Category Archives: Air

Maritime Patrol Aircraft

The first submarine-hunting Poseidon MRA1 Maritime Patrol Aircraft (MPA) has been delivered to the Royal Air Force (RAF).

The first Boeing P-8A Poseidon for the Royal Air Force taxies after landing at NAS Jacksonville, in Florida, after flying in from Seattle where it was handed over to the customer. It will be known as Poseidon MRA1 in RAF service (RAF photo)

The Ministry of Defence (MOD) is investing £3 billion in nine state-of-the-art jets which will enhance the UK’s tracking of hostile maritime targets, protect the British continuous at-sea nuclear deterrent and play a central role in NATO missions across the North Atlantic.

Defence Secretary Ben Wallace said: «The arrival of the world-class Poseidon aircraft marks a step-change in the UK’s maritime patrol capability. Using the world’s most advanced sensors and operating for long periods, these aircraft will transform the quality of intelligence available to our armed forces and protect our vital nuclear deterrent».

Following an unveiling ceremony in Seattle, the aircraft was flown to Naval Air Station (NAS) Jacksonville in Florida where RAF personnel are being trained to operate the aircraft.

On arrival Michelle Sanders, Defence Equipment & Support (DE&S) Delivery Team Leader, signed the paperwork to formally transfer the aircraft, named Pride of Moray, to UK ownership.

Air Chief Marshal Mike Wigston, Chief of the Air Staff, said: «Poseidon is a game-changing maritime patrol aircraft, able to detect, track and if necessary destroy the most advanced submarines in the world today. With Poseidon MRA1, I am delighted and very proud that the Royal Air Force will once again have a maritime patrol force working alongside the Royal Navy, securing our seas to protect our nation».

First Sea Lord, Admiral Tony Radakin, said: «Poseidon marks a superb upgrade in the UK’s ability to conduct anti-submarine operations. This will give the UK the ability to conduct long range patrols and integrate seamlessly with our NATO allies to provide a world-leading capability. This will maintain operational freedom for our own submarines, and apply pressure to those of our potential foes. I look forward to working with the RAF and our international partners on this superb capability».

The Poseidon MRA1 is designed to carry out extended surveillance missions at both high and low altitudes. The aircraft is equipped with cutting-edge sensors which use high-resolution area mapping to find both surface and sub-surface threats.

The aircraft can carry up to 129 sonobuoys, small detection devices which are dropped from the aircraft into the sea to search for enemy submarines. The systems survey the battlespace under the surface of the sea and relay acoustic information via radio transmitter back to the aircraft.

The aircraft will also be armed with Harpoon anti-surface ship missiles and Mk-54 torpedoes capable of attacking both surface and sub-surface targets.

Michelle Sanders, DE&S Delivery Team Leader, said: «Seeing the first Poseidon MRA1 handed over to the Royal Air Force is an incredibly proud moment for all of the team at DE&S. Close, collaborative working with colleagues in Air Capability, the US Navy and industry has helped us deliver this very capable aircraft».

As leading members of NATO, the UK has signed agreements with both the US and Norwegian militaries to cooperate closely on operating their Poseidon fleets across the North Atlantic.

In August this year, Defence Minister Anne Marie-Trevelyan hosted Norwegian State Secretary Tone Skogen at RAF Lossiemouth to deepen the two country’s partnership on the Poseidon programme.

To maintain the skills required to deliver this vital capability, the RAF has embedded aircrew within MPA squadrons in Australia, Canada, New Zealand and the USA.

The first aircraft will arrive in Scotland in early 2020, with the fleet to be based at RAF Lossiemouth in Moray. All nine aircraft will be delivered by November 2021.

The aircraft will be flown initially by 120 Squadron which was originally stood up on 1 January 1918 and was the leading anti-submarine warfare squadron in WWII. 201 Squadron will also join the programme in due course.

The Poseidon MRA1 programme is bringing significant economic benefits to the communities near RAF Lossiemouth. A total of £460 million is being invested in the station to prepare for the arrival of the new aircraft, including the construction of a £132 million strategic facility for the fleet to be completed next year.

The programme will also bring around 700 additional personnel to Moray, taking the total number of employees there to approximately 2,500.

