RAIDER X

October 14, 2019, Sikorsky, a Lockheed Martin company, introduced RAIDER X, its concept for an agile, lethal and survivable compound coaxial helicopter, specifically designed for securing vertical lift dominance against evolving peer and near-peer threats on the future battlefield. Through the U.S. Army’s Future Attack Reconnaissance Aircraft (FARA) program, RAIDER X is the out-front platform in the Service’s revolutionary approach for rapid development and delivery of game changing technology and warfighter capabilities, equipped for the most demanding and contested environments. RAIDER X enables the reach, protection and lethality required to remain victorious in future conflicts.

Sikorsky introduced RAIDER X as its entry to the U.S. Army’s Future Attack Reconnaissance Aircraft (FARA) prototype competition. RAIDER X draws on Lockheed Martin’s broad expertise in developing innovative systems using the latest digital design and manufacturing techniques (Image courtesy, Sikorsky a Lockheed Martin company)

«RAIDER X converges everything we’ve learned in years of developing, testing and refining X2 Technology and delivers warfighters a dominant, survivable and intelligent system that will excel in tomorrow’s battlespace where aviation overmatch is critical», said Frank St. John, executive vice president of Lockheed Martin Rotary and Mission Systems. «The X2 Technology family of aircraft is a low-risk solution and is scalable based on our customers’ requirements».

RAIDER X draws on Lockheed Martin’s broad expertise in developing innovative systems using the latest digital design and manufacturing techniques. Sikorsky’s RAIDER X prototype offers:

  • Exceptional Performance: The X2 rigid rotor provides increased performance including; highly responsive maneuverability, enhanced low-speed hover, off-axis hover, and level acceleration and braking. These attributes make us unbeatable at the X.
  • Agile, Digital Design: State-of-the-art digital design and manufacturing is already in use on other Lockheed Martin and Sikorsky production programs such as CH-53K, CH-148 and F-35, and will enable the Army to not only lower the acquisition cost, but enable rapid, affordable upgrades to stay ahead of the evolving threat.
  • Adaptability: Modern Open Systems Architecture (MOSA)-based avionics and mission systems, offering «plug-and-play» options for computing, sensors, survivability and weapons, benefiting lethality and survivability, operational mission tailoring and competitive acquisitions.
  • Sustainable/Maintenance: Designed to decrease aircraft operating costs by utilizing new technologies to shift from routine maintenance and inspections to self-monitoring and condition-based maintenance, which will increase aircraft availability, reduce sustainment footprint forward and enable flexible maintenance operating periods.
  • Growth/Mission Flexibility: Focused on the future and ever evolving threat capabilities, X2 compound coaxial technology provides unmatched potential and growth margin for increased speed, combat radius and payload. This potential and growth margin further enables operational mission flexibility which includes a broader range of aircraft configurations and loadouts to accommodate specific mission requirements.

The nationwide supply team that Sikorsky has comprised to build RAIDER X will join company leaders today to introduce RAIDER X during the annual conference of the Association of the United States Army in Washington, D.C.

«RAIDER X is the culmination of decades of development, and a testament to our innovation and passion for solving our customers’ needs», said Sikorsky President Dan Schultz. «By leveraging the strength of the entire Lockheed Martin Corporation, we will deliver the only solution that gives the U.S. Army the superiority needed to meet its mission requirements».

 

Proven X2 Technology: Scalable, Sustainable, Affordable

With RAIDER X, Sikorsky introduces the latest design in its X2 family of aircraft. To date, X2 aircraft have achieved/demonstrated:

  • Speeds in excess of 250 knots/288 mph/463 km/h;
  • High altitude operations in excess of 9,000 feet/2,743 m;
  • Low-speed and high-speed maneuver envelopes out to 60+ degrees angle of bank;
  • ADS-33B (Aeronautical Design Standard) Level 1 handling qualities with multiple pilots;
  • Flight controls optimization and vibration mitigation.

«The power of X2 is game changing. It combines the best elements of low-speed helicopter performance with the cruise performance of an airplane», said Sikorsky experimental test pilot Bill Fell, a retired Army pilot who has flown nearly every RAIDER test flight. «Every flight we take in our S-97 RAIDER today reduces risk and optimizes our FARA prototype, RAIDER X».

The development of X2 Technology and the RAIDER program has been funded entirely by significant investments by Sikorsky, Lockheed Martin and industry partners.

