Like a smartphone

The third Mobile User Objective System (MUOS) satellite built by Lockheed Martin for the U.S. Navy was encapsulated into its payload fairing. It is scheduled to launch January 20 aboard a United Launch Alliance Atlas V rocket.

MUOS SV1 is encapsulated at the Astrotech facility in Titusville, Florida
MUOS SV1 is encapsulated at the Astrotech facility in Titusville, Florida

«This third MUOS launch is another major step toward achieving a fully operational MUOS end-to-end capability by 2016», said Navy Capt. Joseph Kan, the MUOS program manager in a statement. «The Navy, in close collaboration with the Army, Air Force and our industry partners, is bringing the future of worldwide mobile satellite communications into reality for the United States and potentially allied nations».

MUOS operates like a smart phone network in the sky, vastly improving current secure mobile satellite communications for warfighters on the move. Unlike previous systems, MUOS provides users an on-demand, beyond-line-of-sight capability to transmit and receive high-quality, prioritized voice and mission data, on a high-speed Internet Protocol-based system.

«MUOS is a game changer in communications for our warfighters and will allow them to have high-fidelity voice conversations, networked team calls and data exchange, including video, with anyone connected to a secure terminal around the world», said Iris Bombelyn, vice president of Narrowband Communications at Lockheed Martin. «The launch of MUOS-3 will increase our network coverage to about three-quarters of the globe».

Replacing the legacy Ultra High Frequency (UHF) Follow-On system, MUOS satellites have two payloads to ensure UHF narrowband communications accessibility and new capabilities. MUOS’ advanced Wideband Code Division Access (WCDMA) payload incorporates commercial technology and a new waveform to provide users priority-based capacity. Once fully operational, MUOS will provide comparatively 16 times the capacity of the legacy system. More than 50,000 terminals in the field today can be retrofitted with WCDMA.

The system consists of four satellites in geosynchronous earth orbit (GEO) with one on-orbit spare and a fiber optic terrestrial network connecting four ground stations
The system consists of four satellites in geosynchronous earth orbit (GEO) with one on-orbit spare and a fiber optic terrestrial network connecting four ground stations

MUOS is expected to provide warfighters global coverage before the end of 2015. MUOS-1 and MUOS-2, launched respectively in 2012 and 2013, are already operational and providing high-quality voice communications. MUOS-4 is on track to launch later in the year. The fourth and final required MUOS ground station also is expected to be operational early next year.

For MUOS, Lockheed Martin is building on its proven record of providing progressively advanced spacecraft for protected, narrowband and wideband military satellite communications. Lockheed Martin built the legacy Milstar protected communications satellites, as well as the Defense Satellite Communications Systems (DSCS) wideband communications spacecraft for the U.S. Air Force. Lockheed Martin is also the prime contractor on the U.S. Air Force’s Advanced Extremely High Frequency (AEHF) program, a next-generation military satellite communications system to deliver vastly improved global, survivable, highly secure, protected communications capabilities for strategic command and tactical warfighters operating on ground, sea and air platforms.

According to Sam LaGrone, the USNI Online Editor at the U.S. Naval Institute, MUOS was originally to be paired with the Pentagon’s Joint Tactical Radio System (JTRS) program that was cancelled in 2011. Now there are few program of record radios for the systems, though General Dynamics, Rockwell Collins and Harris have developed MUOS compatible radios.

The MUOS Flt 1 vehicle prepares to enter the DELTA chamber for thermal vac testing
The MUOS Flt 1 vehicle prepares to enter the DELTA chamber for thermal vac testing

 

Communication Service Types

Voice:                                                Conversational and recognition voice

Data:                                                  Low data rate telemetry, short digital messaging, imagery transfer, file transfer, electronic mail, remote computer access, remote sensor reception, sporadic messaging for distributed applications, video, video teleconferencing

Mixed Voice and Data Services:      Mixed transport of voice and data

 

Communication Characteristics

Satellites:                                            4 GEO satellites and an on-orbit spare.                                                                   16 WCDMA beams per satellite.                                                                                 Satellite carries MUOS WCDMA and                                                                       legacy UHF SATCOM payloads

Access Type:                                      WCDMA

Data Rates:

Up to 384 kbps on the move

Bandwidth:

Four 5-MHz carriers

Transport Network:

IPv4 and IPv6 dual stack network

DoD Teleport:

Portal to Defense Information Systems Network:

DSN, SIPRNET, NIPRNET

Access Type:                                      Legacy UHF SATCOM

Bandwidth:

17 25-kHz and 21 5-kHz channels

 

The foundation of the MUOS architecture is a direct sequence spread spectrum WCDMA waveform leveraged from 3G commercial mobile technologies. WCDMA offers adaptive power control to provide the required quality of service to each user while simultaneously maximizing system capacity. MUOS uses Internet Protocol versions 4 and 6 (IPv4/IPv6) to give the warfighter global roaming connectivity to the Global Information Grid. The architecture is also designed for significant growth as capacity demand increases. In fact, the MUOS frequency allocation reserves enough space for four more satellites, providing effortless growth capability.

 

Leave a Reply