 

Technical Specifications

Wing Span 123.6 feet/37.64 m
Height 42.1 feet/12.83 m
Length 129.5 feet/39.47 m
Propulsion 2 × CFM56-7B engines
27,000 lbs./12,237 kgf/120 kN thrust
Speed 490 knots/564 mph/908 km/h
Range 1,200 NM/1,381 miles/2,222 km with 4 hours on station
Ceiling 41,000 feet/12,496 m
Crew 9
Maximum Take-Off Gross Weight 189,200 lbs./85,820 kg

 

Sea Lion

Airbus Helicopters has delivered the first NH90 Sea Lion naval multi-role helicopter to the Federal Office of Bundeswehr Equipment, Information Technology and In-Service Support (BAAINBw), with a further two to be delivered by the end of the year.

Airbus Helicopters delivers first NH90 Sea Lion to the German Armed Forces

In total, 18 Sea Lions have been ordered for the German Navy, with deliveries expected to be completed in 2022. The selection of the Sea Lion as the successor to the Sea King was made in March 2013 and the corresponding contract was signed in June 2015.

«I am proud of our teams who worked hard to meet the ambitious delivery schedule of our customer, whose continuous support has also been key in making it happen», said Wolfgang Schoder, CEO of Airbus Helicopters Deutschland. «During the summer, we successfully completed demonstration flights involving the German Navy and BAAINBw to verify the Sea Lion capabilities for search and rescue as well as special forces missions. I am confident that these helicopters will bring next-generation capabilities to the German Navy, and I’m committed to ensure the best level of support for the Sea Lion fleet».

When deployed, NH90 Sea Lions will take on a wide range of roles including Search And Rescue (SAR), maritime reconnaissance, special forces as well as personnel and material transportation missions. In addition to its land-based use, the Sea Lion will also operate on Type 702 (Berlin class) combat support ships.

Thanks to its multi-role capability and growth capability, the Sea Lion will not only replace the German Navy’s Sea King Mk41 fleet but significantly enhance its operational capabilities. The fly-by-wire flight controls of the NH90 Sea Lion reduce the crew’s workload thanks to its high precision and ease of use, which particularly come to the fore in over-water hovering, even in poor weather conditions.

The German Navy has also recently opted for the naval version of the NH90 to succeed its 22 Sea Lynx Mk 88A on-board helicopters that have been in service since 1981.

Five nations are already using the NH90 in its naval NATO Frigate Helicopter (NFH) version and have completed more than 50,000 flying hours in SAR, humanitarian and military missions, with the 90 helicopters that have been delivered so far. The 399 helicopters that make up the worldwide NH90 fleet have already completed over 230,000 flying hours. This first Sea Lion is also the 400th NH90 helicopter to be delivered.

 

Characteristics

Maximum Weight 11,000 kg/24,250 lbs.
Capacity Crew (2 + 1 or 2 + 2) + up to 7/6 troops in Anti-Submarine Warfare/Anti-SUrface Warfare (ASW/ASuW), or up to 14 troops for transport in full crashworthy condition
Engine 2 RTM 322-01-9 or T700 T6E1 Full Authority Digital Engine Control (FADEC). Maximum emergency power One Engine Inoperative (OEI) 30 sec: 2,172 kW/2,913 shp
Fast Cruise Speed 147 knots/169 mph/272 km/h
Maximum Range 450 NM/518 miles/834 km
Main Missions Anti-Submarine & Anti-SUrface

Warfare*

Search And Rescue
Logistic & vertical replenishment
Casualty/medical evacuation
Special operations (including maritime counter-terrorism and anti-piracy)
Maritime surveillance/enforcement

* Capability of 2 torpedoes or 2 anti-ship missiles, or 1 of each

Whiskey

Sikorsky, a Lockheed Martin company, showcased the next generation Combat Rescue Helicopter (CRH) during a ceremony at its Development Flight Center in West Palm Beach, Florida, this week.

The Sikorsky HH-60W helicopter at the Development Flight Center in West Palm Beach, Florida (Photo courtesy Sikorsky, a Lockheed Martin company)

During the event, United States Air Force General James M. Holmes, Commander, Air Combat Command, Joint Base Langley-Eustis, Virginia (91) described the HH-60W helicopter as critical took for the warfighter.