A history of reliability and safety. A legacy of industry-leading research and technological achievement. Now meet the future of vertical lift. RAIDER X delivers speed, precision and maneuverability to achieve its mission…at the X

Fighting Vehicle

The U.S. Army has awarded BAE Systems a contract modification worth up to $269 million for continued production of the Bradley Fighting Vehicle (BFV).

U.S. Army extends contract for Bradley Fighting Vehicle upgrades

The award for an additional 168 upgraded Bradley A4 Infantry Fighting Vehicles is part of the Army’s combat vehicle modernization strategy and helps ensure force readiness of the Armored Brigade Combat Teams (ABCT).

The Bradley A4 is equipped with an enhanced powertrain that maximizes mobility and increases engine horsepower, providing rapid movement in reaction to combat or other adverse situations. Wide angle Driver’s Vision Enhancer, improved Force XXI Battle Command Bridge and Below (FBCB2) software integration improves friendly and enemy vehicle identification, enhancing situational awareness. The addition of a High Speed Slip Ring, greater network connectivity and Smart Displays that simultaneously display classified and unclassified information also improve situational awareness.

«The Bradley is one of the most critical vehicles in the Army’s ABCT today because it allows the Army to transport troops to the fight, and provide covering fire to suppress enemy vehicles and troops», said Scott Davis, vice president of combat vehicle programs for BAE Systems. «Upgrading to the A4 configuration provides soldiers with more power to increase their speed and ability to integrate enhanced technology to ensure they maintain the advantage on the battlefield».

Previously awarded funding for initial production of 164 Bradley A4 vehicles allowed BAE Systems to begin production. The award of this option brings the total production funding to $578 million. It includes upgrades and associated spares of two Bradley variants: the M2A4 Infantry Fighting Vehicle and the M7A4 Fire Support Team Vehicle.

BAE Systems is a premiere supplier of combat vehicles to the U.S. military and international customers. The company has an extensive manufacturing network across the United States and continues to invest in it. Work on the program will take place at Red River Army Depot in Texarkana, Texas, and BAE Systems’ facilities in Aiken, South Carolina; Anniston, Alabama; Minneapolis, Minnesota; San Jose, California; Sterling Heights, Michigan; and York, Pennsylvania.

Nantucket

Lockheed Martin and Fincantieri Marinette Marine marked the beginning of construction on Littoral Combat Ship (LCS) 27, the future USS Nantucket, with a ceremony in Marinette. As part of a ship-building tradition dating back centuries, a shipyard worker welded the initials of Polly Spencer, USS Nantucket (LCS-27) ship sponsor and wife of U.S. Secretary of the Navy Richard Spencer, into the ship’s keel plate. This plate will be affixed to the ship and travel with Nantucket throughout its commissioned life.

A welder authenticates the keel of LCS-27, the future USS Nantucket, by welding the initials of ship sponsor Polly Spencer

«The USS Nantucket will confront many complex challenges», said Richard V. Spencer, the U.S. Secretary of the Navy. «It will confront humanitarian relief all the way to great power competition, drawing on the strength of every weld, every rivet applied by the great people here».

Unique among combat ships, the focused-mission LCS is designed to support mine countermeasures, anti-submarine and surface warfare missions today and is easily adapted to serve future and evolving missions tomorrow. The Freedom-variant LCS is:

  • Flexible – Forty percent of the hull is easily reconfigurable, able to integrate Longbow Hellfire Missiles, 30-mm guns, and manned and unmanned vehicles designed to meet today’s and tomorrow’s missions.
  • Lethal – LCS is standard equipped with Rolling Airframe Missiles (RAM) and a Mark 110 gun, capable of firing 220 rounds per minute.
  • Fast – LCS is capable of speeds in excess of 40 knots/46 mph/74 km/h.
  • Automated – LCS has the most efficient staffing of any combat ship.

«LCS’ built-in flexibility makes it unlike any other Navy ship in the water today», said Joe DePietro, vice president and general manager of Small Combatants and Ship Systems. «LCS can serve a multitude of missions to include surface, anti-submarine and mine countermeasure missions by quickly integrating mission equipment and deploying manned and unmanned aerial, surface or sub-surface vehicles».

USS Nantucket (LCS-27) is the first Navy ship to be named after Nantucket, Massachusetts in more than 150 years. Nantucket has a deep connection to sailing and maritime traditions, serving as a whaling hub in the 1800s and as the home of generations of American sailors since the town’s beginning. The previous USS Nantucket, the first to be named after the island, was commissioned in 1862 to serve during the American Civil War.

