Missile Killer

On June 6, the Technical Research and Development Institute (TRDI), Japan Ministry of Defense (MOD), and the U.S. Missile Defense Agency (MDA), in cooperation with the U.S. Navy conducted the first flight test, dubbed Cooperative Development Controlled Test Vehicle-01, of an SM-3 Block IIA. The Raytheon SM-3 Block IIA’s larger rocket motors and bigger, more capable kill vehicle will deliver the capability to engage threats sooner and protect larger regions from short- (1,000 km or less) to medium- (1,000 to 3,000 km) and intermediate-range ballistic missile threats (3,000 to 5,500 km).

Raytheon’s Standard Missile-3 Block IIA completed its first flight test on June 6, 2015, at the U.S. Navy’s Pacific Missile Range Saint Nicolas Island Facility, California (Photo: Missile Defense Agency)
Raytheon’s Standard Missile-3 Block IIA completed its first flight test on June 6, 2015, at the U.S. Navy’s Pacific Missile Range Saint Nicolas Island Facility, California (Photo: Missile Defense Agency)

«The SM-3 Block IIA program reflects the MDA’s commitment to maturing this capability for the defense of our nation, deployed forces and our allies abroad», said Doctor Mitch Stevison, Raytheon Missile Systems’ SM-3 program director. «The success of this test keeps the program on track for a 2018 deployment at sea and ashore».

During the test, a SM-3 Block IIA, a 21-inch/0.53-meter diameter variant of the SM-3 missile, was launched from an Mk-41 launcher located at the U.S. Navy’s Pacific Missile Range Saint Nicolas Island Facility, California, to test the nosecone performance, steering control section functioning, booster separation and second stage rocket motor separation.

No intercept was planned, and no target missile was launched. Program officials will evaluate system performance based upon telemetry and other data obtained during the first flight test.

The Raytheon SM-3 family of interceptors has taken out more threat targets in space than all other comparable programs combined. Key to its success – a so-called «crawl, walk, run» development approach that builds on proven systems. These days, the program is not just hitting its stride, it is sprinting.

The Standard Missile-3 Block IIA is on track for 2018 deployment at sea and ashore in Poland
The Standard Missile-3 Block IIA is on track for 2018 deployment at sea and ashore in Poland

 

Standard Missile-3

The Raytheon SM-3 program is a critical piece of the United States’ Phased Adaptive Approach for missile defense. Currently, U.S. Navy ships carrying SM-3s deployed off Europe’s coast provide the continent’s only «upper tier» defense from the growing threat of ballistic missiles. Starting this year, the first land-based SM-3 site will become operational in Romania, further enhancing Europe’s protection

The flexibility of SM-3 to be both land- and sea-based offers countries that do not have ballistic missile defense-enabled navies to take advantage of the SM-3’s incredible capacity to protect large areas of land, often referred to as regional defense, with fewer interceptor sites when compared to other «lower tier» missile defense solutions.

Whether on land or at sea, the SM-3 continues to excel in testing. In 2014, the SM-3 Block IB was successfully launched for the first time from an Aegis Ashore testing site in Hawaii. Later in the year, an SM-3 destroyed a short-range ballistic missile target during a highly complex integrated air and missile defense exercise in the Pacific.

The program has more than 25 successful space intercepts, and more than 200 interceptors have been delivered to U.S. and Japanese navies.

The new Standard Missile-3 will offer greater protection from short- to intermediate-range ballistic missile threats
The new Standard Missile-3 will offer greater protection from short- to intermediate-range ballistic missile threats

 

SM-3 Block IB

The Raytheon SM-3 Block IB has an enhanced two-color infrared seeker and upgraded steering and propulsion capability that uses short bursts of precision propulsion to direct the missile toward incoming targets.

The next-generation SM-3 Block IB became operational in 2014, deploying for the first time on U.S. Navy ships worldwide.

The Standard Missile-3 Block IIA’s larger rocket motors will allow it to take out threats sooner
The Standard Missile-3 Block IIA’s larger rocket motors will allow it to take out threats sooner

 

SM-3 Block IIA

The new SM-3 Block IIA is being developed in cooperation with Japan and will be deployable on land as well as at sea. It has two distinct new features: larger rocket motors that will allow it to defend broader areas from ballistic missile threats and a larger kinetic warhead.

SM-3 Block IIA is the centerpiece of the European missile defense system, and Raytheon Company will begin flight-testing in 2015 to keep the program on track for 2018 deployment at sea and on land in Poland.

 

NATO intelligence reports indicate the threat of ballistic missiles is increasing in number and complexity. By 2018, all of Europe could be at risk. From sensors to interceptors, Raytheon’s proven ballistic missile defense systems provide layered defense around the world. Defending the continent requires a robust system of integrated land, sea and space Ballistic Missile Defense assets. This hypothetical scenario examines two critical Raytheon assets: AN/TPY-2 Radar and Standard Missile-3

Leave a Reply