«I want to say thanks to everyone from Sikorsky for your dedication to your craft, for consistently living up to your mission statement of pioneering flight solutions that bring people home everywhere every time. And that partnership is incredibly valuable to us and the guys on the ground», General Holmes said. «We’re proud to work with you to deliver the most intuitive, precise, technologically advanced systems to our airmen».

Other dignitaries attending the event included Doctor Will Roper, Assistant Secretary of the Air Force for Acquisition, Technology and Logistics and Representative Brian Mast (R-FL) from Florida’s 18th District.

 

Prepared for Production

The achievement of the Milestone C production decision on September 24 launched the contract award known as Low Rate Initial Production for Sikorsky to build 10 CRH helicopters.

The U.S. Air Force program of record calls for 113 helicopters to replace the HH-60G PAVE HAWK, which perform critical combat search and rescue and personnel recovery operations for all U.S. military services.

«The Combat Rescue Helicopter is the new era in Air Force aviation and a pivotal milestone that ties to our company’s legacy of bringing people home», said Sikorsky President Dan Schultz. «Sikorsky employees and our nationwide supply chain are ready to begin producing, delivering and supporting this all-new aircraft for the warfighter».

The HH-60W Combat Rescue Helicopter is significantly more capable and reliable than its predecessor, the HH-60G.The aircraft hosts a new fuel system that nearly doubles the capacity of the internal tank on a UH-60M BLACK HAWK, giving the Air Force crew extended range and more capability to rescue those injured in the battle space. The HH-60W specification drives more capable defensive systems, vulnerability reduction, hover performance, electrical capacity, avionics, cooling, weapons, cyber-security, environmental and net-centric requirements than currently held by the HH-60G.

«We send in brave men and women who are going to find a way to get the job done», Doctor Roper said. «But they’ll tell you about flying in and not being certain that they could land safely or putting the broad side of their vehicle between a downed pilot and gunfire. When you hear those stories, you realize that we put heroes on these vehicles. We pick up heroes in these vehicles and they deserve every technology advantage we can give them».

 

Training Systems

On Sept. 19, four pilots and four special mission aviators from the U.S. Air Force graduated from the Sikorsky Training Academy’s S-70i Transition Course. As previously qualified HH-60G Pave Hawk crews, the students learned about the unique systems and operating capabilities of the Sikorsky S-70i. During the four-week course, they each spent seven hours using a procedural trainer, 10 hours in a full-motion flight simulator and 10 hours of flight time in the S-70i aircraft.

To ensure mission readiness, Lockheed Martin will deliver a custom-tailored training system consisting of flight simulators, procedural and maintenance trainers and accompanying courseware.

In 2020, Lockheed Martin will train 200 U.S. Air Force and maintenance aircrew students at our Sikorsky Training Academy in Stuart, Fla. utilizing training systems and three newly built HH-60W aircraft. This will provide flight and maintenance training to initial cadre and units allowing the U.S. Air Force to remain vigilant while simultaneously fielding and employing the added capabilities of the HH-60W aircraft.

RAIDER X

October 14, 2019, Sikorsky, a Lockheed Martin company, introduced RAIDER X, its concept for an agile, lethal and survivable compound coaxial helicopter, specifically designed for securing vertical lift dominance against evolving peer and near-peer threats on the future battlefield. Through the U.S. Army’s Future Attack Reconnaissance Aircraft (FARA) program, RAIDER X is the out-front platform in the Service’s revolutionary approach for rapid development and delivery of game changing technology and warfighter capabilities, equipped for the most demanding and contested environments. RAIDER X enables the reach, protection and lethality required to remain victorious in future conflicts.

Sikorsky introduced RAIDER X as its entry to the U.S. Army’s Future Attack Reconnaissance Aircraft (FARA) prototype competition. RAIDER X draws on Lockheed Martin’s broad expertise in developing innovative systems using the latest digital design and manufacturing techniques (Image courtesy, Sikorsky a Lockheed Martin company)

«RAIDER X converges everything we’ve learned in years of developing, testing and refining X2 Technology and delivers warfighters a dominant, survivable and intelligent system that will excel in tomorrow’s battlespace where aviation overmatch is critical», said Frank St. John, executive vice president of Lockheed Martin Rotary and Mission Systems. «The X2 Technology family of aircraft is a low-risk solution and is scalable based on our customers’ requirements».