«I have been given a very special honor in being the sponsor of the future USS Nantucket. I am happy she is being built here in Marinette, Wisconsin, which has an impressive history of shipbuilding», said Polly Spencer, LCS-27 sponsor. «Thank you to all the talented people who are bringing this ship to life… it is going to be an amazing journey that I am thrilled to be on».

USS Nantucket (LCS-27) will be the 14th Freedom-variant LCS and will join a class of more than 30 ships. It is one of six ships in various stages of construction and test at the Fincantieri Marinette Marine shipyard.

«We are very excited to begin construction of the future USS Nantucket», said Jan Allman, CEO of Fincantieri Marinette Marine. «Our men and women are proud to put their efforts into giving the Navy versatile ships to keep our country and its interests safe».

 

Ship Design Specifications

Hull Advanced semiplaning steel monohull
Length Overall 389 feet/118.6 m
Beam Overall 57 feet/17.5 m
Draft 13.5 feet/4.1 m
Full Load Displacement Approximately 3,200 metric tons
Top Speed Greater than 40 knots/46 mph/74 km/h
Range at top speed 1,000 NM/1,151 miles/1,852 km
Range at cruise speed 4,000 NM/4,603 miles/7,408 km
Watercraft Launch and Recovery Up to Sea State 4
Aircraft Launch and Recovery Up to Sea State 5
Propulsion Combined diesel and gas turbine with steerable water jet propulsion
Power 85 MW/113,600 horsepower
Hangar Space Two MH-60 Romeo Helicopters
One MH-60 Romeo Helicopter and three Vertical Take-off and Land Tactical Unmanned Air Vehicles (VTUAVs)
Core Crew Less than 50
Accommodations for 75 sailors provide higher sailor quality of life than current fleet
Integrated Bridge System Fully digital nautical charts are interfaced to ship sensors to support safe ship operation
Core Self-Defense Suite Includes 3D air search radar
Electro-Optical/Infrared (EO/IR) gunfire control system
Rolling-Airframe Missile Launching System
57-mm Main Gun
Mine, Torpedo Detection
Decoy Launching System

 

Freedom-class

Ship Laid down Launched Commissioned Homeport
USS Freedom (LCS-1) 06-02-2005 09-23-2006 11-08-2008 San Diego, California
USS Fort Worth (LCS-3) 07-11-2009 12-07-2010 09-22-2012 San Diego, California
USS Milwaukee (LCS-5) 10-27-2011 12-18-2013 11-21-2015 San Diego, California
USS Detroit (LCS-7) 08-11-2012 10-18-2014 10-22-2016 San Diego, California
USS Little Rock (LCS-9) 06-27-2013 07-18-2015 12-16-2017 San Diego, California
USS Sioux City (LCS-11) 02-19-2014 01-30-2016 11-17-2018 Mayport, Florida
USS Wichita (LCS-13) 02-09-2015 09-17-2016 01-12-2019 Mayport, Florida
USS Billings (LCS-15) 11-02-2015 07-01-2017 08-03-2019 Mayport, Florida
USS Indianapolis (LCS-17) 07-18-2016 04-18-2018 Mayport, Florida
USS St. Louis (LCS-19) 05-17-2017 12-15-2018
USS Minneapolis/St. Paul (LCS-21) 02-22-2018 06-15-2019
USS Cooperstown (LCS-23) 08-14-2018
USS Marinette (LCS-25) 03-27-2019
USS Nantucket (LCS-27) 10-09-2019
USS Beloit (LCS-29)
USS Cleveland (LCS-31)

 

Belharra frigates

According to ekathimerini.com, Defense Minister Nikos Panagiotopoulos on Thursday (October 10) expressed Greece’s willingness to launch talks for the acquisition of two new navy frigates in talks with his French counterpart Florence Parly in Paris.

Greece signed a Letter of Intent (LoI) to buy two Belharra frigates similar to those that Naval Group is building for the French Navy. If the deal goes through, Greece will become the frigate’s first export customer (NG image)

The ministers signed a statement of intent for the acquisition by the Hellenic Navy of two frigates, Panagiotopoulos said, adding that there was «a long way to go» before an agreement is reached on the required «technical aspects» of the vessels.

