Electromagnetic Testing

A Boeing-led team, including U.S. Air Force and Naval Air Systems Command representatives, recently completed KC-46 Pegasus tanker electromagnetic testing.

A Boeing KC-46A Pegasus tanker undergoes testing at Naval Air Station Patuxent River, Maryland, on the base’s electromagnetic pulse pad. In order to evaluate its ability to operate safely through electromagnetic fields produced by radar, radio towers and other systems, the aircraft received a series of pulses from a large coil mounted overhead. The KC-46 is protected by technologies designed into the aircraft to negate any effects (Photo credit: NAVAIR photographer)
A Boeing KC-46A Pegasus tanker undergoes testing at Naval Air Station Patuxent River, Maryland, on the base’s electromagnetic pulse pad. In order to evaluate its ability to operate safely through electromagnetic fields produced by radar, radio towers and other systems, the aircraft received a series of pulses from a large coil mounted overhead. The KC-46 is protected by technologies designed into the aircraft to negate any effects (Photo credit: NAVAIR photographer)

This testing evaluates the aircraft’s ability to safely operate through electromagnetic fields produced by radars, radio towers and other systems under mission conditions.

«The KC-46 tanker is protected by various hardening and shielding technologies designed into the aircraft to negate any effects on the aircraft», said Mike Gibbons, Boeing KC-46 vice president and program manager. «This successful effort retires one of the key risks on the program».

Testing was conducted on the Naval Air Station Patuxent River, Maryland, Electromagnetic Pulse (EMP) and Naval Electromagnetic Radiation Facility pads and also in the Benefield Anechoic Facility at Edwards Air Force Base, California.

During tests on the EMP pad at Patuxent River, the program’s second low-rate initial production KC-46 Pegasus received pulses from a large coil/transformer situated above the aircraft. The outdoor simulation was designed to test and evaluate the KC-46’s EMP protection while in flight.

The KC-46A Pegasus is a multirole tanker that is designed to refuel all allied and coalition military aircraft compatible with international aerial refueling procedures and can carry passengers, cargo and patients.

Boeing is assembling KC-46 Pegasus aircraft at its Everett, Washington, facility.

 

General Characteristics

Primary Function Aerial refueling and airlift
Prime Contractor The Boeing Company
Power Plant 2 × Pratt & Whitney 4062
Thrust 62,000 lbs/275.790 kN/28,123 kgf – Thrust per High-Bypass engine (sea-level standard day)
Wingspan 157 feet, 8 inches/48.1 m
Length 165 feet, 6 inches/50.5 m
Height 52 feet, 10 inches/15.9 m
Maximum Take-Off Weight (MTOW) 415,000 lbs/188,240 kg
Maximum Landing Weight 310,000 lbs/140,614 kg
Fuel Capacity 212,299 lbs/96,297 kg
Maximum Transfer Fuel Load 207,672 lbs/94,198 kg
Maximum Cargo Capacity 65,000 lbs/29,484 kg
Maximum Airspeed 360 KCAS (Knots Calibrated AirSpeed)/0.86 M/414 mph/667 km/h
Service Ceiling 43,100 feet/13,137 m
Maximum Distance 7,299 NM/8,400 miles/13,518 km
Pallet Positions 18 pallet positions
Air Crew 15 permanent seats for aircrew, including aeromedical evacuation aircrew
Passengers 58 total (normal operations); up to 114 total (contingency operations)
Aeromedical Evacuation 58 patients (24 litters/34 ambulatory) with the AE Patient Support Pallet configuration; 6 integral litters carried as part of normal aircraft configuration equipment

 

Leave a Reply