RAIDER X draws on Lockheed Martin’s broad expertise in developing innovative systems using the latest digital design and manufacturing techniques. Sikorsky’s RAIDER X prototype offers:

  • Exceptional Performance: The X2 rigid rotor provides increased performance including; highly responsive maneuverability, enhanced low-speed hover, off-axis hover, and level acceleration and braking. These attributes make us unbeatable at the X.
  • Agile, Digital Design: State-of-the-art digital design and manufacturing is already in use on other Lockheed Martin and Sikorsky production programs such as CH-53K, CH-148 and F-35, and will enable the Army to not only lower the acquisition cost, but enable rapid, affordable upgrades to stay ahead of the evolving threat.
  • Adaptability: Modern Open Systems Architecture (MOSA)-based avionics and mission systems, offering «plug-and-play» options for computing, sensors, survivability and weapons, benefiting lethality and survivability, operational mission tailoring and competitive acquisitions.
  • Sustainable/Maintenance: Designed to decrease aircraft operating costs by utilizing new technologies to shift from routine maintenance and inspections to self-monitoring and condition-based maintenance, which will increase aircraft availability, reduce sustainment footprint forward and enable flexible maintenance operating periods.
  • Growth/Mission Flexibility: Focused on the future and ever evolving threat capabilities, X2 compound coaxial technology provides unmatched potential and growth margin for increased speed, combat radius and payload. This potential and growth margin further enables operational mission flexibility which includes a broader range of aircraft configurations and loadouts to accommodate specific mission requirements.

The nationwide supply team that Sikorsky has comprised to build RAIDER X will join company leaders today to introduce RAIDER X during the annual conference of the Association of the United States Army in Washington, D.C.

«RAIDER X is the culmination of decades of development, and a testament to our innovation and passion for solving our customers’ needs», said Sikorsky President Dan Schultz. «By leveraging the strength of the entire Lockheed Martin Corporation, we will deliver the only solution that gives the U.S. Army the superiority needed to meet its mission requirements».

 

Proven X2 Technology: Scalable, Sustainable, Affordable

With RAIDER X, Sikorsky introduces the latest design in its X2 family of aircraft. To date, X2 aircraft have achieved/demonstrated:

  • Speeds in excess of 250 knots/288 mph/463 km/h;
  • High altitude operations in excess of 9,000 feet/2,743 m;
  • Low-speed and high-speed maneuver envelopes out to 60+ degrees angle of bank;
  • ADS-33B (Aeronautical Design Standard) Level 1 handling qualities with multiple pilots;
  • Flight controls optimization and vibration mitigation.

«The power of X2 is game changing. It combines the best elements of low-speed helicopter performance with the cruise performance of an airplane», said Sikorsky experimental test pilot Bill Fell, a retired Army pilot who has flown nearly every RAIDER test flight. «Every flight we take in our S-97 RAIDER today reduces risk and optimizes our FARA prototype, RAIDER X».

The development of X2 Technology and the RAIDER program has been funded entirely by significant investments by Sikorsky, Lockheed Martin and industry partners.

A history of reliability and safety. A legacy of industry-leading research and technological achievement. Now meet the future of vertical lift. RAIDER X delivers speed, precision and maneuverability to achieve its mission…at the X

JMR TD program

The U.S. Army is looking to improve its aviation technology and recently called upon the Arnold Engineering Development Complex (AEDC) – National Full-Scale Aerodynamics Complex (NFAC) at Moffett Field in Mountain View, California, to advance this effort.

Sikorsky-Boeing SB>1 Defiant Helicopter Achieves First Flight
The Sikorsky-Boeing SB>1 DEFIANT is shown during its first flight in March. The military helicopter, being developed for the Army’s Joint Multi-Role Technology Demonstrator program, was tested earlier this year at the AEDC National Full-Scale Aerodynamics Complex at Moffett Field in Mountain View, California (Courtesy photo)

Engineers from Sikorsky Aircraft Corporation and The Boeing Company, in partnership with the U.S. Army Combat Capabilities Development Command Aviation & Missile Center Army Aviation Development Directorate, recently conducted a series of tests at NFAC to support the development of the SB>1 DEFIANT, a military helicopter being developed for the Army’s Joint Multi-Role Technology Demonstrator (JMR TD) program.