Another point of discussion was some pending issues relating to the maintenance of French Mirage fighter jets, he said.

The two ministers also discussed Turkey’s offensive in Syria and developments in the eastern Mediterranean where Turkey continues its illegal prospecting for hydrocarbons in Cyprus’ exclusive economic zone.

In comments to reporters after his meeting with Parly, Panagiotopoulos referred to French and Italian vessels in the area, saying that they served to underline the presence of the European Union and its objections to Turkey’s continuing transgressions in Cyprus’ waters.

JMR TD program

The U.S. Army is looking to improve its aviation technology and recently called upon the Arnold Engineering Development Complex (AEDC) – National Full-Scale Aerodynamics Complex (NFAC) at Moffett Field in Mountain View, California, to advance this effort.

Sikorsky-Boeing SB>1 Defiant Helicopter Achieves First Flight
The Sikorsky-Boeing SB>1 DEFIANT is shown during its first flight in March. The military helicopter, being developed for the Army’s Joint Multi-Role Technology Demonstrator program, was tested earlier this year at the AEDC National Full-Scale Aerodynamics Complex at Moffett Field in Mountain View, California (Courtesy photo)

Engineers from Sikorsky Aircraft Corporation and The Boeing Company, in partnership with the U.S. Army Combat Capabilities Development Command Aviation & Missile Center Army Aviation Development Directorate, recently conducted a series of tests at NFAC to support the development of the SB>1 DEFIANT, a military helicopter being developed for the Army’s Joint Multi-Role Technology Demonstrator (JMR TD) program.

The goal of this wind tunnel test was to validate the aerodynamic performance and flight mechanics of Sikorsky’s X2 Technology aircraft. These configurations, which are being utilized on the SB>1 DEFIANT, include a lift-offset coaxial rotor system, composite fuselage and rear-mounted pusher propulsor that provides increased speed.

The SB>1 DEFIANT, which made its first flight in March, is a technology demonstrator for a medium-lift utility helicopter. Future uses of this type of air vehicle could include attack and assault, troop transport or medical evacuation (MEDEVAC).

The testing was conducted throughout the first half of 2019 and concluded in mid-June. To accomplish the tests, a 1/5 scale model of the SB>1 DEFIANT airframe with powered coaxial main rotors was placed in the NFAC 40- by 80-foot/12.2- by 24.4-meter wind tunnel.

Measurements included forces and moments on the various components, as well as fuselage, empennage and blade surface pressures.

David Wang, NFAC test engineer, said the recent tests expanded on data collected from a JMR wind tunnel entry conducted at NFAC in 2016 by gathering data at faster speed ranges.

«From the NFAC perspective, the wind tunnel test was successful», Wang said. «The test customer was able to collect performance and handling qualities data for their subscale model up to their maximum design flight speed».

Data collected during the recent tests is undergoing review and analysis. It is unknown at this time if there will be future testing of the SB>1 DEFIANT model at NFAC.

The full-scale SB>1 DEFIANT flight demonstrator is currently undergoing ground and flight tests at Sikorsky’s flight test facility. According to the Sikorsky-Boeing JMR Team, data from SB>1 DEFIANT will help the Army develop requirements for new utility helicopters expected to enter service in the early 2030s.

A previous Department of Defense (DOD) study concluded that upgrades to the aging DOD rotary wing aviation fleet would not provide the capabilities required for future operations. Significant improvement in several attributes of fleet aircraft, such as speed, payload, range, survivability and vertical lift are required to meet future needs. It was determined this improvement could be achieved through application of new technologies and designs.

To accomplish its goal, the Army has been executing a Science & Technology (S&T) effort to mitigate risk associated with maturity of critical technologies, feasibility of desired capabilities and cost of a technical solution. An aspect of this effort is the air vehicle development associated with the JMR TD program.

JMR TD is the alignment of Army Aviation’s S&T with the Future Vertical Lift initiative, which seeks to develop a new family of system to modernize and replace the government’s current fleet of rotorcraft. According to the Army, the intent of the JMR TD is to mitigate risk for the Future Vertical Lift program through means that include the testing of advanced technologies and efficient vehicle configurations.

NFAC, managed and operated by AEDC, is the largest wind tunnel complex in the world. It consists of both the 40- by 80-foot/12.2- by 24.4-meter and 80- by 120- foot/24.4- by 36.6-meter wind tunnels. These tunnels, which share a common drive system, are primarily used for aerodynamic and acoustic tests of rotorcraft and fixed wing, powered-lift Vertical and/or Short Take-Off and Landing (V/STOL) aircraft and developing advanced technologies for these vehicles.

