-flight through Link-16, enabling greater speed, agility, modernization and effectiveness;
  • The ability to link ground-based cockpit simulators with live aircraft systems in real time to demonstrate how a SoS approach reduces the data-to-decision timeline;
  • Integration between the APG-81 radar, currently used on the F-35, and DARPA’s Automatic Target Recognition software to reduce operator workload and to create a comprehensive picture of the battlespace.

Demonstrating rapid and affordable integration of mission systems into existing and new architectures, SoSITE will help U.S. forces maintain their advantage in today’s dynamic world.

«The successful demonstrations focused on advancing integration technologies to increase capabilities of systems in operation today, enabling our warfighters to use those systems in unexpected ways», said Justin Taylor, Lockheed Martin Skunk Works Mission Systems Roadmaps director. «The SoS approach is essential for allowing U.S. forces to rapidly reconfigure systems and prevail over any threat».

The project was led by Lockheed Martin Skunk Works in partnership with the U.S. Air Force and support from industry partners Apogee Research, Northrop Grumman, Lockheed Martin Missiles and Fire Control, BAE Systems, Phoenix Flight Test, General Dynamics and Rockwell Collins.

Skunk Works’ expertise in open system architecture spans more than a decade. The success of SoSITE is a critical step to enabling multi-domain operations and maintaining superiority in the future battlespace. In its 75th year, Lockheed Martin Skunk Works is proud to advance SoS integration in partnership with DARPA as they celebrate 60 years of creating breakthrough technologies and capabilities for national security.

Limited User Testing

Northrop Grumman Corporation has delivered software to the U.S. Army for the UH-60V Black Hawk helicopter to enter Limited User Testing (LUT) – a critical milestone leading into production.

As the supplier of the Integrated Avionics Suite for the UH-60V Black Hawk helicopter, Northrop Grumman has delivered software for the helicopter to enter Limited User Testing – a critical milestone leading into production
As the supplier of the Integrated Avionics Suite for the UH-60V Black Hawk helicopter, Northrop Grumman has delivered software for the helicopter to enter Limited User Testing – a critical milestone leading into production

Under a contract awarded in 2014, Northrop Grumman is partnering with the U.S. Army Prototype Integration Facility and prime contractor Redstone Defense Systems to modernize the Army’s fleet of UH‑60L helicopters through cost-effective cockpit upgrades, replacing older analog gauges with digital electronic instrument displays.

Northrop Grumman is supplying the Integrated Avionics Suite for the upgraded aircraft, designated the UH-60V, which features one of the Army’s most advanced avionics solutions to enable the complex missions of the army aviation warfighter.

Through this latest milestone, Northrop Grumman has provided a digital cockpit software build that includes all the functionality required for LUT, which will evaluate the system’s operational readiness, capabilities and compatibility with the UH-60M Pilot-Vehicle Interface. This important test informs the Milestone C Low Rate Initial Production (LRIP) decision. The UH-60V is scheduled to enter LRIP in 2019.

«This software delivery milestone is an important step forward in our journey to provide cutting-edge capabilities and mission-enabling solutions to warfighters through an affordable, low-risk digital cockpit upgrade», said Ed Griebel, director, land & avionics C4ISR division, Northrop Grumman. «Our mission solution preserves investment in the Black Hawk fleet while modernizing the aircraft to provide warfighters with a decisive advantage».

Northrop Grumman’s scalable, fully integrated mission equipment package enables enhanced pilot situational awareness and mission safety, as well as decreased pilot workload and life cycle cost. The UH-60V’s Pilot-Vehicle Interface (PVI) is nearly identical to the UH‑60M PVI, providing common training and operational employment.

Northrop Grumman’s open architecture approach provides greater flexibility and enables upgrades to be done with or without the original equipment manufacturer’s involvement. In addition to the UH-60V, Northrop Grumman’s scalable and fully integrated architecture is and can be applied to numerous platforms such as the E‑2D, AH-1F/S and other aircraft worldwide. The operators of these aircraft can reduce their logistics footprint by having common avionics in multiple platforms and avoid sustaining large component inventories.

The UH-60V meets the standards for safety-critical software development and is designed to comply with the Federal Aviation Administration and European Aviation Safety Agency’s Global Air Traffic Management requirements, enabling the system to traverse military and civilian airspace worldwide. It is also certifiable and compliant with safety-critical avionics standards such as DO-178C.