The goal of this wind tunnel test was to validate the aerodynamic performance and flight mechanics of Sikorsky’s X2 Technology aircraft. These configurations, which are being utilized on the SB>1 DEFIANT, include a lift-offset coaxial rotor system, composite fuselage and rear-mounted pusher propulsor that provides increased speed.

The SB>1 DEFIANT, which made its first flight in March, is a technology demonstrator for a medium-lift utility helicopter. Future uses of this type of air vehicle could include attack and assault, troop transport or medical evacuation (MEDEVAC).

The testing was conducted throughout the first half of 2019 and concluded in mid-June. To accomplish the tests, a 1/5 scale model of the SB>1 DEFIANT airframe with powered coaxial main rotors was placed in the NFAC 40- by 80-foot/12.2- by 24.4-meter wind tunnel.

Measurements included forces and moments on the various components, as well as fuselage, empennage and blade surface pressures.

David Wang, NFAC test engineer, said the recent tests expanded on data collected from a JMR wind tunnel entry conducted at NFAC in 2016 by gathering data at faster speed ranges.

«From the NFAC perspective, the wind tunnel test was successful», Wang said. «The test customer was able to collect performance and handling qualities data for their subscale model up to their maximum design flight speed».

Data collected during the recent tests is undergoing review and analysis. It is unknown at this time if there will be future testing of the SB>1 DEFIANT model at NFAC.

The full-scale SB>1 DEFIANT flight demonstrator is currently undergoing ground and flight tests at Sikorsky’s flight test facility. According to the Sikorsky-Boeing JMR Team, data from SB>1 DEFIANT will help the Army develop requirements for new utility helicopters expected to enter service in the early 2030s.

A previous Department of Defense (DOD) study concluded that upgrades to the aging DOD rotary wing aviation fleet would not provide the capabilities required for future operations. Significant improvement in several attributes of fleet aircraft, such as speed, payload, range, survivability and vertical lift are required to meet future needs. It was determined this improvement could be achieved through application of new technologies and designs.

To accomplish its goal, the Army has been executing a Science & Technology (S&T) effort to mitigate risk associated with maturity of critical technologies, feasibility of desired capabilities and cost of a technical solution. An aspect of this effort is the air vehicle development associated with the JMR TD program.

JMR TD is the alignment of Army Aviation’s S&T with the Future Vertical Lift initiative, which seeks to develop a new family of system to modernize and replace the government’s current fleet of rotorcraft. According to the Army, the intent of the JMR TD is to mitigate risk for the Future Vertical Lift program through means that include the testing of advanced technologies and efficient vehicle configurations.

NFAC, managed and operated by AEDC, is the largest wind tunnel complex in the world. It consists of both the 40- by 80-foot/12.2- by 24.4-meter and 80- by 120- foot/24.4- by 36.6-meter wind tunnels. These tunnels, which share a common drive system, are primarily used for aerodynamic and acoustic tests of rotorcraft and fixed wing, powered-lift Vertical and/or Short Take-Off and Landing (V/STOL) aircraft and developing advanced technologies for these vehicles.

Both subscale and full-scale models are tested at NFAC. The speed range of the 40- by 80-foot/12.2- by 24.4-meter wind tunnel test section is continuously variable from 0 to 300 knots/345 mph/555 km/h, while the speed range in the 80- by 120-foot/24.4- by 36.6-meter wind tunnel section is continuously variable from 0 to 100 knots/115 mph/185 km/h.

Indian Rafale

October 8th, 2019, Eric Trappier, Dassault Aviation Chairman and Chief Executive Officer, hosted the handover ceremony of the first Indian Air Force Rafale in Mérignac, Dassault Aviation’s Rafale final assembly facility. The event was placed under the high patronage of the Honourable Shri Rajnath Singh, Minister of Defence of India and the Honourable Ms. Florence Parly, Minister of the Armed Forces of France.

Ceremony held in Dassault Aviation Mérignac facility on October 8th, 2019, in the frame of the celebrations of Air Force Day

The ceremony, 3 years after the signature of the contract in 2016 for the acquisition of 36 Rafale to equip the Indian Air Force, marks the concretization of the strategic relationship between India and France and the celebration of the history of mutual trust between India and Dassault Aviation for more than 65 years.