Both subscale and full-scale models are tested at NFAC. The speed range of the 40- by 80-foot/12.2- by 24.4-meter wind tunnel test section is continuously variable from 0 to 300 knots/345 mph/555 km/h, while the speed range in the 80- by 120-foot/24.4- by 36.6-meter wind tunnel section is continuously variable from 0 to 100 knots/115 mph/185 km/h.

Indian Rafale

October 8th, 2019, Eric Trappier, Dassault Aviation Chairman and Chief Executive Officer, hosted the handover ceremony of the first Indian Air Force Rafale in Mérignac, Dassault Aviation’s Rafale final assembly facility. The event was placed under the high patronage of the Honourable Shri Rajnath Singh, Minister of Defence of India and the Honourable Ms. Florence Parly, Minister of the Armed Forces of France.

Ceremony held in Dassault Aviation Mérignac facility on October 8th, 2019, in the frame of the celebrations of Air Force Day

The ceremony, 3 years after the signature of the contract in 2016 for the acquisition of 36 Rafale to equip the Indian Air Force, marks the concretization of the strategic relationship between India and France and the celebration of the history of mutual trust between India and Dassault Aviation for more than 65 years.

The handover of the first IAF Rafale, materializes the determination of the French Authorities to fulfill the expectations and needs of the Government of India to comfort India’s protection and sovereignty and illustrates the exemplary cooperation between Dassault Aviation and the Indian Air Force, one of the most remarkable partner Dassault Aviation’s has ever worked with.

The setup of the Dassault Reliance JV (DRAL) production facility in Nagpur as well as the significant support of  the educational and scientific policy of the Indian Government through the establishing of an engineering center in Pune, the creation of the «Dassault Skill Academy» and the implementation of a vocational training programme «Aeronautical Structure and Equipment Fitter», demonstrate Dassault Aviation full commitment to the «Make in India» and «Skill India» initiatives in building the foundations for a national aerospace and defence ecosystem to become a worldwide reference of the sector.

Supported by Dassault Aviation partners, Thales already present in Nagpur, Safran to inaugurate its facility in Hyderabad as well as the French aeronautics and defence community among which twenty companies are already settled in India, this approach will mutually benefit both Indian and French industries and will contribute to guaranty both countries to meet tomorrow’s aeronautical challenges.

«I am particularly honored to host this ceremony today as India is part of Dassault Aviation’s DNA. The long and trustful relationship we share is an undeniable success and underpins my determination of establishing for the long term Dassault Aviation in India. We stand alongside the Indian Air Force since 1953, we are totally committed to fulfill its requirements for the decades to come and to be part of India’s ambitious vision for the future», has declared Eric Trappier, Chairman and CEO of Dassault Aviation.

Minehunting sonar

Northrop Grumman Corporation successfully operated the AQS-24 minehunting sonar at depths greater than 400 feet/122 m during system testing off the coast of Fort Lauderdale, Florida.

Northrop Grumman successfully tests AQS-24 Deep Tow

Embarked on the M/V Richard Becker, the Northrop Grumman test team demonstrated reliable AQS-24 system operations with excellent sonar performance at all tested depths, while using the system to classify bottom objects of interest.

«The AQS-24 minehunting system performed superbly at tow depths up to and beyond 400 feet/122 m», said Alan Lytle, vice president, undersea systems, Northrop Grumman. «This latest internal research and development effort underscores our commitment to provide the most innovative, affordable and operationally-proven capabilities to meet the Navy’s Littoral Combat Ship (LCS) Mine Countermeasures Mission (MCM) package requirements and future expeditionary MCM needs».

Earlier this year, Northrop Grumman demonstrated an autonomy upgrade path for the AQS-24’s minehunting system by integrating and successfully testing the company’s image exploitation suite, incorporating state-of-the-art machine learning for Automatic Target Recognition (ATR) using multiple ATR algorithms. Following this successful demonstration, the U.S. Navy plans to incorporate this new capability into existing AQS-24 minehunting systems.

The success of Deep Tow is now followed by the recently commenced in-water testing of Northrop Grumman’s AQS-24 system on the Navy’s MCM Unmanned Surface Vessel (USV) at Naval Surface Warfare Center Panama City. This is in preparation for user operated evaluation system testing aboard the LCS in 2020. The AQS-24’s newly doubled depth capability is planned for integration and test with the MCM USV system.