The handover of the first IAF Rafale, materializes the determination of the French Authorities to fulfill the expectations and needs of the Government of India to comfort India’s protection and sovereignty and illustrates the exemplary cooperation between Dassault Aviation and the Indian Air Force, one of the most remarkable partner Dassault Aviation’s has ever worked with.

The setup of the Dassault Reliance JV (DRAL) production facility in Nagpur as well as the significant support of  the educational and scientific policy of the Indian Government through the establishing of an engineering center in Pune, the creation of the «Dassault Skill Academy» and the implementation of a vocational training programme «Aeronautical Structure and Equipment Fitter», demonstrate Dassault Aviation full commitment to the «Make in India» and «Skill India» initiatives in building the foundations for a national aerospace and defence ecosystem to become a worldwide reference of the sector.

Supported by Dassault Aviation partners, Thales already present in Nagpur, Safran to inaugurate its facility in Hyderabad as well as the French aeronautics and defence community among which twenty companies are already settled in India, this approach will mutually benefit both Indian and French industries and will contribute to guaranty both countries to meet tomorrow’s aeronautical challenges.

«I am particularly honored to host this ceremony today as India is part of Dassault Aviation’s DNA. The long and trustful relationship we share is an undeniable success and underpins my determination of establishing for the long term Dassault Aviation in India. We stand alongside the Indian Air Force since 1953, we are totally committed to fulfill its requirements for the decades to come and to be part of India’s ambitious vision for the future», has declared Eric Trappier, Chairman and CEO of Dassault Aviation.

Invictus

Bell Textron Inc., a Textron Inc. company, has announced a new rotorcraft, Bell 360 Invictus, as the company’s entrant for the U.S. Army’s Future Attack Reconnaissance Aircraft (FARA) Competitive Prototype program. Bell’s innovative approach to designing the Bell 360 Invictus combines proven low-risk technologies with advanced processes to deliver soldiers an affordable, agile and lethal solution to win on the modern battlefield. The Bell 360 Invictus meets or exceeds all requirements as laid out under the FARA contract.

Next-generation rotorcraft is designed to provide attack, reconnaissance, and intelligence to shape the tactical environment and deliver operational overmatch in highly complex multi-domain operations

«The Bell 360 will deliver advanced battlefield situational awareness, as well as lethal options, in support of the maneuver force at an affordable cost», said Vince Tobin, executive vice president of Military Business at Bell. «The multi-domain fight will be complex, and our team is delivering a highly capable, low-risk solution to confidently meet operational requirements with a sustainable fleet».

The Bell 360 Invictus’ design emphasizes exceptional performance using proven technologies to fulfill the Army’s FARA requirements at an affordable cost and on schedule. One example is the Invictus’ rotor system. This design is based on Bell’s 525 Relentless rotor system which has been tested and proven at speeds in excess of 200 Knots True Air Speed (KTAS)/230 mph/370 km/h. By incorporating proven designs and the best available technologies from commercial and military programs, Bell delivers a low-risk path to a FARA program of record.

This advanced aircraft will have a transformative impact through next-generation flight performance, increased safety and greater operational readiness – all to deliver decisive capabilities.

Some of the key 360 Invictus features include:

  • Lift-sharing wing to reduce rotor lift demand in forward flight, enabling high-speed maneuverability
  • Supplemental Power Unit increases performance during high power demands
  • Robust articulated main rotor with high flapping capability enabling high speed flight
  • Fly-by-wire flight control system – synthesizes technologies, reduces pilot workload and provides a path to autonomous flight
  • Speed: >185 KTAS/213 mph/343 km/h
  • Combat radius: 135 NM/155 miles/250 km with >90 minutes of time on station
  • Achieves 4k/95F Hover Out of Ground Effect (HOGE)
  • Armed with a 20-mm cannon, integrated munitions launcher with ability to integrate air-launched effects, and future weapons, as well as current inventory of munitions
  • Provisioned for enhanced situational awareness and sensor technologies
  • Modular Open Systems Approach (MOSA) enabled by a Digital Backbone from Collins Aerospace
  • Robust design integrating lifecycle supportability processes early to ensure high Operational Tempo (OPTEMPO) availability in multi-domain operations
  • Design-as-built manufacturing model and digital thread enabled tools to enhance affordability, reliability, and training throughout the lifecycle of the aircraft

«Bell is committed to providing the U.S. Army with the most affordable, most sustainable, least complex, and lowest risk solution among the potential FARA configurations, while meeting all requirements», said Keith Flail, vice president of Advanced Vertical Lift Systems at Bell. «360 Invictus is an exciting opportunity for us to continue our support of Army modernization. This is the next solution to ensure soldiers have the best equipment available for the multi-domain fight».

Bell has decades of experience providing attack and reconnaissance aircraft to the warfighter, such as the Kiowa Warrior which delivered high reliability and availability through more than 850,000 flight hours. The Bell 360 Invictus design builds from that legacy, Bell’s commercial innovations, and from the success in the development and manufacturing capabilities required for Future Vertical Lift (FVL) as part of the Joint Multi-Role Technology Demonstration (JMR TD) over the past six years.

First Test Flight

Boeing and the U.S. Navy successfully completed the first test flight of the MQ-25 Stingray unmanned aerial refueler on 19 September 2019.

Boeing and the U.S. Navy successfully completed the first test flight of the MQ-25 Stingray unmanned aerial refueler September 19. The MQ-25 Stingray test asset, known as T1, completed the autonomous two-hour flight under the direction of Boeing test pilots operating from a ground control station at MidAmerica St. Louis Airport in Mascoutah, Illinois, where the test program is based (Boeing photo)

The MQ-25 Stingray test asset, known as T1, completed the autonomous two-hour flight under the direction of Boeing test pilots operating from a ground control station at MidAmerica St. Louis Airport in Mascoutah, Illinois, where the test program is based. The aircraft completed an autonomous taxi and takeoff and then flew a pre-determined route to validate the aircraft’s basic flight functions and operations with the ground control station.

«Seeing MQ-25 Stingray in the sky is a testament to our Boeing and U.S. Navy team working the technology, systems and processes that are helping get MQ-25 Stingray to the carrier», said Boeing MQ-25 Stingray Program Director Dave Bujold. «This aircraft and its flight test program ensure we’re delivering the MQ-25 Stingray to the carrier fleet with the safety, reliability and capability the U.S. Navy needs to conduct its vital mission».

The Boeing-owned test asset is a predecessor to the Engineering Development Model (EDM) aircraft and is being used for early learning and discovery to meet the goals of the U.S. Navy’s accelerated acquisition program. Boeing will produce four EDM MQ-25 Stingray air vehicles for the U.S. Navy under an $805 million contract awarded in August 2018.

The MQ-25 Stingray will provide the U.S. Navy with a much-needed carrier-based unmanned aerial refueling capability. It will allow for better use of the combat strike fighters currently performing the tanking role and will extend the range of the carrier air wing.

«Today’s flight is an exciting and significant milestone for our program and the Navy», said the U.S. Navy’s Unmanned Carrier Aviation (PMA-268) Program Manager Captain Chad Reed. «The flight of this test asset two years before our first MQ-25 Stingray arrives represents the first big step in a series of early learning opportunities that are helping us progress toward delivery of a game-changing capability for the carrier air wing and strike group commanders».

T1 received its experimental airworthiness certificate from the Federal Aviation Administration (FAA) in September, verifying that the air vehicle meets the agency’s requirements for safe flight. Testing will continue with T1 to further early learning and discovery that advances major systems and software development.

Boeing MQ-25 Unmanned Aerial Refueler Completes First Test Flight

Golden Eagle

September 15 2019, two new «Adir» (F-35I) aircraft landed in Nevatim Air Force Base (AFB). The two fighter jets will join the ranks of the IAF’s «Adir» Division, which was declared operational in December 2017.

Two new «Adir» aircraft land in Israel

The continuous integration of the «Adir» aircraft is another aspect of the long-running military cooperation between Israel and the U.S., which continues to show optimal results. The Israeli Air Force (IAF) is the first force in the world besides the United States to operate the «Adir» (F-35I).

The «Adir» Squadron’s capabilities provide another component to the air force’s existing operational and strategic capabilities, which ensure its supremacy in all missions, the first of which being protecting Israel.