These major enhancements to the U.S. Navy’s only operational mine hunting towed sonar – running deeper, automatically detecting and reporting targets, and providing the transition to the LCS MCM USV – increases the operational effectiveness of the AQS-24 system while providing the warfighter with an unprecedented capability that affordably meets operational needs and provides a proven path for continued integration of state-of-the-art technology.

Doubles the current AQS-24 program of record depth performance metric

Lithuanian NASAMS

In the end of September specialists of the Lithuanian Air Force began tests of the NASAMS medium-range air defence system made for the Lithuanian Air Force at the Kongsberg factory in Norway. Components of the weaponry system produced specifically for the Lithuanian Air Force will be first tested at the factor and then put to field trials when the air defence systems are brought to Lithuania.

Lithuania has begun testing two batteries of NASAMS medium-range air-defense missiles it ordered for 110 million euros in 2017; Lithuania’s system uses second-hand launchers from the Norwegian army and new AMRAAM missiles from the US (LT MoD photo)

The trials will assess technical and tactical conformity of NASAMS components to the determined weaponry specification. The tests will run until February 2020 and test all the NASAMS components – missile launchers, radars, electro-optical sensors, components of integration with the RBS70 short-range air defence systems, communication, and control components, and vehicles.

The NASAMS medium-range air defence system is planned to be delivered to Lithuania by the end of 2020.

Once the systems are delivered, specialist operator training will begin at the Lithuanian Air Force Air Defence Battalion.

The contract for procuring the NSAMS mid-range air defence system for the Lithuanian Air Force was signed by the Ministry of National Defence and Norway’s Kongsberg NASAMS manufacturer on 26 October 2017.

For the sum of EUR 110 million, equipment for two air defence batteries and logistical maintenance package, as well as training for operators and maintenance personnel of the system are bought from Norwegian NASAMS manufacturer Kongsberg.

Upon the completion of the project, Lithuania will have acquired a complete and integrated medium range air defence capability.

«Protected airspace is one of the main conditions necessary for deployment of allies into the region in case of necessity», Minister of National Defence Raimundas Karoblis says. «NASAMS is an assembled and integrated medium-range air defence capability we needed and did not have till present. This procurement partly fills one of the biggest gaps in national defence – airspace protection».

The system procured by Lithuania is new, except for the launchers that are pre-used by the Norwegian Armed Forces and currently upgraded to manufacturer’s parameters. The systems procured from Norway use U.S.-made AMRAAM aircraft defence missiles capable of destroying aircraft and missiles of an adversary several tens of kilometres away. All the equipment is planned to be fully delivered to Lithuania, personnel trained, and all the components integrated into a system capable of completing air defence tasks: monitor and control air space, issue warning to ground-based units about air threats, and to destroy targets if necessary.

The MoD Work Group analysed mid-range air defence systems available on the market to implement the NASAMS procurement project. Potential procurements were assessed according to such criteria as efficiency, compatibility with systems of NATO allies, maintenance and repair cost, times of delivery, etc. NASAMS was selected as the closest choice to the requirement and criteria formulated.

Lithuanian Air Force experts begin testing NASAMS medium-range air defence system

Patrol Vessel

HMS Spey (P234), the last of five River Class Offshore Patrol Vessels (OPVs), was named in front of gathered VIPs and employees at an official ceremony in Glasgow on 3 October, 2019.

HMS Spey (P234) named at official ceremony

In keeping with naval tradition, guests watched as Lady Johnstone, HMS Spey’s sponsor, named the 2000 tonne vessel by releasing a bottle of special blend Spey whisky from Speyside Distillery that smashed against the ship’s hull.

HMS Spey (P234) is the last in a class of five vessels that have been built in Glasgow. With construction starting on the first ship in late 2014, these vessels have provided an important opportunity to maintain essential design, construction and systems integration skills, while introducing new processes and technologies that are already being used in the production of the UK’s Type 26 frigates.

David Shepherd, OPV Programme Director said: «Today’s ceremony is a truly significant milestone for the River Class Offshore Patrol Vessel programme and builds on our proud heritage of British shipbuilding here in Glasgow. There has been fantastic momentum on this programme and the naming of HMS Spey serves as a great reminder of the importance of the capability and skills of our employees who are working together with the Royal Navy and partners to deliver these important ships».