The «Adir» is currently operated by the 140th («Golden Eagle») Squadron. In several months, the 116th («Defenders of the South») Squadron is due to be established as the second «Adir» squadron. The establishment of the squadron’s first building was celebrated last April in a ceremony, which also saw the reveal of its new emblem. «The squadron – as part of the ‘Adir’ Division – signifies the IAF’s momentum», said Brigadier General Eyal Grinboim, then commander of Nevatim AFB.

«The establishment of the 116th Squadron marks the beginning of the ‘Adir’ Division», said Lieutenant Colonel N’, commander of the squadron’s establishment crew. «A major part of the establishment process touches upon the complexity of this transformation. We take a well-developed squadron and maintain its power while creating another one to function alongside it».

 

Specifications

Length 51.4 feet/15.7 m
Height 14.4 feet/4.38 m
Wingspan 35 feet/10.7 m
Wing area 460 feet2/42.7 m2
Horizontal tail span 22.5 feet/6.86 m
Weight empty 29,300 lbs/13,290 kg
Internal fuel capacity 18,250 lbs/8,278 kg
Weapons payload 18,000 lbs/8,160 kg
Maximum weight 70,000 lbs class/31,751 kg
Standard internal weapons load Two AIM-120C air-to-air missiles
Two 2,000-pound/907 kg GBU-31 JDAM (Joint Direct Attack Munition) guided bombs
Propulsion (uninstalled thrust ratings) F135-PW-100
Maximum Power (with afterburner) 43,000 lbs/191,3 kN/19,507 kgf
Military Power (without afterburner) 28,000 lbs/128,1 kN/13,063 kgf
Engine Length 220 in/5.59 m
Engine Inlet Diameter 46 in/1.17 m
Engine Maximum Diameter 51 in/1.30 m
Bypass Ratio 0.57
Overall Pressure Ratio 28
Speed (full internal weapons load) Mach 1.6 (~1,043 knots/1,200 mph/1,931 km/h)
Combat radius (internal fuel) >590 NM/679 miles/1,093 km
Range (internal fuel) >1,200 NM/1,367 miles/2,200 km
Maximum g-rating 9.0

 

Polish Black Hawk

During the MSPO International Defence Industry Exhibition, PZL Mielec, a Lockheed Martin company displayed an S-70i Armed Black Hawk helicopter fitted with a single-station external stores pylon. Designed at PZL Mielec as a lighter weight, lower cost alternative to currently fielded dual-station external wings, a single-station pylon attached to one or both sides of the aircraft will be compatible with the advanced weapon system that allows Black Hawk pilot gunners to support battlefield operations using forward firing guns, rockets and air-to-ground missiles.

An S-70i Black Hawk helicopter at the MSPO trade show carries a lightweight single-station external stores pylon supporting four Hellfire air-to-ground missiles. The prototype pylon’s drop design offers a wide field of fire to the crew-served machine gun, which also can be locked into a fixed forward position for control by a pilot gunner

«We’re developing the single-station pylon in response to requests by militaries across Europe, Latin America and Asia for a battlefield support helicopter that can be armed for different types of missions that may not always need four weapons stations», said Janusz Zakręcki, president, general director of PZL Mielec. «Operators can arm the aircraft for suppressive fire, surveillance, armed reconnaissance, armed escort and air assault missions, and still carry out other utility roles whenever pylons and stores must remain on the aircraft».

At a quarter the cost and weight of a dual-station wing, a pylon can be removed or attached by two people in 15 minutes, produces less drag during flight, offers a wider field of fire to window or door gunners, and opens more space to hoist a litter into the aircraft while in a hover.

For large targets, a pylon will be able to carry HELLFIRE or Spike air-to-ground missile launchers. A pylon also can extend aircraft range with an 80-gallon/303-liters external fuel tank.

As a complementary option for the S-70i/S-70M Armed Black Hawk with dual-station wings, the single station pylon will integrate with the aircraft’s weapons management system that calculates the range and complex ballistics required for pilot gunners to engage targets with high accuracy and reliability from stand-off distances during day and night operations.

PZL Mielec expects to begin airworthiness flight testing of the prototype pylon design in 2020.