Defence Minister Anne-Marie Trevelyan said: «Our Offshore Patrol Vessels play a pivotal role in patrolling our coastline, protecting our domestic waters, and supporting maritime interests from anti-smuggling to fisheries protection. The naming of HMS Spey is an exciting milestone for the OPV programme, demonstrating our commitment to UK shipyards while bolstering the Royal Navy’s capabilities».

HMS Spey (P234) will aid in a range of operations from counter-terrorism, and anti-smuggling to securing the UK’S borders to help keep Britain safe, making her a valuable addition to the Royal Navy fleet.

HMS Forth (P222) and HMS Medway (P223), the first two ships in the class, are now in service with the Royal Navy.

Invictus

Bell Textron Inc., a Textron Inc. company, has announced a new rotorcraft, Bell 360 Invictus, as the company’s entrant for the U.S. Army’s Future Attack Reconnaissance Aircraft (FARA) Competitive Prototype program. Bell’s innovative approach to designing the Bell 360 Invictus combines proven low-risk technologies with advanced processes to deliver soldiers an affordable, agile and lethal solution to win on the modern battlefield. The Bell 360 Invictus meets or exceeds all requirements as laid out under the FARA contract.

Next-generation rotorcraft is designed to provide attack, reconnaissance, and intelligence to shape the tactical environment and deliver operational overmatch in highly complex multi-domain operations

«The Bell 360 will deliver advanced battlefield situational awareness, as well as lethal options, in support of the maneuver force at an affordable cost», said Vince Tobin, executive vice president of Military Business at Bell. «The multi-domain fight will be complex, and our team is delivering a highly capable, low-risk solution to confidently meet operational requirements with a sustainable fleet».

The Bell 360 Invictus’ design emphasizes exceptional performance using proven technologies to fulfill the Army’s FARA requirements at an affordable cost and on schedule. One example is the Invictus’ rotor system. This design is based on Bell’s 525 Relentless rotor system which has been tested and proven at speeds in excess of 200 Knots True Air Speed (KTAS)/230 mph/370 km/h. By incorporating proven designs and the best available technologies from commercial and military programs, Bell delivers a low-risk path to a FARA program of record.

This advanced aircraft will have a transformative impact through next-generation flight performance, increased safety and greater operational readiness – all to deliver decisive capabilities.

Some of the key 360 Invictus features include:

  • Lift-sharing wing to reduce rotor lift demand in forward flight, enabling high-speed maneuverability
  • Supplemental Power Unit increases performance during high power demands
  • Robust articulated main rotor with high flapping capability enabling high speed flight
  • Fly-by-wire flight control system – synthesizes technologies, reduces pilot workload and provides a path to autonomous flight
  • Speed: >185 KTAS/213 mph/343 km/h
  • Combat radius: 135 NM/155 miles/250 km with >90 minutes of time on station
  • Achieves 4k/95F Hover Out of Ground Effect (HOGE)
  • Armed with a 20-mm cannon, integrated munitions launcher with ability to integrate air-launched effects, and future weapons, as well as current inventory of munitions
  • Provisioned for enhanced situational awareness and sensor technologies
  • Modular Open Systems Approach (MOSA) enabled by a Digital Backbone from Collins Aerospace
  • Robust design integrating lifecycle supportability processes early to ensure high Operational Tempo (OPTEMPO) availability in multi-domain operations
  • Design-as-built manufacturing model and digital thread enabled tools to enhance affordability, reliability, and training throughout the lifecycle of the aircraft

«Bell is committed to providing the U.S. Army with the most affordable, most sustainable, least complex, and lowest risk solution among the potential FARA configurations, while meeting all requirements», said Keith Flail, vice president of Advanced Vertical Lift Systems at Bell. «360 Invictus is an exciting opportunity for us to continue our support of Army modernization. This is the next solution to ensure soldiers have the best equipment available for the multi-domain fight».

Bell has decades of experience providing attack and reconnaissance aircraft to the warfighter, such as the Kiowa Warrior which delivered high reliability and availability through more than 850,000 flight hours. The Bell 360 Invictus design builds from that legacy, Bell’s commercial innovations, and from the success in the development and manufacturing capabilities required for Future Vertical Lift (FVL) as part of the Joint Multi-Role Technology Demonstration (JMR TD) over the past six years.